On the Injective Galois Map

Xiaolong Jiang

Department of Mathematics Zhongshan University Guangzhou, 510257, P.R. China mcsjxl@mail.sysu.edu.cn

George Szeto

Department of Mathematics Bradley University Peoria, Illinois 61625, USA szeto@bradley.edu

Abstract

Let B be a Galois extension of B^G with Galois group G, and $\alpha: H \longrightarrow B^H$ the Galois map from the set of subgroups of G to the set of subextensions of B^G . Then a sufficient condition on a set with a maximal number of subgroups is given under which α is one-to-one on the set. Moreover, the collection of such sets of subgroups is computed, and thus we can determine which Galois group H is unique for the Galois extension B over B^H

Mathematics Subject Classification: 16S35, 16W20

Keywords: Galois extensions, Separable extensions, Azumaya algebras, Galois map.

1 Introduction

The Galois theory for rings has been intensively investigated ([1], [2], [3], [4], [6], [7], [8]). The fundamental theorem was generalized from Galois extensions for fields to commutative rings and to commutative partial Galois extensions ([1], [3], [7], [9], [10]). Let B be a ring Galois extension of B^G with Galois group G, C is the center of B, $J_g = \{b \in B \mid bx = g(x)b$ for each $x \in B\}$ for $g \in G$, and $V_B(B^G)$ the commutator subring of B^G in B. Then $V_B(B^G) = \bigoplus \sum_{g \in G} J_g$ ([5], Proposition 1). We note that $J_g = \{0\}$ for each $g \neq 1 \in G$ when B

is commutative. But J_g may not be $\{0\}$ for a $g \neq 1 \in G$ when B is non-commutative. Recently, it was shown ([9], Theorem 3.4) that if B is a Galois extension of B^G with Galois group G such that $J_g \neq \{0\}$ for each $g \in G$, then the Galois map $\alpha: H \longrightarrow B^H$ is one-to-one. This implies that α is one-to-one for all central Galois algebras ([2]) and Hirata separable Galois extensions ([6]). Observing that $J_g = \{0\}$ for some $g \in G$ for a Galois extension, we shall give a collection of sets \mathcal{F} of subgroups such that each \mathcal{F} is a set of maximal number of subgroups satisfying some condition on which α is one-to-one. This generalizes the above result as given in [9] to a Galois extension with some $J_g = \{0\}$. Also, our result leads to a sufficient condition for the uniqueness of Galois group for a Galois extension.

2 Preliminaries

Throughout this paper, we call B a Galois extension of B^G with Galois group G if B is a ring with 1 and G a finite automorphism group of B such that there exist $\{a_i,b_i\in B|\sum_{i=1}^m a_ig(b_i)=\delta_{1,g} \text{ for some integer } m\}$ where B^G is the set of elements in B fixed under each element in G. Let A be a ring extension of D. Then A is called a separable extension of D if the multiplication map $A\otimes_D A\longrightarrow A$ splits as an A-bimodule homomorphism, and A is an Azumaya algebra over C if A is a separable extension of its center C. For more about Galois extensions, separable extensions, and Azumaya algebras, see [3].

3 The Injective Galois Map

In this section, let B be a Galois extension of B^G with Galois group G, C is the center of B, $J_g = \{b \in B \mid bx = g(x)b \text{ for each } x \in B\}$ for $g \in G$. For a subgroup H of G, let $S_H = \{g \in H \mid J_g \neq \{0\}\}$ and $T_H = \{g \in H \mid J_g = \{0\}\}$. We shall give a set \mathcal{F} with a maximal number of subgroups such that the Galois map α is one-to-one on \mathcal{F} . We begin with two important properties of C-modules $\{J_g \mid g \in S_G\}$.

Lemma 3.1 ([5], Proposition 1) Let B be a Galois extension of B^G with Galois group G and $V_B(B^G)$ the commutator subring of B^G in B. Then $V_B(B^G) = \bigoplus \sum_{g \in G} J_g$.

Lemma 3.2 Let $D \subset \mathcal{S}_G$ and $\beta : D \longrightarrow \bigoplus \sum_{g \in D} J_g$. Then β is one-to-one from the set of subsets D of \mathcal{S}_G to the set $\{\bigoplus \sum_{g \in D} J_g \mid D \subset \mathcal{S}_G\}$.

