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With the significant evolution of computer technologies, simulation has become a more realistic and
effective experiential learning tool to assist in organizational training. Although simulation-based train-
ing can improve the effectiveness of training for company employees, there are still many management
challenges that need to be overcome. This paper develops a hybrid framework that integrates data mining
techniques with the simulation-based training to improve the effectiveness of training evaluation. The
concept of confidence-based learning is applied to assess trainees’ learning outcomes from the two
dimensions of knowledge/skill level and confidence level. Data mining techniques are used to analyze
trainees’ profiles and data generated from simulation-based training for evaluating trainees’ performance
and their learning behaviors. The proposed methodology is illustrated with an example of a real case of
simulation-based infantry marksmanship training in Taiwan. The results show that the proposed
methodology can accurately evaluate trainees’ performance and their learning behaviors and can dis-
cover latent knowledge for improving trainees’ learning outcomes.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the increasingly complex and changing business envi-
ronment, enterprise employees not only must possess required
professional knowledge and skills, but also need to flexibly adapt
their knowledge for use in the changing environment. To develop
this adaptive expertise, trainees should be active participants in
the learning process and learning should occur in a meaningful
or relevant context (Bell & Kozlowski, 2002).

With the significant evolution of computer technologies,
simulation has become a more realistic and effective experiential
learning tool to assist in organizational training (Bell, Kanar, &
Kozlowski, 2008). Simulation is defined as ‘‘an artificial environ-
ment that is carefully created to manage individuals’ experiences
of reality’’ (Bell et al., 2008). Simulation-based training (SBT),
therefore, is ‘‘the ability to augment, replace, create, and/or
manage a learner’s actual experience with the world by providing
realistic content and embedded instructional features’’ (Cannon-
Bowers & Bowers, 2009). It is highly flexible in terms of place
and time of training, which can be used to reduce or eliminate var-
iable costs in traditional training. In addition, SBT can also provide
the following advantages (Bell et al., 2008; Cannon-Bowers &
Bowers, 2009): safer conditions than real-life situations, minimal
influence from external factors, and more opportunities to repeat-
edly practice rare situations. It has been found that SBT is already
used in academic and industrial applications, such as health care
(Issenberg, Gordon, Gordon, Safford, & Hart, 2001; Issenberg,
McGaghie, Petrusa, Lee, & Scalese, 2005; McGaghie, Issenberg,
Petrusa, & Scalese, 2010; Salas, Wilson, Burke, & Priest, 2005),
business education (Salas, Wildman, & Piccolo, 2009), pedestrian
traffic (Usher & Strawderman, 2010), and disaster prevention
(Summerhill et al., 2008).

Although SBT can improve the effectiveness of training for
company employees, there are still many management challenges
that need to be overcome (Bell et al., 2008; McGaghie et al., 2010).
For example, several studies have indicated that the applications of
SBT have produced mixed results and have not successfully and
effectively grasped the advantages of SBT (Bell et al., 2008; Salas
& Cannon-Bowers, 2001). Cannon-Bowers and Bowers (2009) also
noted that past simulation-based education efforts have put too
much effort on specific technological training systems and too little
on training needs. Since SBT has been widely applied in the health
care industry, several success factors have been identified in
simulation-based medical education (McGaghie et al., 2010). One
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of the challenges for the development of SBT is how to effectively
evaluate training performance and its subsequent impacts (Bell
et al., 2008; McGaghie et al., 2010; Salas et al., 2005).

Data mining is the process of exploration and analysis of large
quantities of data in order to discover meaningful patterns and
rules that can improve business decision making (Berry & Linoff,
2004). It has gradually become an important tool for modern
business to transform data into business intelligence and achieve
competitive advantage. Accordingly, this paper proposes a hybrid
framework that integrates data mining techniques with simula-
tion-based training to improve the effectiveness of training evalu-
ation. The concept of confidence-based learning (CBL) is applied to
assess trainees’ learning outcomes from the two dimensions of
knowledge/skill level and confidence level. Data mining techniques
are used to analyze trainees’ profiles and data generated from SBT
for evaluating trainees’ performance and their learning behaviors.
The proposed methodology is illustrated with an example of a real
case of simulation-based rifle shooting training. From the experi-
mental results, we show that the proposed methodology can accu-
rately evaluate trainees’ performance and their learning behaviors
and can discover latent knowledge for improving trainees’ learning
outcomes.

