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Abstract

Let B be a Galois extension of B¢ with Galois group G, and « :
H — B the Galois map from the set of subgroups of G to the set
of subextensions of B®. Then a sufficient condition on a set with a
maximal number of subgroups is given under which « is one-to-one on
the set. Moreover, the collection of such sets of subgroups is computed,
and thus we can determine which Galois group H is unique for the
Galois extension B over BH
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1 Introduction

The Galois theory for rings has been intensively investigated ([1], [2], [3], [4],
6], [7], [8]). The fundamental theorem was generalized from Galois extensions
for fields to commutative rings and to commutative partial Galois extensions
([1], [3], [7], [9], [10]). Let B be a ring Galois extension of B¢ with Galois group
G, C is the center of B, J, = {b € B|bx = g(x)b for each x € B} for g € G,
and Vp(BY) the commutator subring of B¢ in B. Then V5(BY) = &Y cq Jy
([5], Proposition 1). We note that J, = {0} for each ¢ # 1 € G when B
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is commutative. But J;, may not be {0} for a ¢ # 1 € G when B is non-
commutative. Recently, it was shown (][9], Theorem 3.4) that if B is a Galois
extension of B¢ with Galois group G such that J, # {0} for each g € G, then
the Galois map o : H — BY is one-to-one. This implies that « is one-to-
one for all central Galois algebras ([2]) and Hirata separable Galois extensions
([6]). Observing that J, = {0} for some g € G for a Galois extension, we shall
give a collection of sets F of subgroups such that each F is a set of maximal
number of subgroups satisfying some condition on which « is one-to-one. This
generalizes the above result as given in [9] to a Galois extension with some
J, = {0}. Also, our result leads to a sufficient condition for the uniqueness of
Galois group for a Galois extension.

2 Preliminaries

Throughout this paper, we call B a Galois extension of BY with Galois group
G if B is a ring with 1 and G a finite automorphism group of B such that
there exist {a;,b; € B] Y1, a;g(b;) = 01, for some integer m} where B is the
set of elements in B fixed under each element in G. Let A be a ring extension
of D. Then A is called a separable extension of D if the multiplication map
A®p A — A splits as an A-bimodule homomorphism, and A is an Azumaya
algebra over C' if A is a separable extension of its center C. For more about
Galois extensions, separable extensions, and Azumaya algebras, see [3].

3 The Injective Galois Map

In this section, let B be a Galois extension of BY with Galois group G, C is
the center of B, J, = {b € B|bx = g(x)b for each z € B} for g € G. For a
subgroup H of G, let Sy ={g € H|J, # {0}} and Ty = {g € H| J, = {0}}.
We shall give a set F with a maximal number of subgroups such that the
Galois map « is one-to-one on F. We begin with two important properties of

C-modules {J; | g € S}

Lemma 3.1 (/5], Proposition 1) Let B be a Galois extension of B with
Galois group G and Vg(BY) the commutator subring of BY in B. Then
VB(BY) = ® Y yeq Jy-

Lemma 3.2 Let D C Sg and 3: D — © X ,cp Jy. Then 3 is one-to-one
from the set of subsets D of Sg to the set {® Y ep Jg| D C Sa}.

Proof. By Lemma 3.2 in [9], [ is one-to-one on the set {D = {g} | g € S¢}-
Next, let D, E C Sg such that 3(D) = G(E). Then &Y jcp Jo = X ecp Je-
Assume there exists some d € D but not in E. Then J;N &> .cp J. = {0}.
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Hence J; & ®> .cpJe; and so @ > 4ecp Ja # B X ocp Je. This contradiction
implies that D C E. Similarly £ C D. Thus D = E. Therefore 3 is one-to-
one.

Next we give a collection of sets F with a maximal number of subgroups
of G such that « is one-to-one on F.

Theorem 3.3 Let F be a set with a mazximal number of subgroups of G
such that Sy # Sy» for H # H" € F. Then « is one-to-one on F.

Proof. Let H' and H” € F such that o(H') = a(H"). Then B7 = B"".
Hence Vp(B™') = Vp(B""); that is, & Yes,, J» = ® hes,,, Jn by Lemma
3.1 because B is a Galois extension of BH (= Bf") with Galois groups H’
and H"”. Thus Sy = Sy by Lemma 3.2. But then H' = H” by the definition
of F. This shows that « is one-to-one on F.