Proof. By Lemma 3.2 in [9], β is one-to-one on the set $\{D = \{g\} \mid g \in \mathcal{S}_G\}$. Next, let D, $E \subset \mathcal{S}_G$ such that $\beta(D) = \beta(E)$. Then $\bigoplus \sum_{d \in D} J_d = \bigoplus \sum_{e \in E} J_e$. Assume there exists some $d \in D$ but not in E. Then $J_d \cap \bigoplus \sum_{e \in E} J_e = \{0\}$. Hence $J_d \not\subset \bigoplus_{e \in E} J_e$; and so $\bigoplus \sum_{d \in D} J_d \neq \bigoplus_{e \in E} J_e$. This contradiction implies that $D \subset E$. Similarly $E \subset D$. Thus D = E. Therefore β is one-to-one.

Next we give a collection of sets \mathcal{F} with a maximal number of subgroups of G such that α is one-to-one on \mathcal{F} .

Theorem 3.3 Let \mathcal{F} be a set with a maximal number of subgroups of G such that $S_{H'} \neq S_{H''}$ for $H' \neq H'' \in \mathcal{F}$. Then α is one-to-one on \mathcal{F} .

Proof. Let H' and $H'' \in \mathcal{F}$ such that $\alpha(H') = \alpha(H'')$. Then $B^{H'} = B^{H''}$. Hence $V_B(B^{H'}) = V_B(B^{H''})$; that is, $\bigoplus \sum_{h \in \mathcal{S}_{H'}} J_h = \bigoplus \sum_{h \in \mathcal{S}_{H''}} J_h$ by Lemma 3.1 because B is a Galois extension of $B^{H'}$ (= $B^{H''}$) with Galois groups H' and H''. Thus $\mathcal{S}_{H'} = \mathcal{S}_{H''}$ by Lemma 3.2. But then H' = H'' by the definition of \mathcal{F} . This shows that α is one-to-one on \mathcal{F} .

The following is a set of minimal subgroups as given in Theorem 3.3.

Theorem 3.4 Let $D \subset S_G$, $\langle D \rangle$ the subgroup generated by the elements in D, and $\mathcal{F}_0 = \{\langle D \rangle | D \subset S_G \}$. Then (1) $\mathcal{F}_0 = \{\langle S_H \rangle | H \text{ is a subgroup of } G \}$, (2) \mathcal{F}_0 is a set with a maximal number of subgroups of G such that $S_{\langle D \rangle} \neq S_{\langle E \rangle}$ for $\langle D \rangle \neq \langle E \rangle$ where $D, E \subset S_G$, (that is, \mathcal{F}_0 is one of \mathcal{F} with a maximal number of subgroups of G as given in Theorem 3.3), and (3) Let $|\mathcal{F}|$ be the number of subgroups in \mathcal{F} . Then $|\mathcal{F}_0| = |\mathcal{F}|$.

- *Proof.* (1) For each subgroup H, since $\mathcal{S}_H \subset \mathcal{S}_G$, $\langle \mathcal{S}_H \rangle \in \mathcal{F}_0$. Conversely, for any $\langle D \rangle \in \mathcal{F}_0$, $\mathcal{S}_{\langle D \rangle} \subset \langle D \rangle$, so $\langle \mathcal{S}_{\langle D \rangle} \rangle = \langle D \rangle$. Noting that $\langle D \rangle$ is a subgroup of G, we have $\mathcal{F}_0 \subset \{\langle \mathcal{S}_H \rangle | H \text{ is a subgroup of } G\}$. Thus statement (1) holds.
- (2) Since $D \subset \mathcal{S}_{< D>} \subset < D>$, $<\mathcal{S}_{< D>}>=< D>$ for any $D \subset \mathcal{S}_{G}$. Hence $\mathcal{S}_{< D>} \neq \mathcal{S}_{< E>}$ for $< D> \neq < E>$. It remains to show that \mathcal{F}_{0} has a maximal number of subgroups of G satisfying the above property. Since $\mathcal{S}_{H} \subset \mathcal{S}_{G}$ for any subgroup H, $H \notin \mathcal{F}_{0}$ unless $H = <\mathcal{S}_{H}>$. Thus \mathcal{F}_{0} is one of \mathcal{F} as given in Theorem 3.3.
- (3) Let \mathcal{F} be a set with a maximal number of subgroups of G such that $\mathcal{S}_H \neq \mathcal{S}_L$ for $H \neq L \in \mathcal{F}$. We define a map $f: \mathcal{F} \longrightarrow \mathcal{F}_0$ by $f(H) = \langle \mathcal{S}_H \rangle$. We claim that f is one-to-one and onto. In fact, let f(H) = f(L) for $H, L \in \mathcal{F}$; then $\langle \mathcal{S}_H \rangle = \langle \mathcal{S}_L \rangle$. Thus $\mathcal{S}_{\langle \mathcal{S}_H \rangle} = \mathcal{S}_{\langle \mathcal{S}_L \rangle}$. Since $\mathcal{S}_H = \mathcal{S}_{\langle \mathcal{S}_H \rangle}$ and $\mathcal{S}_L = \mathcal{S}_{\langle \mathcal{S}_L \rangle}$, $\mathcal{S}_H = \mathcal{S}_L$. But then H = L by the definition of \mathcal{F} . Also by part (1), f is onto. Therefore $|\mathcal{F}_0| = |\mathcal{F}|$.