Since SBT usually collects a large amount of data from training
sessions, integrating the data mining techniques may be helpful for
instructors and trainees to discover useful patterns or rules that
can provide immediate feedback for trainees to improve their
performance. However, data mining has been rarely used in the
field of simulation-based training and this study aims to fill this
research gap.

The paper is organized as follows: Section 2 presents the funda-
mentals of training evaluation and data mining techniques; the
proposed methodology is presented in Section 3; the case study
and computational experiment are illustrated in Section 4; Section
5 concludes the paper.
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Fig. 1. Classification of learning behavior.
2. Fundamentals

2.1. Training evaluation and simulation-based training

Training evaluation is a process that compares the cost of train-
ing with the intended learning outcomes assessed in terms of
improved performance by trainees (Buckley & Cape, 1990). It can
help managers determine if a training program has achieved the
desired results and diagnose the strengths and weaknesses of a
program for needed improvements. According to Spitzer (1999),
training evaluation can turn training into a powerful force for
improvement of a business, for both the organization and the peo-
ple in it.

Several training evaluation models have been developed in the
literature (Eseryel, 2002; Holton, Bates, & Ruona, 2000; Moore,
Green, & Gallis, 2009). Kirkpatrick’s model (Kirkpatrick, 1998) is
the most well-known and frequently used model for measuring
the effectiveness of training programs in terms of reactions, learn-
ing, behavior, and results. The first level measures the immediate
reactions of trainees towards training programs (e.g., enjoyment,
perceived usefulness, and perceived difficulty). The second level
measures the extent to which learning has occurred, where learn-
ing is conceived in terms of knowledge, skill, and/or attitude. Fur-
ther levels measure whether job performance or organizational
results have been changed as a result of training (e.g., turnover,
volume of activity, cost-cutting, or quality indicators). Regardless
of its popularity, Kirkpatrick’s model continues to be criticized by
researchers for issues, such as liability (Alliger & Janak, 1989)
and limited variables and outcome measures (Santos & Stuart,
2003). For example, Phillips (1997, 2003) further developed a
framework to compute the return on investment of training. How-
ever, challenges still remain in evaluating the effects that the train-
ing programs produce in the workspace and in the organization.
Since knowledge retention, behavior changes, and organizational
impacts resulting from training can only be apparent over time,
behavioral and organizational criteria are difficult to measure.
However, they are still necessary for training evaluation, because
if the desired changes in attitude and behavior do not occur, then
the training program is a failure.

SBT has strong potential to create a highly realistic training
environment and allow trainees more active participation in the
training process. Trainees are expected to act as if they are in a real
situation. SBT also allows for repeated practice and the quest for
excellence through error correction, feedbacks, and debriefing.
These help trainees to develop expertise and the necessity for
retention of these skills and behavior patterns (Issenberg et al.,
2005). Instructors are able to rate trainees’ behavior and give feed-
back to trainees for improving their performance.

Some research has shown that SBT could not only modify
trainees’ behavioral patterns but also increase their self-efficacy,
promoting transfer of training to the workspace (McGaghie et al.,
2010). It is well established that self-efficacy enhances learning
outcomes and performance (Stevens & Gist, 1997). Similarly,
Bruno (1993) also proposed the methodology of confidence-based
learning (CBL) which can be used in a learning/training program to
measure a trainee’s knowledge quality by determining both the
correctness of the trainee’s knowledge/skill and his/her confidence
in that knowledge/skill (see Fig. 1). Once the knowledge/skill
correctness and confidence levels have been identified, CBL can
identify the learning behavior of a trainee into categories: ‘unin-
formed’, ‘misinformed’, ‘doubt’, and ‘mastery’. Then the instructor
can diagnose the learning behavior of a trainee and provide useful
feedback to improve the trainee’s learning performance. Hunt
(2003) also showed that the retention of newly learned knowledge
is systematically related to the confidence level people have about
the correctness of knowledge. A similar concept was also devel-
oped by Jeffries (2005), who included knowledge/skill performance
and self-confidence in a simulation-based learning model for nurs-
ing. In addition, Yen, Ho, Chen, Chou, and Chen (2010) proposed a
confidence-weighting computerized adaptive testing model that
provided a more interactive testing environment by focusing on
the examinees’ confidence in their responses. Their results showed
their model yielded ability estimates that were higher and better
correlated to examinees’ performance in English learning.
2.2. Data mining

