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Traffic volume data is already collected and used for a variety of purposes in intelligent transportation system (ITS). However, the
collected data might be abnormal due to the problem of outlier data caused by malfunctions in data collection and record systems.
To fully analyze and operate the collected data, it is necessary to develop a validate method for addressing the outlier data. Many
existing algorithms have studied the problem of outlier recovery based on the time series methods. In this paper, a multiway tensor
model is proposed for constructing the traffic volume data based on the intrinsic multilinear correlations, such as day to day and
hour to hour. Then, a novel tensor recovery method, called ADMM-TR, is proposed for recovering outlier data of traffic volume
data.The proposed method is evaluated on synthetic data and real world traffic volume data. Experimental results demonstrate the
practicability, effectiveness, and advantage of the proposed method, especially for the real world traffic volume data.

1. Introduction

In order to alleviate the traffic congestion problem and
facilitate themobility inmetropolises, large amounts of traffic
information are collected as a part of intelligent transporta-
tion system (ITS) such as CVIS (Cooperative Vehicle Infras-
tructure System) in China. These collected traffic data have
wide range of applications. The real time traffic information
is provided to travelers to support their decision for making
process on the optimal route choice [1]. As shown by the work
of Kim et al. [2], the real time information can contribute to
reduce the operation cost and maximize resource utilization.
In addition to these applications, the collected data could be
applied to maximize the utilization of the infrastructure for
smooth flow of the traffic. One such application of real time
traffic data is traffic information control [3]. On the other
hand, several data mining techniques have been applied to
mine time related association rules from traffic databases and
their results have been used for traffic prediction such as the
works of Williams et al. [4] and Xu et al. [5]. From the above
discussion, it is concluded that the collected traffic data are
essential for many potential applications in ITS.

In real world, the collected data are always corrupted
due to noise values, especially outlier value, which may be
caused by detector failures, communication problems, or any
other hardware/software related problems. The presence of
outlier data in the database would degrade significantly the
quality as well as reliability of the data and might impede the
effectiveness of ITS applications. Therefore, it is essential to
fill the gaps caused by outlier data in order to fully explore
the applicability of the data and realize the ITS applications.

While many different kinds of traffic data such as traffic
volume, speed, and occupancy are collected, the focus of this
research is on the traffic volume outlier data recovery. It is
supposed that the detectors collecting traffic information are
set up at road sections and the collected values represent the
traffic volume for those road sections.The aimof this research
is to recover the traffic volume outlier data for road sections.

Literature survey in the related field shows that several
filtering recovery techniques have been applied to recover
the outlier traffic data [6–8]. Filtering methods include
techniques such as singular value decomposition, wavelet
analysis, immune algorithm, and spectrum subtraction. Fil-
tering methods formulate the traffic volume as time series
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model and smooth the traffic waveform. These approaches
recover the outlier data of day by day through spectrum
analysis and feature information extracting. However, the
traffic data through the same location is significantly similar
from day to day and these approaches cannot utilize such
characteristic. Pei and Ma [6] show that similarity is an
important factor impacting on recovery performance. While
the above methods consider only one mode similarity, the
recovery performance is mainly dependent on the smooth
threshold. Unfortunately, the smooth threshold is empirically
determined.

In order to improve the recovery performance and con-
sider themultidimension characteristic of traffic data,mining
the multimode similarities will make a great contribution for
recovering outlier value. Our approach is based on utilizing
multimode correlations of traffic data; that is, traffic data have
different correlation on different modes, such as week mode,
day mode, and hour mode. More concretely, the feature of
the proposed method is to recover the outlier value using the
traffic volume information of the different modes. But, the
problem is not so simple, because traffic volumes from many
days might be corrupted by outlier data simultaneously. In
order to consider the multiple outlier traffic volumes, we use
tensor modeling the traffic volume.

In order to solve the traffic volume outlier data problem,
we formulate the traffic volume recovery problem as a data
recovery problem based on the assumption that the essential
traffic volume is low-𝑛-rank/low rank and the outliers are
sparse. That is, the corrupted traffic volumes can formulated
as

A =L +S, (1)

whereA is the observed traffic volumewhich is corrupted,L
is the recovered traffic volume, andS represents the outliers.
In the problem, the entrances of corrupted traffic data are
unknown. One straight solution is optimizing the following
problem under the assumption that the 𝑛-rank ofL is small
and the corrupted outliers are sparse or bounded:

min
L
∑

𝑖

𝜇
𝑖
rank
𝑖 (
L)

s.t. ‖A −L −S‖𝐹 ≤ 𝛿.
(2)

The tensor recovery problem of (2) has been studied
in recent years, which will be detailed in Section 3. In this
paper, a new data recovery method based on tensor model
calledAlternatingDirectionMethod ofMultipliers for Tensor
Recovery (ADMM-TR) is proposed to handle the outlier
traffic volumes.