By Theorem 3.4, we shall compute the number of \mathcal{F} as given in Theorem 3.3. Let $\mathcal{C} = \{D|D \subset \mathcal{S}_G\}$ and $\mathcal{D} = \{H|H \text{ is a subgroup of } G\}$. Define a

relation \sim on \mathcal{C} by $D \sim E$ if $\langle D \rangle = \langle E \rangle$ for $D, E \in \mathcal{C}$, and \approx on \mathcal{D} by $H \approx L$ if $\mathcal{S}_H = \mathcal{S}_L$. Then it is clear that both \sim and \approx are equivalent relations. Denote the equivalent class of D by [D] for $D \in \mathcal{C}$, and the equivalent class of H by \overline{H} for $H \in \mathcal{D}$. Then $\mathcal{C} = \bigcup_{D \subset \mathcal{S}_G} [D]$ and $\mathcal{D} = \bigcup \overline{H}$ for $H \in \mathcal{D}$. We count the number of \mathcal{F} as given in Theorem 3.3.

Theorem 3.5 (1) $|\mathcal{F}_0| = the number of {[D]|D \subset \mathcal{S}_G} and (2) Let |\overline{H}| be the number of subgroups in <math>\overline{H}$ for a subgroup H. Then the number of \mathcal{F} as given in Theorem $3.3 = \prod_{\langle D \rangle \in \mathcal{F}_0} |\overline{\langle D \rangle}|$, a product of $|\overline{\langle D \rangle}|$ for $\langle D \rangle \in \mathcal{F}_0$.

Proof. (1) Since $\mathcal{F}_0 = \{ \langle D \rangle | D \subset \mathcal{S}_G \}$ and $\langle D \rangle = \langle E \rangle$ implies $D \sim E$, $|\mathcal{F}_0| =$ the number of $\{[D]|D \subset \mathcal{S}_G\}$.

(2) By Theorem 3.4-(3), $f: \mathcal{F} \longrightarrow \mathcal{F}_0$ by $f(H) = \langle \mathcal{S}_H \rangle$ for a subgroup $H \in \mathcal{F}$ is a one-to-one correspondence. Since there are $|\overline{\langle \mathcal{S}_H \rangle}|$ subgroups in $\overline{\langle \mathcal{S}_H \rangle}$, the number of \mathcal{F} as given in Theorem 3.3 is $= \Pi_{H \in \mathcal{D}} |\overline{\langle \mathcal{S}_H \rangle}|$ where $H \in \mathcal{D}$ are representatives of $\{\overline{H}\}$. But $\{\langle \mathcal{S}_H \rangle | H \in \mathcal{D}\} = \mathcal{F}_0$ by Theorem 3.4-(1), so the number of \mathcal{F} as given in Theorem 3.3 $= \Pi_{\langle D \rangle \in \mathcal{F}_0} |\overline{\langle D \rangle}|$, a product of $|\overline{\langle D \rangle}|$ for $\langle D \rangle \in \mathcal{F}_0$.

4 The Double Centralizer Property

In Theorem 3.3, we give a set \mathcal{F} with a maximal number of subgroups of G such that the Galois map $\alpha: H \longrightarrow B^H$ is one-to-one for $H \in \mathcal{F}$. In this section, we shall show that if the Galois extension B of B^G with Galois group G satisfies the double centralizer property on the set $\{B^H|H \text{ is a subgroup of } G\}$, then any set \mathcal{S} of subgroups on which α is one-to-one is contained in some \mathcal{F} , where we call B satisfying the double centralizer property on $\{B^H|H \text{ is a subgroup of } G\}$ if $V_B(V_B(B^H)) = B^H$ for each subgroup H.

