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Abstract

Let B be a Galois extension of BG with Galois group G, and α :
H −→ BH the Galois map from the set of subgroups of G to the set
of subextensions of BG. Then a sufficient condition on a set with a
maximal number of subgroups is given under which α is one-to-one on
the set. Moreover, the collection of such sets of subgroups is computed,
and thus we can determine which Galois group H is unique for the
Galois extension B over BH
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1 Introduction

The Galois theory for rings has been intensively investigated ([1], [2], [3], [4],
[6], [7], [8]). The fundamental theorem was generalized from Galois extensions
for fields to commutative rings and to commutative partial Galois extensions
([1], [3], [7], [9], [10]). Let B be a ring Galois extension of BG with Galois group
G, C is the center of B, Jg = {b ∈ B | bx = g(x)b for each x ∈ B} for g ∈ G,
and VB(BG) the commutator subring of BG in B. Then VB(BG) = ⊕∑

g∈G Jg

([5], Proposition 1). We note that Jg = {0} for each g �= 1 ∈ G when B
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is commutative. But Jg may not be {0} for a g �= 1 ∈ G when B is non-
commutative. Recently, it was shown ([9], Theorem 3.4) that if B is a Galois
extension of BG with Galois group G such that Jg �= {0} for each g ∈ G, then
the Galois map α : H −→ BH is one-to-one. This implies that α is one-to-
one for all central Galois algebras ([2]) and Hirata separable Galois extensions
([6]). Observing that Jg = {0} for some g ∈ G for a Galois extension, we shall
give a collection of sets F of subgroups such that each F is a set of maximal
number of subgroups satisfying some condition on which α is one-to-one. This
generalizes the above result as given in [9] to a Galois extension with some
Jg = {0}. Also, our result leads to a sufficient condition for the uniqueness of
Galois group for a Galois extension.

2 Preliminaries

Throughout this paper, we call B a Galois extension of BG with Galois group
G if B is a ring with 1 and G a finite automorphism group of B such that
there exist {ai, bi ∈ B| ∑m

i=1 aig(bi) = δ1,g for some integer m} where BG is the
set of elements in B fixed under each element in G. Let A be a ring extension
of D. Then A is called a separable extension of D if the multiplication map
A⊗D A −→ A splits as an A-bimodule homomorphism, and A is an Azumaya
algebra over C if A is a separable extension of its center C. For more about
Galois extensions, separable extensions, and Azumaya algebras, see [3].

3 The Injective Galois Map

In this section, let B be a Galois extension of BG with Galois group G, C is
the center of B, Jg = {b ∈ B | bx = g(x)b for each x ∈ B} for g ∈ G. For a
subgroup H of G, let SH = {g ∈ H | Jg �= {0}} and TH = {g ∈ H | Jg = {0}}.
We shall give a set F with a maximal number of subgroups such that the
Galois map α is one-to-one on F . We begin with two important properties of
C-modules {Jg | g ∈ SG}.

Lemma 3.1 ([5], Proposition 1) Let B be a Galois extension of BG with
Galois group G and VB(BG) the commutator subring of BG in B. Then
VB(BG) = ⊕∑

g∈G Jg.

Lemma 3.2 Let D ⊂ SG and β : D −→ ⊕∑
g∈D Jg. Then β is one-to-one

from the set of subsets D of SG to the set {⊕∑
g∈D Jg |D ⊂ SG}.

Proof. By Lemma 3.2 in [9], β is one-to-one on the set {D = {g} | g ∈ SG}.
Next, let D, E ⊂ SG such that β(D) = β(E). Then ⊕∑

d∈D Jd = ⊕∑
e∈E Je.

Assume there exists some d ∈ D but not in E. Then Jd ∩ ⊕∑
e∈E Je = {0}.
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Hence Jd �⊂ ⊕∑
e∈E Je; and so ⊕∑

d∈D Jd �= ⊕∑
e∈E Je. This contradiction

implies that D ⊂ E. Similarly E ⊂ D. Thus D = E. Therefore β is one-to-
one.

Next we give a collection of sets F with a maximal number of subgroups
of G such that α is one-to-one on F .

Theorem 3.3 Let F be a set with a maximal number of subgroups of G
such that SH′ �= SH′′ for H ′ �= H ′′ ∈ F . Then α is one-to-one on F .