This paper makes three main contributions. (1) We use
tensor to model the traffic volume and take advantage of
the multiway characteristics of tensor, which could explore
the multicorrelations of different modes in traffic data; and
(2) we formulate the problem of the traffic volume outlier
data recovery as a tensor recovery problem; (3) we proposed
ADMM-TR algorithm by extending ADMM from matrix to
tensor case to solve the formulated tensor recovery problem
for traffic volume, and the convergence of ADMM-TR is

proved. It also should be noted that the proposed ADMM-TR
method is different from [9], which reported that extended
ADM for tensor recovery is proposed. In fact, they presented
ADM for tensor completion, in which the data are missed
and the entrances of missing data are known. While in
this research, the objective is to recover the data which are
corrupted including missing or noised and the entrances of
corrupted values are unknown.

The paper is organized as follows. We present the review
of tensor model in Section 2. Section 3 briefly reviews the
related data recovery methods. In Section 4, tensor model for
traffic volume is constructed, traffic data recovery problem is
formulated, and an efficient algorithm is proposed to solve
the formulation. Also a simple convergence guarantee for the
proposed algorithm is given. In Section 5, we evaluated the
proposed method on synthetic data and real world traffic
volume data. Finally, we provide some concluding remarks
in Section 6.

2. Notation and Review of Tensor Models

In this section, we adopt the nomenclature of Kolda and
Bader’s review on tensor decomposition [10] and partially
adopt the notation in [11].

A tensor is the generalization of amatrix to higher dimen-
sions. We denote scalars by lowercase letters (𝑎, 𝑏, 𝑐, . . .),
vectors as bold-case lowercase letters (a, b, c, . . .) andmatrices
as uppercase letters (𝐴, 𝐵, 𝐶, . . .). Tensors are written as
calligraphic letters (A,B,C, . . .).

An 𝑛-mode tensor is denoted as A ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 . Its
elements are denoted as 𝑎

𝑖
1
⋅⋅⋅𝑖
𝑘
⋅⋅⋅𝑖
𝑛

, where 1 ≤ 𝑖
𝑘
≤ 𝐼
𝐾
, 1 ≤

𝐾 ≤ 𝑁. The mode-𝑛 unfolding (also called matricization
or flattening) of a tensor A ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is defined as
unfold (A, 𝑛) := 𝐴

(𝑛)
. The tensor element (𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑁
) is

mapped to the matrix element (𝑖
𝑛
, 𝑗), where

𝑗 = 1 +

𝑁

∑

𝑘=1

𝑘 ̸= 𝑛

(𝑖
𝑘
− 1) 𝐽
𝑘
, with 𝐽

𝑘
=

𝑘−1

∏

𝑚=1
𝑚 ̸= 𝑛

𝐼
𝑚
. (3)

Therefore, 𝐴
(𝑛)
∈ R𝐼𝑛×𝐽, where 𝐽 = ∏

𝑁

𝑘=1, 𝑘 ̸= 𝑛
𝐼
𝑘
.

Accordingly, its inverse operator fold can be defined as
fold (𝐴

(𝑛)
, 𝑛) := A.

The 𝑛-rank of an𝑁-dimensional tensorA ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 ,
denoted by 𝑟

𝑛
, is the rank of the mode-𝑛 unfolding matrix

𝐴
(𝑛)
:

𝑟
𝑛
= rank

𝑛 (
A) = rank (𝐴 (𝑛)) . (4)

The inner product of two same-size tensors A,B ∈

R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is defined as the sum of the products of their
entries, that is,

⟨A,B⟩ = ∑
𝑖
1

∑

𝑖
2

⋅ ⋅ ⋅∑

𝑖
𝑁

𝑎
𝑖
1
⋅⋅⋅𝑖
𝑘
⋅⋅⋅𝑖
𝑛

𝑏
𝑖
1
⋅⋅⋅𝑖
𝑘
⋅⋅⋅𝑖
𝑛

. (5)

The corresponding Frobenius norm is ‖A‖
𝐹
= √⟨A,A⟩.

Besides, the 𝑙
0
norm of a tensor A, denoted by ‖A‖

0
, is the

number of nonzero elements inA and the 𝑙
1
norm is defined



Mathematical Problems in Engineering 3

as ‖A‖
1
:= ∑
𝑖
1
⋅⋅⋅𝑖
𝑘
⋅⋅⋅𝑖
𝑛

|𝑎
𝑖
1
⋅⋅⋅𝑖
𝑘
⋅⋅⋅𝑖
𝑛

|. It is clear that ‖A‖
𝐹
= ‖𝐴
(𝑛)
‖
𝐹
,

‖A‖
0
= ‖𝐴
(𝑛)
‖
0
, and ‖A‖

1
= ‖𝐴
(𝑛)
‖
1
for any 1 ≤ 𝑛 ≤ 𝑁.