The goal of data mining is to extract meaningful patterns and
rules from a data set and transform it into an understandable
structure for further use (Han & Kamber, 2006; Witten, Frank, &
Hall, 2011). Data mining involves various techniques including
statistics, neural networks, decision trees, genetic algorithms, and
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visualization techniques. It has been applied in many fields, such as
design (Kwon, Omitaomu, & Wang, 2008), manufacturing (Ferreiro,
Sierra, Irigoien, & Gorritxategi, 2011), health care (Lim, 2013), cus-
tomer relationship management (Chen, Fan, & Sun, 2012), and fail-
ure detection and prediction (Magro & Pinceti, 2009). However, it
has been applied rarely in simulation-based training.

In general, data mining tasks can be classified into the following
types: concept description, association rules, classification/predic-
tion, cluster analysis, outlier analysis, and evolution analysis. Con-
cept description is used to describe individual classes and concepts
in summarized, concise, and precise terms. Association rules anal-
ysis is used to mining frequent patterns leading to the discovery of
interesting associations and correlations within data. Classifica-
tion/prediction is the process of finding a model that describes
and distinguishes data classes, in order to use the model to predict
the class of data objects whose class label is unknown. Whereas
classification models predict categorical (discrete, unordered)
labels, prediction models forecast continuous-valued functions.
Unlike classification/prediction, which analyzes class-labeled data
objects, cluster analysis groups data objects based on the principle
of maximizing the intraclass similarity and minimizing the inter-
class similarity. Outlier analysis can be used to determine outlier
data that do not comply with the general behavior. Evolution anal-
ysis describes and models regularities or trends for objects whose
behavior changes over time.

3. Proposed data mining approach

This paper develops a data mining approach to improve the
effectiveness of training evaluation in SBT. Since confidence is a
good indicator for knowledge retention (Hunt, 2003), this research
assesses trainees’ learning outcomes and behaviors based on the
concept of confidence-based learning, which measures a learner’s
knowledge quality using the correctness of the learner’s knowl-
edge/skill and confidence in that area of knowledge/skill. It has
been identified that measuring knowledge and confidence is a
better predictor of performance than measuring knowledge alone.
The proposed methodology consists of the following five phases
(see Fig. 2): problem definition, data understanding and prepara-
tion, model building, model evaluation and analysis, and model
deployment.

3.1. Problem definition

This initial step focuses on understanding the objectives and
training requirements for an organization. It is necessary to know
the background of target trainees, the content of tasks to be
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Fig. 2. The data mining methodology.
learned, and the context of training in order to find the best way
to measure, analyze, and improve the training performance.
Domain knowledge accumulation is important in order to under-
stand the nature of the problem and substantially improve data
mining effectiveness. It is important to work closely with domain
experts to define the project objectives and the requirements from
a business perspective. The project objective can then be more suc-
cessfully translated into a data mining problem definition.

3.2. Data understanding and preparation

Collecting the right data is the basis of data mining. It is
important to conduct a literature review of the problem domain
and consult expert opinions in order to find and select for analysis
the important data attributes that may influence trainees’ learning
outcomes.

Since this research applies the theory of CBL for training evalu-
ation, data attributes are selected from the two aspects: knowl-
edge/skill correctness and confidence in that knowledge/skill. For
the dimension of knowledge correctness, the trainee’s
knowledge/skill that has been learned from training can be
assessed in different scenarios given by the training simulator.
Some measurable performance metrics, such as, test scores and
overall answering accuracy, can be used to evaluate the correct-
ness of a trainee’s knowledge/skill. This data can be collected either
from the training simulator or a questionnaire survey from learn-
ers. For the dimension of knowledge confidence, a questionnaire
survey alone is used to collect the confidence-level data from train-
ees, because it is more subjective in nature. The confidence level
can be assessed according to linguistic terms, such as: ‘‘I am sure’’,
‘‘I am partially sure’’, and ‘‘I am not sure’’ (Hunt, 2003). In addition,
data related to trainee characteristics (e.g., age, gender, learning
experience) is also collected because it may contain important fac-
tors that influence their learning outcomes (Cannon-Bowers &
Bowers, 2009; Salas & Cannon-Bowers, 2001).