Proof. Let H ′ and H ′′ ∈ F such that α(H ′) = α(H ′′). Then BH′
= BH′′

.
Hence VB(BH′

) = VB(BH′′
); that is, ⊕∑

h∈SH′ Jh = ⊕∑
h∈SH′′ Jh by Lemma

3.1 because B is a Galois extension of BH′
(= BH′′

) with Galois groups H ′

and H ′′. Thus SH′ = SH′′ by Lemma 3.2. But then H ′ = H ′′ by the definition
of F . This shows that α is one-to-one on F .

The following is a set of minimal subgroups as given in Theorem 3.3.

Theorem 3.4 Let D ⊂ SG, < D > the subgroup generated by the elements
in D, and F0 = {< D > |D ⊂ SG}. Then (1) F0 = {< SH > |H is a subgroup
of G}, (2) F0 is a set with a maximal number of subgroups of G such that
S<D> �= S<E> for < D >�=< E > where D, E ⊂ SG, (that is, F0 is one of F
with a maximal number of subgroups of G as given in Theorem 3.3), and (3)
Let |F| be the number of subgroups in F . Then |F0| = |F|.

Proof. (1) For each subgroup H , since SH ⊂ SG, < SH >∈ F0. Conversely,
for any < D >∈ F0, S<D> ⊂< D >, so < S<D> >=< D >. Noting that
< D > is a subgroup of G, we have F0 ⊂ {< SH > |H is a subgroup of G}.
Thus statement (1) holds.

(2) Since D ⊂ S<D> ⊂< D >, < S<D> >=< D > for any D ⊂ SG. Hence
S<D> �= S<E> for < D >�=< E >. It remains to show that F0 has a maximal
number of subgroups of G satisfying the above property. Since SH ⊂ SG for
any subgroup H , H �∈ F0 unless H =< SH >. Thus F0 is one of F as given
in Theorem 3.3.

(3) Let F be a set with a maximal number of subgroups of G such that
SH �= SL for H �= L ∈ F . We define a map f : F −→ F0 by f(H) =< SH >.
We claim that f is one-to-one and onto. In fact, let f(H) = f(L) for H, L ∈ F ;
then < SH >=< SL >. Thus S<SH> = S<SL>. Since SH = S<SH> and
SL = S<SL>, SH = SL. But then H = L by the definition of F . Also by part
(1), f is onto. Therefore |F0| = |F|.

By Theorem 3.4, we shall compute the number of F as given in Theorem
3.3. Let C = {D|D ⊂ SG} and D = {H |H is a subgroup of G}. Define a
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relation ∼ on C by D ∼ E if < D >=< E > for D, E ∈ C, and ≈ on D by
H ≈ L if SH = SL. Then it is clear that both ∼ and ≈ are equivalent relations.
Denote the equivalent class of D by [D] for D ∈ C, and the equivalent class of
H by H for H ∈ D. Then C = ∪D⊂SG

[D] and D = ∪H for H ∈ D. We count
the number of F as given in Theorem 3.3.

Theorem 3.5 (1) |F0| = the number of {[D]|D ⊂ SG} and (2) Let |H| be
the number of subgroups in H for a subgroup H. Then the number of F as given
in Theorem 3.3 = Π<D>∈F0 |< D >|, a product of |< D >| for < D >∈ F0.

Proof. (1) Since F0 = {< D > |D ⊂ SG} and < D >=< E > implies
D ∼ E, |F0| = the number of {[D]|D ⊂ SG}.

(2) By Theorem 3.4-(3), f : F −→ F0 by f(H) =< SH > for a subgroup
H ∈ F is a one-to-one correspondence. Since there are |< SH >| subgroups in
< SH >, the number of F as given in Theorem 3.3 is = ΠH∈D|< SH >| where
H ∈ D are representatives of {H}. But {< SH > |H ∈ D} = F0 by Theorem
3.4-(1), so the number of F as given in Theorem 3.3 = Π<D>∈F0 |< D >|, a
product of |< D >| for < D >∈ F0.

4 The Double Centralizer Property

In Theorem 3.3, we give a set F with a maximal number of subgroups of G
such that the Galois map α : H −→ BH is one-to-one for H ∈ F . In this
section, we shall show that if the Galois extension B of BG with Galois group
G satisfies the double centralizer property on the set {BH |H is a subgroup of
G}, then any set S of subgroups on which α is one-to-one is contained in some
F , where we call B satisfying the double centralizer property on {BH |H is a
subgroup of G} if VB(VB(BH)) = BH for each subgroup H .

Theorem 4.1 Assume B satisfies the double centralizer property for {BH |H
is a subgroup of G}. Let S be a set of subgroups of G such that α is one-to-one
on S. Then S ⊂ F for some F as given in Theorem 3.3.