The following is a set of minimal subgroups as given in Theorem 3.3.

Theorem 3.4 Let D C S, < D > the subgroup generated by the elements
in D, and Fo ={< D > |D C Sg}. Then (1) Fo ={< Sy > |H is a subgroup
of G}, (2) Fo is a set with a maximal number of subgroups of G such that
S.p> # S<p> for < D >#< E > where D, E C Sg, (that is, Fy is one of F
with a maximal number of subgroups of G as given in Theorem 3.83), and (3)
Let | F| be the number of subgroups in F. Then |Fy| = |F|.

Proof. (1) For each subgroup H, since Sy C Sg, < Sy >€ Fy. Conversely,
for any < D >€ Fy, Scps C< D >, s0 < Scp> >=< D >. Noting that
< D > is a subgroup of G, we have Fy C {< Sy > |H is a subgroup of G}.
Thus statement (1) holds.

(2) Since D C Scps C< D >, < S-.p> >=< D > for any D C Sg. Hence
Scps # Scps for < D >#< E >. It remains to show that Fy has a maximal
number of subgroups of G satisfying the above property. Since Sy C Sg for
any subgroup H, H ¢ Fy unless H =< Sy >. Thus F; is one of F as given
in Theorem 3.3.

(3) Let F be a set with a maximal number of subgroups of G such that
Sy # Sp for H# L€ F. We define amap f: F — Fyby f(H) =<S8yg >.
We claim that f is one-to-one and onto. In fact, let f(H) = f(L) for H,L € F;
then < Sy >=< §; >. Thus Scs,> = Scs,>. Since Sy = Scs,> and
Sy =8<s,>, Sy = 8. But then H = L by the definition of F. Also by part
(1), f is onto. Therefore |Fy| = |F]|.

By Theorem 3.4, we shall compute the number of F as given in Theorem
3.3. Let C = {D|D C Sg} and D = {H|H is a subgroup of G}. Define a
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relation ~on C by D ~ E'ift < D >=< E > for D,FE € C, and = on D by
H =~ Lif Sy = &;. Then it is clear that both ~ and ~ are equivalent relations.
Denote the equivalent class of D by [D] for D € C, and the equivalent class of
H by H for H € D. Then C = Upcs,[D] and D = UH for H € D. We count
the number of F as given in Theorem 3.3.

Theorem 3.5 (1) |Fy| = the number of {|D]|D C Sg} and (2) Let |H| be
the number of subgroups in H for a subgroup H. Then the number of F as given
in Theorem 3.8 =l pser|< D >|, a product of |< D >| for < D >€ Fy.

Proof. (1) Since Fy = {< D > |D C Sg} and < D >=< E > implies
D ~ E, |Fy| = the number of {[D]|D C Sg}.

(2) By Theorem 3.4-(3), f : F — Fy by f(H) =< Sy > for a subgroup
H € F is a one-to-one correspondence. Since there are |< Sy >| subgroups in
< Sy >, the number of F as given in Theorem 3.3 is = [Iyep|< Sy >| where
H € D are representatives of {H}. But {< Sy > |H € D} = Fy by Theorem
3.4-(1), so the number of F as given in Theorem 3.3 = ll_pscx|< D >|, a
product of |< D >| for < D >€ Fy.

4 The Double Centralizer Property

In Theorem 3.3, we give a set F with a maximal number of subgroups of G
such that the Galois map o : H — B is one-to-one for H € F. In this
section, we shall show that if the Galois extension B of B¢ with Galois group
G satisfies the double centralizer property on the set { B¥|H is a subgroup of
G}, then any set S of subgroups on which « is one-to-one is contained in some
F, where we call B satisfying the double centralizer property on { B¥|H is a
subgroup of G} if Vz(Vp(B™)) = B for each subgroup H.

Theorem 4.1 Assume B satisfies the double centralizer property for { B |H
is a subgroup of G}. Let S be a set of subgroups of G such that « is one-to-one
onS. Then § C F for some F as given in Theorem 3.3.