The 𝑛-mode (matrix) product of a tensorA ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁
with a matrix 𝑀 ∈ R𝐽×𝐼𝑛 is denoted by A×

𝑛
𝑀 and is size

𝐼
1
× ⋅ ⋅ ⋅ × 𝐼

𝑛−1
×𝐽×𝐼

𝑛+1
× ⋅ ⋅ ⋅ × 𝐼

𝑁
. In terms of flattened matrix,

the 𝑛-mode product can be expressed as

Y = A×
𝑛
𝑀⇐⇒ 𝑌

(𝑛)
= 𝑀𝐴

(𝑛)
. (6)

3. Review of Data Recovery Methods

Recently, the problem of recovering the sparse and low-
rank components with no prior knowledge about the sparsity
pattern of the sparse matrix, or the rank of the low-rank
matrix, has been well studied. Authors of [12] proposed
the concept of “rank-sparse incoherence” and solved the
problem by an interior point solver after being reformulated
as a semidefinite problem. However, although interior point
methods normally take very few iterations to converge, they
have difficulty in handling large matrices. So this limitation
prevented the usage of the technique in computer vision and
the traffic volume recovery in this research.

To solve the problem for large scale matrices, Wright
et al. [13] have adopted the iterative thresholding technique
to solve the problem and obtained scalability properties.
Lin et al. have proposed an accelerated proximal gradient
(APG) algorithm [14] and applied techniques of augmented
Lagrange multipliers (ALM) [15] to solve the problem. Yuan
and Yang [16] have utilized the alternating direction method
(ADM) which can be regarded as a practical version of
the classical ALM method to solve the matrix recovery
problem. The ADM method has been proved to have a
pleasing convergence speed and results in [16] demonstrated
its excellent performance.

Inspired by the idea of [16], this paper extends the sparse
and low-rank recovery problem to tensor case, which is due
to the fact that the multidimensional traffic data can be
formulated into the form of tensor.

4. ADMM-TR for Traffic Volume Outlier
Recovery

In this section, we show the solution of problem (2). The
tensor model is firstly constructed for traffic volume in
Section 4.1. Then we present the tensor recovery problem in
Section 4.2. In Section 4.3, the classical ADMM approach is
introduced. In Section 4.4, we convert the original problem
into a constrained convex optimization problem which can
be solved by the extended ADMM approach and present
the details of the proposed algorithm. Also the convergence
guarantees of the proposed algorithm are given in this
section.

4.1. Tensor Model for Traffic Volume. The correlations of
traffic volume data are critical for recovering the corrupted
traffic volume data. Traditional methods mostly exploit part
of correlations, such as historical or temporal neighboring
correlations.The classic methods usually utilize the temporal

Table 1: The similarity coefficient of four modes.

Mode Size Similarity coefficient
Hour 6 × 12 0.9670
Day 7 × 288 0.8654
Week 7 × 288 0.9153
Link 4 × 288 0.8497

correlations of traffic data from day to day. For the single
detector data, multiple correlations contain the relations of
traffic data from day to day, hour to hour, and so forth. In
addition, the spatial correlations exist in multiple detectors
data.

In this paper, quantitative analysis of traffic data corre-
lation is analyzed based on the traffic volume data down-
loaded from http://pems.dot.ca.gov/. The correlation coeffi-
cient applied tomeasuring the data correlation is given by [17]

𝑠 =

∑
𝑛≥𝑖>𝑗≥1

𝑅 (𝑖, 𝑗)

𝑛 (𝑛 − 1) /2

, (7)

where 𝑛 refers to the whole data points; 𝑅(𝑖, 𝑗) refers to
the correlation coefficient matrix. Table 1 gives the results
of correlation coefficient of four modes, which is hour, day,
week, and month.

Conventional methods usually use day-to-day matrix
pattern to model the traffic data. Although each mode of
traffic data has a very high similarity, these methods do not
utilize the multimode correlations, which are “Day × Hour,”
“Week × Hour,” and “Link × Hour,” simultaneously and thus
may result in poor recovery performance.

To make full use of the multimode correlation and traffic
spatial-temporal information, traffic data need to be con-
structed into multiway data set. Fortunately, tensor pattern
based traffic data can be well used to model the multiway
traffic data.This helps keep the original structure and employ
enough traffic spatial-temporal information.