Theorem 4.1 Assume B satisfies the double centralizer property for $\{B^H|H$ is a subgroup of G. Let S be a set of subgroups of G such that α is one-to-one on S. Then $S \subset \mathcal{F}$ for some \mathcal{F} as given in Theorem 3.3.

Proof. We first claim that for subgroups K and L of G, $\alpha(K) = \alpha(L)$ if and only if $\mathcal{S}_K = \mathcal{S}_L$. In fact, $\alpha(K) = \alpha(L)$ implies $\mathcal{S}_K = \mathcal{S}_L$ by the argument in the proof of Theorem 3.3. Conversely, let $\mathcal{S}_K = \mathcal{S}_L$. Then $\bigoplus \sum_{k \in K} J_k = \bigoplus \sum_{l \in L} J_l$. Hence $V_B(B^K) = V_B(B^L)$ by Lemma 3.1. Taking the commutators both sides, we have $B^K = B^L$ because B satisfies the double centralizer property for $\{B^H|H \text{ is a subgroup of } G\}$. Thus $\alpha(K) = B^K = B^L = \alpha(L)$. Next, for $K, L \in \mathcal{S}$ such that $\mathcal{S}_K = \mathcal{S}_L$, $\alpha(K) = \alpha(L)$ by the above result. Since α is one-to-one on \mathcal{S} by hypothesis, K = L. This implies that \mathcal{S} is a set with subgroups H', H'' such that $\mathcal{S}_{H'} \neq \mathcal{S}_{H''}$ if $H' \neq H''$. Thus \mathcal{S} is contained

in some \mathcal{F} with a maximal number of subgroups such that $\mathcal{S}_{H'} \neq \mathcal{S}_{H''}$ for $H' \neq H'' \in \mathcal{F}$ as given in Theorem 3.3.

The following results are immediate from Theorem 4.1.

Corollary 4.2 Assume B satisfies the double centralizer property for $\{B^H|H$ is a subgroup of $G\}$. Then the collection of the sets \mathcal{F} of subgroups as given in Theorem 3.3 is the full collection of the sets each with a maximal number of subgroups on which α is one-to-one.

Corollary 4.3 Assume B satisfies the double centralizer property for $\{B^H | H \text{ is a subgroup of } G\}$. Then α is one-to-one if and only if $\mathcal{S}_H \neq \mathcal{S}_L$ for subgroups $H \neq L$ of G.

Remark 4.4 The sufficiency holds for any Galois extension B by Theorem 3.3, so it does not need the double centralizer property for B.

5 The Uniqueness of a Galois Group

Let B be a Galois extension of B^G with Galois group G and H a proper subgroup of G. It is clear that B is a Galois extension of B^H with Galois group H. In this section, we shall discuss which Galois group H is unique for the Galois extension B over B^H . We define $H \simeq L$ if $\alpha(H) = \alpha(L)$ for subgroups H and L of G. It is clear that \cong is an equivalent relation. We denote \widetilde{H} the equivalent class of H. The following results are immediate.

Theorem 5.1 Let H be a proper subgroup of G and $|\widetilde{H}|$ the number of subgroups in \widetilde{H} . Then $|\widetilde{H}| = 1$ if and only if H is unique for the Galois extension B over B^H .

Theorem 5.2 Let H be a proper subgroup of G. If $K = < S_K >$ for each $K \simeq H$, then H is unique for the Galois extension B over B^H .

Proof. Let K be a Galois group for B of B^H . Then $B^K = B^H$; and so $K \simeq H$ and $\mathcal{S}_K = \mathcal{S}_H$. By hypothesis, $K = \langle \mathcal{S}_K \rangle$ and $H = \langle \mathcal{S}_H \rangle$, so K = H.

Also as defined in section 3, two subgroups $H \approx L$ if $S_H = S_L$. Let $|\overline{H}|$ be the number of subgroups in \overline{H} . We give more subgroups each being a unique Galois group for a Galois extension B.

Theorem 5.3 Let H be a proper subgroup of G. If $|\overline{H}| = 1$, then H is unique for the Galois extension B over B^H and $H = < S_H >$.

Proof. Let L be a Galois group for B of B^H . Then $B^L = B^H$; and so $\mathcal{S}_L = \mathcal{S}_H$ by Lemma 3.1 and Lemma 3.2. Hence $H \approx L$. By hypothesis, $|\overline{H}| = 1$, so L = H. Moreover, since $\mathcal{S}_{<\mathcal{S}_H>} = \mathcal{S}_H$, $<\mathcal{S}_H> \approx H$. Thus $<\mathcal{S}_H> = H$ because $|\overline{H}| = 1$ again.