Proof. We first claim that for subgroups K and L of G, a(K) = a(L) if and
only if S = Sp. In fact, a(K) = a(L) implies Sy = Sy, by the argument in the
proof of Theorem 3.3. Conversely, let S = 8. Then &Y e Jp = B Xier i
Hence Vg(BX) = Vg(B¥) by Lemma 3.1. Taking the commutators both sides,
we have BX = B’ because B satisfies the double centralizer property for
{B®|H is a subgroup of G}. Thus a(K) = B¥ = BY = «o(L). Next, for
K,L € § such that Sk = Sp, a(K) = «(L) by the above result. Since «
is one-to-one on S by hypothesis, K = L. This implies that S is a set with
subgroups H', H” such that Sy # Sgyr» it H' # H”. Thus S is contained
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in some F with a maximal number of subgroups such that Sy # Sy~ for
H' # H" € F as given in Theorem 3.3.

The following results are immediate from Theorem 4.1.

Corollary 4.2 Assume B satisfies the double centralizer property for { B|H
is a subgroup of G}. Then the collection of the sets F of subgroups as given
in Theorem 3.3 is the full collection of the sets each with a mazximal number
of subgroups on which « is one-to-one.

Corollary 4.3 Assume B satisfies the double centralizer property for { B|H
is a subgroup of G}. Then « is one-to-one if and only if Sy # Sy, for subgroups
H# L of G.

Remark 4.4 The sufficiency holds for any Galois extension B by Theorem
3.3, so it does not need the double centralizer property for B.

5 The Uniqueness of a Galois Group

Let B be a Galois extension of B¢ with Galois group G and H a proper
subgroup of G. It is clear that B is a Galois extension of B with Galois
group H. In this section, we shall discuss which Galois group H is unique
for the Galois extension B over B¥. We define H ~ L if a(H) = «a(L) for
subgroups H and L of G. It is clear that ~ is an equivalent relation. We
denote H the equivalent class of H. The following results are immediate.

Theorem 5.1 Let H be a proper subgroup of G and |H| the number of
subgroups in H. Then |H| = 1 if and only if H is unique for the Galois
extension B over B,

Theorem 5.2 Let H be a proper subgroup of G. If K =< Sk > for each
K ~ H, then H is unique for the Galois extension B over B.

Proof. Let K be a Galois group for B of BH. Then BX = B; and so
K ~ H and Sg = Sy. By hypothesis, K =< Sx > and H =< Sy >, so
K=H.

Also as defined in section 3, two subgroups H ~ L if Sy = S;.. Let |H| be
the number of subgroups in H. We give more subgroups each being a unique
Galois group for a Galois extension B.

Theorem 5.3 Let H be a proper subgroup of G. If |[H| = 1, then H is
unique for the Galois extension B over BY and H =< Sy >.
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Proof. Let L be a Galois group for B of B¥. Then BY = Bf: and so
S, = Sy by Lemma 3.1 and Lemma 3.2. Hence H =~ L. By hypothesis,
|H| = 1, so L = H. Moreover, since Scs,~ = Sy, < Sy >~ H. Thus
< 8y >= H because |H| = 1 again.

We note that if B satisfies the double centralizer property for { B¥|K is a
subgroup of G}, then the relations &~ and ~ are the same. Then the following
corollary is immediate.

Corollary 5.4 Assume B satisfies the double centralizer property for { BX| K
is a subgroup of G}. Then H is a unique Galois group for the Galois extension
B over BY if and only if |H| = 1.

We conclude the present paper with a Galois extension B of B¢ with the
unique Galois group G.

Theorem 5.5 Let G and G’ be Galois groups for B of BY. If G =< Sg >,
G' =< 8¢ >, and < Sg,Se > is a Galois group for B of B¢ where
< 8q, Sqr > is the group generated by the elements in Sg and S, then G = G'.

Proof. Since G and G’ are Galois groups for B of B¢, B = B, Since
G =< 8g >, G =< S >, and < Sg,S¢ > is a Galois group for B of
BY, V(BY) = V(BY) = Vp(B=%¢5>) = O 2gese Jg = D Lgesy Jy =
&) deS<SG’SG/> Jp by Lemma 3.1. Noting that Sq U S¢r C Scsg.s,,>, We have
that S = S by Lemma 3.2. By hypothesis, G =< Sg >, G' =< Sg >, so
G=d¢"
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