4.2. The Tensor Recovery Problem. The problem of (2) is NP
hard, since it is not convex. Then, we use an approximation
formulation, as shown in (8),

min
L,S
: ‖L‖∗ + 𝜂‖S‖1,

s.t. ‖A −L −S‖𝐹 ≤ 𝛿,
(8)

where A ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is the given matrix to be recovered;
L ∈ R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is the low-rank component of A; S ∈

R𝐼1×𝐼2×⋅⋅⋅×𝐼𝑁 is the sparse component of A. Compared with
(2), (8) relaxes the constrain for recovering a low-𝑛-rank
tensor from a high-dimensional data tensor despite both
small entry-wise noise and gross sparse errors.

Recently, Liu et al. [18] have proposed the definition of the
nuclear norm of an 𝑛-mode tensor:

‖X‖∗ :=
1

𝑛

𝑛

∑

𝑖=1





𝑋
(𝑖)




∗
. (9)
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Based on this definition, the optimization in (8) can be
written as

min
L,S
: ‖L‖∗ + 𝜂‖S‖1 ≡

1

𝑛

𝑛

∑

𝑖=1

𝜆
𝑖





𝐿
(𝑖)




∗
+

1

𝑛

𝑛

∑

𝑖=1

𝜂
𝑖





𝑆
(𝑖)




1

s.t. ‖A −L −S‖𝐹 ≤ 𝛿.

(10)

In order to recover (̂L, ̂S), instead of directly solving (10),
we solve the following dual problem:

min :
L,S

1

2𝛾

‖A −L −S‖
2

𝐹
+

𝑛

∑

𝑖=1

𝜆
𝑖





𝐿
(𝑖)




∗
+

𝑛

∑

𝑖=1

𝜂
𝑖





𝑆
(𝑖)




1
. (11)

The problem in (11) is still difficult to solve due to the
interdependent nuclear norm and 𝑙

1
norm constraints. To

simplify the problem, the formulation can be reformulated as
follows:

min
L,S,𝑀

𝑖
,𝑁
𝑖

:

1

2𝛾

‖A −L − S‖
2

𝐹
+

𝑛

∑

𝑖=1

𝜆
𝑖





𝑀
𝑖




∗
+

𝑛

∑

𝑖=1

𝜂
𝑖





𝑁
𝑖




1

s.t. 𝑃
𝑖
L = 𝑀

𝑖
𝑃
𝑖
S = 𝑁

𝑖
∀𝑖,

(12)

where 𝑃
𝑖
is the matrix representation of mode-𝑖 unfolding

(note that 𝑃
𝑖
is a permutation matrix; thus 𝑃

𝑖

𝑇
𝑃
𝑖
= 𝐼); 𝑀

(𝑖)

and𝑁
(𝑖)
are additional auxiliary matrices of the same size as

the mode-𝑖 unfolding ofL (or S).

4.3.The Classical ADMMApproach. The classical alternating
direction method of multipliers (ADMM) is for solving
structured convex programs of the form:

min
𝑥∈𝐶
𝑥
,𝑦∈𝐶
𝑦

: 𝑓 (𝑥) + 𝑔 (𝑦)

s.t. 𝐴𝑥 + 𝐵𝑦 = 𝑐,
(13)

where𝑓 and 𝑔 are convex functions defined on closed subsets
𝐶
𝑥
and 𝐶

𝑦
;𝐴, 𝐵, and 𝑐 are matrices and vector of appropriate

sizes. The segmented Lagrangian function of (13) is

𝐿
𝐴
(𝑥, 𝑦, 𝑤) = 𝑓 (𝑥) + 𝑔 (𝑦) + ⟨𝑤,𝐴𝑥 + 𝐵𝑦 − 𝑐⟩

+

𝛽

2





𝐴𝑥 + 𝐵𝑦 − 𝑐






2

2
,

(14)

where 𝑤 is a Lagrangian multiplier vector and 𝛽 > 0 is a
penalty parameter.

The approach performs one sweep of alternating mini-
mization with respect to 𝑥 and 𝑦 individually then updates
the multiplier 𝑤; at the iteration 𝑘 the steps are given by [18,
Equations (4.79)–(4.81)]:

𝑥
(𝑘+1)
← arg min

𝑥∈𝐶
𝑥

𝐿
𝐴
(𝑥, 𝑦
(𝑘)
, 𝑤
(𝑘)
) ,

𝑦
(𝑘+1)
← argmin

𝑥∈𝐶
𝑦

𝐿
𝐴
(𝑥
(𝑘+1)
, 𝑦, 𝑤
(𝑘)
) ,

𝑤
(𝑘+1)
← 𝑤

(𝑘)
+ 𝜌𝛽 (𝐴𝑥

(𝑘+1)
+ 𝐵𝑦
(𝑘+1)
− 𝑐) ,

(15)

where 𝜌 is the step length. A convergence proof for the above
ADMM algorithm was shown as follows.