Before using data mining techniques to build models for analy-
sis, it is important to cleanse the selected data and to transform it
by joining and aggregation so that it is suitable for data mining
analysis. It is also necessary to remove data that contains noise or
is incomplete (Han & Kamber, 2006).

3.3. Model building

This phase applies the data mining techniques (Han & Kamber,
2006) to construct models for evaluating trainees’ learning out-
comes and their learning behaviors based on the concept of CBL.
The present problem can be structured as a classification problem,
which is used to predict the class of data objects whose class label
is unknown. For example, a classification model could be used to
identify a trainee’s performance as ‘‘fail’’, ‘‘pass’’, or ‘‘excellent’’. In
general, there are two types of classification: supervised classifica-
tion and unsupervised classification. Supervised classification ana-
lyzes a dataset in which the class assignments are known and
intends to find relationships between values of the predictors and
values of the target variable. These relationships are summarized
in a model, which can then be applied to a different data set in which
the class assignments are unknown. Conversely, in unsupervised
classification, the set of possible classes is not known, which is useful
for analyzing problems with little or no pre-existing knowledge.

This paper applies supervised classification techniques for
assessing trainees’ learning outcomes because the rating assign-
ments for trainees are usually known and can be collected from
the simulation-based training. Three supervised classification tech-
niques, decision trees (Quinlan, 1993b), artificial neural networks
(ANNs) (Haykin, 1999; Wong, Bodnovich, & Selvi, 1997), and
logistic regression (Hosmer & Lemeshow, 2000), are used for model
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building. The constructed models are evaluated and the one with
the best prediction performance is selected for model deployment.
Furthermore, this research applies cluster analysis, which is a type
of unsupervised classification, to identify learning behaviors of
individual trainees based on the CBL framework (see Fig. 1)
because trainees’ learning behaviors are not known prior to the
training. Similarly, after trainees’ learning behaviors have been
identified, supervised learning techniques are used for building a
model to predict trainees’ learning behaviors. Each trainee can be
assigned to one of the knowledge quadrants in the CBL framework,
so the instructors can have a better understanding of trainees’
learning behavior and provide feedback to trainees to improve
their learning outcomes.

The following briefly introduces the theoretical backgrounds of
these techniques. Interested readers can refer to the popular text-
book by Han and Kamber (2006) for an introduction to data mining
techniques.

(1) Decision tree analysis

Decision tree analysis is one of the commonly used techniques
for supervised classification learning. This technique comprises of
the construction of decision trees from a class-labeled training
dataset. Let us denote the dependent variable by y (target variable)
and the independent variables (predictors) by x1,x2, . . .,xn. A deci-
sion tree is a flow-chart-like tree structure, where each internal
node (non-leaf node) denotes a test on an attribute, each branch
represents an outcome of the test, and each leaf node (or terminal
node) holds a class label. The decision tree learning recursively
splits the training dataset into subsets based on an attribute value
test. This process is repeated on each derived subset, until the sub-
set at a node has all the same value of the target variable (y), or
when splitting no longer adds value to the predictions.

Many decision tree algorithms, such as ID3, C4.5, C5, and CART,
have been developed in the literature (Breiman, Friedman, Olshen,
& Stone, 1984a; Quinlan, 1986, 1993a). In this study, we chose to
use the C5 and CART algorithms as our decision tree methods,
because both algorithms can handle categorical and continuous
predictors. In addition, since using a full-grown tree based on the
training data may result in complete over-fitting of the data, vali-
dation data is used to prune the tree that has been over-grown
using the training data.

The advantages of decision tree methods are their robust resis-
tance to outliers and the presence of IF–THEN rules, which make it
easier to understand and find important influential factors. How-
ever, due to the implicit linear structure during tree generation,
if the problem structure is nonlinear, it is likely to have lower per-
formance than methods such as ANNs (Lim, Loh, & Shih, 2000).