Proof. We first claim that for subgroups K and L of G, α(K) = α(L) if and
only if SK = SL. In fact, α(K) = α(L) implies SK = SL by the argument in the
proof of Theorem 3.3. Conversely, let SK = SL. Then ⊕∑

k∈K Jk = ⊕∑
l∈L Jl.

Hence VB(BK) = VB(BL) by Lemma 3.1. Taking the commutators both sides,
we have BK = BL because B satisfies the double centralizer property for
{BH |H is a subgroup of G}. Thus α(K) = BK = BL = α(L). Next, for
K, L ∈ S such that SK = SL, α(K) = α(L) by the above result. Since α
is one-to-one on S by hypothesis, K = L. This implies that S is a set with
subgroups H ′, H ′′ such that SH′ �= SH′′ if H ′ �= H ′′. Thus S is contained
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in some F with a maximal number of subgroups such that SH′ �= SH′′ for
H ′ �= H ′′ ∈ F as given in Theorem 3.3.

The following results are immediate from Theorem 4.1.

Corollary 4.2 Assume B satisfies the double centralizer property for {BH |H
is a subgroup of G}. Then the collection of the sets F of subgroups as given
in Theorem 3.3 is the full collection of the sets each with a maximal number
of subgroups on which α is one-to-one.

Corollary 4.3 Assume B satisfies the double centralizer property for {BH |H
is a subgroup of G}. Then α is one-to-one if and only if SH �= SL for subgroups
H �= L of G.

Remark 4.4 The sufficiency holds for any Galois extension B by Theorem
3.3, so it does not need the double centralizer property for B.

5 The Uniqueness of a Galois Group

Let B be a Galois extension of BG with Galois group G and H a proper
subgroup of G. It is clear that B is a Galois extension of BH with Galois
group H . In this section, we shall discuss which Galois group H is unique
for the Galois extension B over BH . We define H � L if α(H) = α(L) for
subgroups H and L of G. It is clear that � is an equivalent relation. We
denote H̃ the equivalent class of H . The following results are immediate.

Theorem 5.1 Let H be a proper subgroup of G and |H̃| the number of
subgroups in H̃. Then |H̃| = 1 if and only if H is unique for the Galois
extension B over BH .

Theorem 5.2 Let H be a proper subgroup of G. If K =< SK > for each
K � H, then H is unique for the Galois extension B over BH .

Proof. Let K be a Galois group for B of BH . Then BK = BH ; and so
K � H and SK = SH . By hypothesis, K =< SK > and H =< SH >, so
K = H .

Also as defined in section 3, two subgroups H ≈ L if SH = SL. Let |H| be
the number of subgroups in H . We give more subgroups each being a unique
Galois group for a Galois extension B.

Theorem 5.3 Let H be a proper subgroup of G. If |H | = 1, then H is
unique for the Galois extension B over BH and H =< SH >.
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Proof. Let L be a Galois group for B of BH . Then BL = BH ; and so
SL = SH by Lemma 3.1 and Lemma 3.2. Hence H ≈ L. By hypothesis,
|H| = 1, so L = H . Moreover, since S<SH> = SH , < SH >≈ H . Thus
< SH >= H because |H | = 1 again.

We note that if B satisfies the double centralizer property for {BK |K is a
subgroup of G}, then the relations ≈ and � are the same. Then the following
corollary is immediate.

Corollary 5.4 Assume B satisfies the double centralizer property for {BK |K
is a subgroup of G}. Then H is a unique Galois group for the Galois extension
B over BH if and only if |H| = 1.

We conclude the present paper with a Galois extension B of BG with the
unique Galois group G.

Theorem 5.5 Let G and G′ be Galois groups for B of BG. If G =< SG >,
G′ =< SG′ >, and < SG,SG′ > is a Galois group for B of BG where
< SG,SG′ > is the group generated by the elements in SG and SG′, then G = G′.

Proof. Since G and G′ are Galois groups for B of BG, BG = BG′
. Since

G =< SG >, G′ =< SG′ >, and < SG,SG′ > is a Galois group for B of
BG, VB(BG) = VB(BG′

) = VB(B<SG,SG′>) = ⊕∑
g∈SG

Jg = ⊕∑
g∈SG′ Jg′ =

⊕∑
g∈S<SG,S

G′>
Jp by Lemma 3.1. Noting that SG ∪ SG′ ⊂ S<SG,SG′>, we have

that SG = SG′ by Lemma 3.2. By hypothesis, G =< SG >, G′ =< SG′ >, so
G = G′.
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