Theorem 1 (See [19, Proposition 5.2]). Assume that the
optimal solution set 𝑋∗ of (13) is nonempty. Furthermore,
assume that𝐶

𝑥
is bounded or else the matrix𝐴∗𝐴 is invertible.

Then a sequence {𝑥(𝑘), 𝑦(𝑘), 𝑤(𝑘)} generated by (15) is bounded,
and every limit point of {𝑥(𝑘)} is an optimal solution of the
original of problem (13).

4.4. ADMM Extension to Tensor Recovery. We observe (12)
is well structured in the sense that the separable structure
emerges in both the objective function and constraints.Thus,
we propose an algorithm based on an extension of the
classical ADMM approach for solving the tensor recovery
problem by taking advantage of this favorable structure.

The augmented Lagrangian of (12) is

𝐿
𝐴
(L,S,𝑀

𝑖
, 𝑁
𝑖
)

=

1

2𝛾

‖A −L −S‖
2

𝐹

+

𝑛

∑

𝑖=1

(𝜆
𝑖





𝑀
𝑖




∗
+ ⟨𝑌
𝑖
, 𝑃
𝑖
L −𝑀

𝑖
⟩ +

𝛼
𝑖

2





𝑃
𝑖
L −𝑀

𝑖






2

𝐹
)

+

𝑛

∑

𝑖=1

(𝜂
𝑖





𝑁
𝑖




1
+ ⟨𝑍
𝑖
, 𝑃
𝑖
S − 𝑁

𝑖
⟩ +

𝛽
𝑖

2





𝑃
𝑖
S − 𝑁

𝑖






2

𝐹
) ,

(16)

where 𝑌
𝑖
, 𝑍
𝑖
are Lagrangian multipliers and 𝛼

𝑖
, 𝛽
𝑖
> 0 are

penalty parameters.
Then we can now directly apply ADMM with this aug-

mented Lagrangian function.

Computing 𝑀
𝑖
. The optimal𝑀

𝑖
can be solved with all other

variables to be constant by the following subproblem:

min
𝑀
𝑖

: 𝜆
𝑖





𝑀
𝑖




∗
+ ⟨𝑌
𝑖
, 𝑃
𝑖
L −𝑀

𝑖
⟩ +

𝛼
𝑖

2





𝑃
𝑖
L −𝑀

𝑖






2

𝐹
. (17)

As shown in [20], the optimal solution of (17) is given by

𝑀
𝑖
= 𝑈
𝑖
𝐷
𝜆
𝑖
/𝛼
𝑖
(Λ)𝑉𝑖

𝑇
, (18)

where 𝑈
𝑖
Λ𝑉
𝑖

𝑇 is the singular value decomposition given by

𝑈
𝑖
Λ𝑉
𝑖

𝑇
= 𝑃
𝑖
L +

𝑌
𝑖

𝛼
𝑖

, (19)

and the “shrinkage” operator𝐷
𝜏
(𝑥) with 𝜏 > 0 is defined as

𝐷
𝜏 (
𝑥) =

{
{

{
{

{

𝑥 − 𝜏 if 𝑥 > 𝜏
𝑥 + 𝜏 if 𝑥 < −𝜏
0 otherwise.

(20)

Computing 𝑁
𝑖
. The optimal 𝑁

𝑖
can be solved with all other

variables to be the constants by the following subproblem:

min
𝑁
𝑖

: 𝜂
𝑖





𝑁
𝑖




1
+ ⟨𝑍
𝑖
, 𝑃
𝑖
S − 𝑁

𝑖
⟩ +

𝛽
𝑖

2





𝑃
𝑖
S − 𝑁

𝑖






2

𝐹
. (21)
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Input: n-mode tensorA
Parameters: 𝛼, 𝛽, 𝛾, 𝜆, 𝜂, 𝜌
(1) Initialization:L(0) = A, S(0) = 0, 𝑀

𝑖
=L
(𝑖)
, 𝑁
𝑖
= 0, 𝑘 = 1

(2) Repeat until convergence
(3) for 𝑖 = 1 to 𝑛
(4) 𝑀

(𝑘+1)

𝑖
= 𝑈
𝑖
𝐷
𝜆𝑖/𝛼𝑖
(Λ)𝑉

𝑇

𝑖

where 𝑈
𝑖
Λ𝑉
𝑇

𝑖
= 𝑃
𝑖
L(𝑘) + 𝑌

(𝑘)