(2) Back-propagation neural networks (BPNN)

An artificial neural network (ANN) has at least two compo-
nents: the processing units called neurons and the connections
between them. Every connection has a weight parameter associ-
ated with it. Each neuron receives stimulus from the neighboring
neurons connected to it, processes the information, and produces
an output. A variety of neural network structures have been devel-
oped in the literature. A multilayer neural network with the back-
propagation (BP) algorithm is the most commonly used network
configuration (Haykin, 1999).

A multilayer feed-forward neural network typically consists of
an input layer, one or more hidden layers, and an output layer. It
is fully connected in that each unit provides input to each unit in
the next forward layer. The BP algorithm propagates each input
data object in the training dataset forward through the input layer,
through hidden layers, to the output layer. The associated output
value is calculated based on the current state of connection
weights (initially, the weight will be random) and a nonlinear acti-
vation function. An example of a logistic activation function is:

Outputj ¼ g hj þ
Xp

i¼1

wijxi

 !
¼ 1

1þ e� hjþ
Pp

i¼1
wijxi

� � ; ð1Þ

where xi is an input value from node i, hj is the bias of node j that
controls the level of contributions of node j, and wij is the weight
on the connection from node i to node j. The output value of a node
in the output layer is then compared with the associated target out-
put to compute the error for this input data object. Then, a gradient
steepest descent approach is used to propagate this error back
through the network adjusting the weights so as to minimize the
sum-of-squares error. The whole process is repeated for each data
object of the training dataset, until the overall error value drops
below some pre-determined threshold.

The most prominent advantage of BP neural networks is their
high tolerance to noise data and their ability to capture highly
complicated relationships between the predictors and a target var-
iable. However, it is not easy to determine the appropriate network
size (e.g., number of hidden layers, number of nodes in each hidden
layer) for a given problem complexity. The network size depends
on the degree of nonlinearity and dimensionality of the given prob-
lem. Too many hidden neurons may result in over-fitting of the
neural network, while fewer hidden neurons may not be able to
accurately learn the problem behavior. Therefore, the adaptive
method has been developed to determine the appropriate number
of neurons by adding/deleting neurons as needed during training
process (Hirose, Yamashita, & Hijiya, 1991; Rivals & Personnaz,
2003). Furthermore, another weakness is in providing insight into
the structure of the relationship, which can be improved using the
decision tree approach.

This paper will apply both the traditional BPNN with a fixed
topology and the adaptive BPNN method for model building.

(3) Logistic regression

Logistic regression is a probabilistic statistical classifica-
tion model that extends the ideas of linear regression to the situa-
tion where the dependent variable is categorical (Hosmer &
Lemeshow, 2000). A categorical variable is used to divide the dataset
into several classes. The purpose of the logistic regression model is
to measure the relationship between a categorical dependent vari-
able y and a number of independent variables, x1, x2, . . .,xn, by using
probability scores as the predicted values of the dependent variable.
The standard formulation of a logistic regression model is as follows:

ln
p

1� p

� �
¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn; ð2Þ

where p is the probability of belonging to a class specified by y and
b1,b2, . . .,bn are coefficients. The function on the left-side is called
the logit, which is the natural log of the odds. Therefore Eq. (2) takes
the logit as the dependent variable and models it as a linear function
of the n predictors. The regression coefficients are usually estimated
using the maximum likelihood estimation.

(4) Cluster analysis

Cluster analysis is the task of grouping a set of data objects in
such a way that data objects in the same group are more similar
to each other than to those in other groups. There are several clus-
tering methods, such as iterative partitioning methods and hierar-
chical methods, which have been developed in the literature. The
selection of the clustering algorithm appears to be critical to
the successful use of cluster analysis. Though empirical studies of
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the performance of clustering algorithms suggest that the iterative
partitioning methods, such as k-means algorithm, are preferable to
the hierarchical methods, iterative partitioning methods require
prior specification of the number of clusters desired and a good
starting point (Punj & Stewart, 1983).