We note that if B satisfies the double centralizer property for $\{B^K|K \text{ is a subgroup of } G\}$, then the relations \approx and \simeq are the same. Then the following corollary is immediate.

Corollary 5.4 Assume B satisfies the double centralizer property for $\{B^K | K \text{ is a subgroup of } G\}$. Then H is a unique Galois group for the Galois extension B over B^H if and only if $|\overline{H}| = 1$.

We conclude the present paper with a Galois extension B of B^G with the unique Galois group G.

Theorem 5.5 Let G and G' be Galois groups for B of B^G . If $G = < S_G >$, $G' = < S_{G'} >$, and $< S_G, S_{G'} >$ is a Galois group for B of B^G where $< S_G, S_{G'} >$ is the group generated by the elements in S_G and $S_{G'}$, then G = G'.

Proof. Since G and G' are Galois groups for B of B^G , $B^G = B^{G'}$. Since $G = < \mathcal{S}_G >$, $G' = < \mathcal{S}_{G'} >$, and $< \mathcal{S}_G, \mathcal{S}_{G'} >$ is a Galois group for B of B^G , $V_B(B^G) = V_B(B^{G'}) = V_B(B^{<\mathcal{S}_G,\mathcal{S}_{G'}>}) = \bigoplus \sum_{g \in \mathcal{S}_G} J_g = \bigoplus \sum_{g \in \mathcal{S}_{G'}} J_{g'} = \bigoplus \sum_{g \in \mathcal{S}_{G,\mathcal{S}_{G'}>}} J_p$ by Lemma 3.1. Noting that $\mathcal{S}_G \cup \mathcal{S}_{G'} \subset \mathcal{S}_{<\mathcal{S}_G,\mathcal{S}_{G'}>}$, we have that $\mathcal{S}_G = \mathcal{S}_{G'}$ by Lemma 3.2. By hypothesis, $G = < \mathcal{S}_G >$, $G' = < \mathcal{S}_{G'} >$, so G = G'.

ACKNOWLEDGEMENTS. This paper was written during a visit of the second author to the Mathematics Department of Zhongshan University, China in Summer 2011. The second author would like to thank Zhongshan University for the hospitality.

References

- [1] S.U. Chase, D.K. Harrison, A. Rosenberg, "Galois Theory and Galois Cohomology of Commutative Rings", Memoirs Amer. Math. Soc. No. 52, 1965.
- [2] F.R. DeMeyer, Galois Theory in Separable Algebras over Commutative Rings, *Illinois J. Math.*, **10** (1966), 287-295.
- [3] F.R. DeMeyer, E. Ingraham, "Separable algebras over commutative rings", Volume 181, Springer Verlag, Berlin, Heidelberg, New York, 1971.

- [4] M. Dokuchaev, M. Ferrero, A. Paques, Partial Action and Galois Theory, Journal of Pure and Applied Algebra, 208 (2007), 77-87.
- [5] T. Kanzaki, On Galois Algebra Over a Commutative Ring, Osaka J. Math., 2 (1965), 309-317.
- [6] K. Sugano, On a Special Type of Galois Extensions, *Hokkaido J. Math.*, **9** (1980) 123-128.
- [7] G. Szeto, L. Xue, The Structure of Galois Algebras, *Journal of Algebra*, **237**(1) (2001), 238-246.
- [8] G. Szeto, L. Xue, On Galois Algebras Satisfying the Fundamental Theorem, *Communications in Algebra*, **35**(12) (2007), 3979 3985.
- [9] G. Szeto, L. Xue, On Galois Extensions with an Inner Galois Group, Recent developments in algebra and related areas, 239-245, Adv. Lect. Math. (ALM), 8, Int. Press, Somerville, MA, 2009.
- [10] G. Szeto, L. Xue, On Galois Extensions with a One-to-one Galois Map, International Journal of Algebra, 5(17) (2011), 801 - 807
- [11] O. E. Villamayor, D. Zelinsky, Galois Theory for Rings with Finitely Many Idempotents, *Nagoya Math. J.*, **27** (1966), 721-731.
- [12] O. E. Villamayor, D. Zelinsky, Galois Theory with Infinitely Many Idempotents. *Nagoya Math. J.*, **35** (1969), 83-98.

Received: August, 2011