𝑖
/𝛼
𝑖

(5) 𝑁
(𝑘+1)

𝑖
= 𝐷
𝜂𝑖/𝛽𝑖
(𝑃
𝑖
S(𝑘) + 𝑍

(𝑘)

𝑖
/𝛽
𝑖
)

(6) 𝑌
(𝑘+1)

𝑖
= 𝑌
(𝑘)

𝑖
+ 𝛼
𝑖
(𝑃
𝑖
L(𝑘) −𝑀

(𝑘+1)

𝑖
)

(7) 𝑍
(𝑘+1)

𝑖
= 𝑍
(𝑘)

𝑖
+ 𝛽
𝑖
(𝑃
𝑖
S(𝑘) − 𝑁

(𝑘+1)

𝑖
)

(8) end for

(9) L(𝑘+1) =
A − S(𝑘) − 𝛾∑

𝑛

𝑖=1
𝑃
𝑇

𝑖
(𝑌
(𝑘+1)

𝑖
− 𝛼
𝑖
𝑀
(𝑘+1)

𝑖
)

1 + 𝛾∑
𝑛

𝑖=1
𝛼
𝑖

(10) S(𝑘+1) =
A −L(𝑘+1) − 𝛾∑

𝑛

𝑖=1
𝑃
𝑇

𝑖
(𝑍
(𝑘+1)

𝑖
− 𝛼
𝑖
𝑁
(𝑘+1)

𝑖
)

1 + 𝛾∑
𝑛

𝑖=1
𝛽
𝑖

(11) 𝛼 = 𝜌𝛼, 𝛽 = 𝜌𝛽
(12) End
(13) 𝑘 = 𝑘 + 1

Output: n-mode tensorL,S

Algorithm 1: ADMM-TR: ADMM for tensor recovery.

By the well-known 𝑙
1
minimization [21], the optimal

solution of (21) is

𝑁
𝑖
= 𝐷
𝜂
𝑖
/𝛽
𝑖

(𝑃
𝑖
S +
𝑍
𝑖

𝛽
𝑖

) , (22)

where𝐷
𝜏
is the “shrinkage” operation.

Computing L. Now we fix all variables except L and
minimize 𝐿

𝐴
over L. The resulting minimization problem

is the minimization of a quadratic function:

min
L
: 𝐿
𝐴 (

L) =
1

2𝛾

‖A −L − S‖
2

𝐹

+

𝑛

∑

𝑖=1

(⟨𝑌
𝑖
, 𝑃
𝑖
L −𝑀

𝑖
⟩ +

𝛼
𝑖

2





𝑃
𝑖
L −𝑀

𝑖






2

𝐹
) .

(23)

The objective function is differentiable, so the minimizer
Lmin is characterized by (𝜕𝐿𝐴(L))/𝜕L = 0. Thus, we obtain

Lmin =
{A −S − 𝛾∑

𝑛

𝑖=1
𝑃
𝑖

𝑇
(𝑌
𝑖
− 𝛼
𝑖
𝑀
𝑖
)}

(1 + 𝛾∑
𝑛

𝑖=1
𝛼
𝑖
)

. (24)

ComputingS. Nowwefix all variables exceptS andminimize
𝐿
𝐴

over S. The resulting minimization problem is the
minimization of a quadratic function:

min
S
: 𝐿
𝐴 (

S) =
1

2𝛾

‖A −L −S‖
2

𝐹

+

𝑛

∑

𝑖=1

(⟨𝑍
𝑖
, 𝑃
𝑖
S − 𝑁

𝑖
⟩ +

𝛽
𝑖

2





𝑃
𝑖
S − 𝑁

𝑖






2

𝐹
) .

(25)

The objective function is also differentiable, so the min-
imizer Smin is characterized by (𝜕𝐿

𝐴
(S))/𝜕S = 0. Thus, we

have

Smin =
{A −L − 𝛾∑

𝑛

𝑖=1
𝑃
𝑖

𝑇
(𝑍
𝑖
− 𝛽
𝑖
𝑁
𝑖
)}

(1 + 𝛾∑
𝑛

𝑖=1
𝛽
𝑖
)

. (26)

For comparing with RSTD [22], we also choose the
difference of L and S in successive iterations against a
certain tolerance as the stopping criterion. The pseudocode
of the proposed ADMM-TR algorithm is summarized in
Algorithm 1.

Theorem 2 (Convergence of ADMM-TR). Assume that the
optimal solution set 𝑋∗ of (11) is nonempty. A sequence
{L(𝑘),S(𝑘),𝑀

(𝑘)

𝑖
, 𝑁
(𝑘)

𝑖
, 𝑌
(𝑘)

𝑖
, 𝑍
(𝑘)

𝑖
} generated by our proposed

ADMM-TR algorithm is bounded, and every limit point of
{L(𝑘),S(𝑘)} is an optimal solution of the original problem (11).