Therefore, this research uses the two-step clustering approach,
where Ward’s minimum variance method is first used to get some
sense of the possible number of clusters and their centroids, and
then the k-means method is applied to place all the data objects
(Punj & Stewart, 1983). Ward’s method, at each step, finds the pair
of clusters that leads to the minimum increase in total within-clus-
ter variance after merging, where the total within-cluster variance
is defined as:

ESS ¼
Xk

j¼1

Xnj

i¼1

X2
ij �

1
nj

Xnj

i¼1

Xij

 !2
0
@

1
A; ð3Þ

where k is the total number of cluster, Xij is the data object i
assigned to cluster j, and nj is the number of data objects assigned
to cluster j.

According to a candidate number of clusters and their centroids
determined by Ward’s method, the second stage uses the k-means
method which aims to partition n data objects into k clusters in
which each data object xj belongs to the cluster Si 2 S (1 6 i 6 k)
with the nearest mean so as to minimize the within-cluster sum
of squares:

arg min
S

Xk

i¼1

X
xj2Si

kxj � lik
2
; ð4Þ

where li is the mean of data objects in Si.

3.4. Model evaluation and analysis

This step reviews and evaluates the constructed model, and the
accuracy rate is used to evaluate the performance of the classifica-
tion methods. If the model does not satisfy expectations, then the
model is rebuilt by changing its parameters until optimal values
are achieved. When the model obtains satisfactory results, it can
be used for training evaluation, such as predicting trainees’ perfor-
mance ratings or extracting rules that can determine outstanding
trainees.

3.5. Model deployment

Model deployment is to actually use the models created in the
previous step for improving the performance of practical simula-
tion-based training. For example, an organization may want to
deploy a trained model or set of models (e.g., ANNs, decision trees)
to quickly identify trainees who have a high probability of being
failed. Then instructors can provide useful feedback to the trainees
for improving their performance.

4. Empirical study: simulation-based infantry Marksmanship
training in Taiwan

4.1. Background

With advances in computer technology, optical technology, and
mechanical design, Taiwan’ military has developed an assault rifle
indoor shooting simulator for infantry marksmanship training. The
entire system design intends to emulate the practice of different
shooting scenarios (e.g., different weather conditions) so decision
makers can enhance the effectiveness of training, while also reduc-
ing the required time, costs and potential risks. This study was
done in cooperation with a military training unit that was planning
to adopt an assault rifle shooting simulator for infantry marksman-
ship training.

The regular infantry marksmanship training session includes
three phases: sight-in phase, 175M-practice phase, and 175M-final
phase. In the sight-in phase, the trainee is allowed three rounds
with three shots each to check and adjust the zero of the weapon.
In the 175M-practice phase, each trainee has six shots without
time limit to exercise his/her shooting knowledge and skills.
Finally, the 175M-final phase examines the shooting performance
of each trainee, who has to finish 6 shots within 30 s. The shooting
score is proportional to the number of hits on the camouflage tar-
get and is calculated as follows: 30 points for one hit, 50 points for
two hits, 60 points for three hits, 70 points for four hits, 90 points
for five hits, and 100 points for six hits. According to the scores
obtained, each trainee is further divided into three performance
levels: ‘‘fail’’ (0, 30, 50), ‘‘pass’’ (60, 70), and ‘‘excellent’’ (90, 100).
4.2. Problem definition

Though using the rifle marksmanship simulator can improve
the effectiveness of training while reducing the required time,
costs and potential risks, the Taiwanese military still sought to
more fully take advantage of SBT to enhance training evaluation
so that it can further help trainees improve their learning out-
comes. The proposed data mining approach could fulfill this need,
because it is much easier and faster to collect training data from
the rifle simulator-based training. An instructor can utilize the data
collected during training sessions, analyze training data for assess-
ing the trainee’s learning outcomes, and give timely feedback to
trainees and instructors for improving trainees’ shooting perfor-
mance. This can simplify the time and effort of instructors in pro-
viding recommendations for improving trainees’ shooting skill and
enhancing the training effectiveness. The following three issues are
addressed in this case study:

� Assessing the shooting performance and learning behavior of a
trainee based on the concept of CBL.
� Understanding the patterns of outstanding trainees.
� Providing recommendations back to instructors and trainees for

improving trainees’ learning outcomes.