Proof. We check the assumptions of Theorem 1. 𝐶
𝑥
is not

bounded, but 𝑃
𝑖

∗
𝑃
𝑖
= 𝐼 is a constant multiple of the identity

operator. Thus Theorem 1 can also be applied to ADMM-TR
andTheorem 2 can be derived.

5. Numerical Experiments

This section evaluates the empirical performance of the pro-
posed algorithm on synthetic data and compares the results
withRSTD (Rank Sparsity TensorDecomposition) [22]. Also,
experiments on traffic volume data outlier recovery illustrate
the efficiency of the proposedmethod in traffic research filed.

We use the Lanczos algorithm for computing the singular
values decomposition and adopt the same rule for predicting
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Table 2: Comparison of ADMM-TR with RSTD for synthetic data whereA
0
∈ R40×40×40, 𝑛-rank = [5, 5, 5].

𝑠𝑝𝑟

ADMM-TR RSTD
RSE L

0

(𝑒-3)
RSE S

0

(𝑒-3) # iter Time (s) RSE L
0

(𝑒-3)
RSE S

0

(𝑒-3) # iter Time (s)

0.05 4.3 4.3 133 13.7 4.6 4.6 208 17.8
0.15 9.8 4.2 162 20.8 10.5 4.7 235 33.6
0.25 12.3 4.3 514 44.9 15.9 5.2 676 51.0
0.35 56.5 9.5 654 53.3 67.5 11.4 737 57.5

Table 3: Comparison of ADMM-TR with RSTD for synthetic data whereA
0
∈ R40×40×40, n-rank = [10, 10, 10].

𝑠𝑝𝑟

Algorithm: ADMM-TR Algorithm: RSTD
RSE L

0

(𝑒-3)
RSE S

0

(𝑒-3) # iter Time (s) RSE L
0

(𝑒-3)
RSE S

0

(𝑒-3) # iter Time (s)

0.05 4.4 2.0 236 26.4 4.7 2.5 338 29.9
0.15 4.7 2.1 417 42.1 5.2 2.5 603 50.8
0.25 8.9 2.9 664 60.8 12.0 4.2 663 53.6
0.35 17.3 5.2 981 80.6 21.1 6.5 1110 87.7

the dimension of the principal singular space as [22]. And the
parameters are set as 𝛼 = 𝛽 = [𝐼

1
/𝐼max, 𝐼2/𝐼max, . . . , 𝐼𝑛/𝐼max]

𝑇

and 𝛾 = 1/sum([𝐼
1
/𝐼max, 𝐼2/𝐼max, . . . , 𝐼𝑛/𝐼max]

𝑇 for all experi-
ments, where 𝐼max = max{𝐼

𝑖
}. 𝜂 is set to 1/√𝐼max as suggested

in [23].
All the experiments are conducted and timed on the same

desktop with an Pentium (R) Dual-Core 2.50GHz CPU that
has 4GB memory, running on Windows 7 and MATLAB.

5.1. Synthetic Data. ADMM-TR and RSTD are tested on the
synthetic data of size 40×40×40. We generate the dimension
𝑟 of a “core tensor” C ∈ R𝑟×⋅⋅⋅×𝑟 which we fill with Gaussian
distributed entries (∼ N(0, 1)). Then, we generate matrices
𝑈
(1)
, . . . , 𝑈

(𝑁), with𝑈(𝑖) ∈ R𝑛𝑖×𝑟 whose elements are also i.i.d.
Gaussian random variables (∼N(0, 1)) and set

L
0
= C
×1
𝑈
(1)

×2⋅⋅⋅×𝑁
𝑈
(𝑁)
. (27)

The entries of sparse tensor S
0
are independently dis-

tributed, each taking on value 0 with probability 1-𝑠𝑝𝑟 and
each taking on impulsive value with probability 𝑠𝑝𝑟.We apply
the proposed algorithm to the tensorA

0
=L
0
+S
0
to recover

L and S and compare with RSTD. For these experiments,
two cases of 𝑛-rank are investigated, 𝑛-rank = [5, 5, 5] and 𝑛-
rank = [10, 10, 10]. Table 1 presents the average results (across
30 instances) for different 𝑠𝑝𝑟.

The quality of recovery is measured by the relative square
error (RSE) toL

0
and S

0
, defined to be

RSE L
0
=







̂L −L
0





𝐹





L
0




𝐹

,

RSE S
0
=







̂S −S
0





𝐹





S
0




𝐹

.

(28)

Tables 2 and 3 show that the proposed algorithm
(ADMM-TR) is about 10 percent faster than RSTD proposed

in [22] and achieves better accuracy in terms of relative square
error. Though both of the algorithms involve computing a
SVD per iteration, we observe that the proposed algorithm
take much fewer iterations than RSTD to converge to the
optimal solution.

The more impulsive entries are added, that is, for higher
value of spr, the less probable it becomes for the tensor
recovery problem. In addition, the problem becomes more
sophisticated when the 𝑛-rank is higher for the ground truth
tensors of the same size. In Table 1, different spr is set for
two tensor cases. And results show the recovered accuracy
decreases as the spr grows for a certain case. In particular, the
recovered accuracy for the tensorA

0
∈ R40×40×40 with 𝑛-rank

= [5, 5, 5] decreases sharply when the spr is up to 40%, while
the phenomenon occurs for tensor A

0
∈ R40×40×40 with 𝑛-

rank = [10, 10, 10] when the spr is about 25%. This is due to
that relative low rank and low sparse ratio are precondition of
the tensor recovery problem.

5.2. TrafficVolumeData. To evaluate the performances of the
proposed method in traffic volume data outlier recovery, a
complete traffic volume data set is used as the test data set.We
use the data of a fixed point in Sacramento County which is
downloaded fromhttp://pems.dot.ca.gov/.The traffic volume
data are recorded every 5 minutes. Therefore, a daily traffic
volume series for a loop detector contains 288 records, and
the whole period of the data lasts for 16 days, that is, from
August 2 to August 17, 2010.

Based on multiple correlations of the traffic volume data,
we model the data set as a tensor model of size 16 × 24 × 12
which stands for 16 days, 24 hours in a day, and 12 sample
intervals (i.e., recorded by 5 minutes) per hour. The ratios
of outlier data are set from 5% to 15% and the outlier data
are produced randomly. All the results are averaged by 10
instances.
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Figure 1: Comparisons with raw traffic volume data, data corrupted
by outliers with 5% ratio, and data recovered by ADMM-TR.
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Figure 2: Comparisons with raw traffic volume data, data corrupted
by outliers with 10% ratio, and data recovered by ADMM-TR.

For the real world data, we mainly pay attention to the
correctness of the recovered traffic volume data. Thus the
quality of recovery is measured by the relative square error
(RSE) to L

0
and Mean Absolute Percentage Error (MAPE)

toL
0
, defined to be

RSE L
0
=







̂L −L
0





𝐹





L
0




𝐹

,

MAPE L
0
=

1

𝑀

𝑀

∑

𝑚=1












𝑡
(𝑚)

𝑟
− 𝑡
(𝑚)

𝑒

𝑡
(𝑚)

𝑟












,

(29)
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Figure 3: Comparisons with raw traffic volume data, data corrupted
by outliers with 15% ratio, and data recovered by ADMM-TR.

Table 4: Traffic volume outlier data before and afterbeing recovered.

𝑠𝑝𝑟

Before recovery After recovery
RSE L

0

(𝑒-3)
MAPE L

0

(𝑒-3)
RSE L

0

(𝑒-3)
MAPE L

0

(𝑒-3)
0.05 0.5005 0.2136 0.0961 0.0314
0.10 0.7066 0.5008 0.1417 0.1027
0.15 0.8850 0.8777 0.2221 0.2351

where 𝑡(𝑚)
𝑟

and 𝑡(𝑚)
𝑒

are the 𝑚th elements which stand for
the known real value and recovered value, respectively. 𝑀
denotes the number of recovered traffic volumes.

Table 4 presents the relative errors of traffic volume
outlier data before and after being recovered by ADMM-TR.
The results show that the RSE L

0
and MAPE L

0
for traffic

volume data corrupted by outlier data are about 5 times than
the data after being recovered by ADMM-TR. Figures 1, 2,
and 3 present the profiles of traffic volume data for a day. The
results show that ADMM-TR could recover the traffic volume
outlier data with perfect performance.

6. Conclusions

In this paper, we concentrate on the mathematical problem
in traffic volume outlier data recovery and proposed a
novel tensor recovery method based on alternating direction
method of multipliers (ADMM). The proposed algorithm
can automatically separate the low-𝑛-rank tensor data and
sparse part.The experiments show that the proposedmethod
is more stable and accurate in most cases and has excellent
convergence rate. Experiments on real world traffic volume
data demonstrate the practicability and effectiveness of the
proposed method in traffic research domain.

In the future, we would like to investigate how to auto-
matically choose the parameters in our algorithm and explore
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additional applications of our method in traffic research
domain.
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