4.3. Data understanding and preparation

Since this research assesses trainees’ learning outcomes from
the two perspectives of knowledge/skill correctness and confi-
dence in that knowledge/skill, it is necessary to define data attri-
butes that can be used to measure trainees’ performance from
both dimensions and design questionnaires for collecting this data.

The questionnaire was developed based on a literature review, a
marksmanship training manual, and opinions from the shooting
instructors. Due to the diverse backgrounds of trainees, the ques-
tionnaire had to be designed for easy understanding and answering
by respondents. After the original questionnaire design was com-
pleted, instructors responsible for the overall training lessons
reviewed the questionnaire to ensure that all relevant questions
were included.

The required data for this study includes the following three
parts:

(1) Basic profile: basic information of a trainee including the fol-
lowing nine items: identification number, age, height,
weight, body mass index (BMI), academy background, sight,
military service years, and shooting training times attended.



Table 1
Feature selection for shooting performance assessment.

Rank Attribute Importance

1 175M practice shooting score 1.000
2 Precision at the practice phase 1.000
3 Accuracy at the practice phase 1.000
4 Accuracy at the sight-in phase 0.999
5 Number of training lessons 0.976
6 Confidence about shooting posture 0.976
7 Academy degree 0.966
8 Confidence about proficiency of the eight shooting

principles
0.966

9 Confidence about proficiency in gun use 0.965
10 Precision at the sight-in phase 0.959
11 BMI 0.956
12 Confidence about shooting performance 0.867
13 Right sight 0.866
14 Gun holding position 0.711
15 Military service duration 0.682
16 Left sight 0.589
17 Confidence about concentration 0.46
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(2) CBL items: the retention of newly acquired knowledge for a
trainee is significantly related to the trainee’s confidence in
that knowledge (Hunt, 2003). Therefore, we include ques-
tion items that enable trainees to recall past basic training
experience and self-assess their confidence in the shooting
knowledge and skills in which they have already been
trained, including the following five items: proficiency of
eight shooting principles, shooting confidence, proficiency
in gun use, concentration degree, and shooting posture. A
three-point scale was used in the questionnaire to measure
the confidence of knowledge learned by the trainee: ‘‘I am
sure’’, ‘‘I am partially sure’’, and ‘‘I am not sure’’.

(3) Marksmanship data collected from the SBT sessions: the data
collected here is used to assess the correctness of the knowl-
edge/skill learned in the training lessons. The collected data
includes gun holding position, coordinates of shot holes,
shooting scores, and performance levels for three training
phases. According to the coordinate data of shot holes, the
shooting precision and accuracy can be calculated. Let (xi,
yi) be the coordinate of a shot point, where i = 1–6. The
shooting precision is defined by the average distance of
any two shot points:

a ¼
P6

i¼1;j¼iþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ

2
q

6
; ð5Þ

where a larger value of a indicates lower precision. Shooting accu-
racy is defined by the average distance from every shot point to the
camouflage target center (xt, yt):

b ¼
P6

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxt � xiÞ2 þ ðyt � yiÞ

2
q

6
; ð6Þ

where a larger value indicates lower accuracy. The following six
items are used for analysis: gun holding position, shooting precision
and accuracy and performance levels for the sight-in and 175M-
practice phases, and performance level for the 175M-final phase.

The questionnaire survey was conducted on the infantry train-
ing base for 2 months. A pre-test was performed prior to actual
data collection both for item validation and to avoid possible ambi-
guity. This was conducted on five shooting instructors who
received a printed version of the questionnaire and were asked
to comment on the listed items, wording, and format. As a result,
a few overlapping items were removed and some items were mod-
ified to make their wording as precise as possible.

Before the shooting training session began, the research team
distributed the questionnaires to respondents and explained its
content in detail to ensure that each respondent clearly understand
all question items. After each run of a training session, the research
team gathered completed questionnaires from the trainees and
also collected the target papers recording locations of shooting
holes for all trainees.

After removing questionnaires with missing data and unclear
answers, a total of 289 (95.7%) questionnaires and shooting records
were collected. The required data were processed and formatted to
fit a format compatible with data mining functions.

4.4. Model building

4.4.1. Shooting performance assessment
Based on the collected data, this phase applied supervised clas-

sification techniques to assess trainees’ shooting performance,
including two decision tree methods (C5 and CART), two BPNN
approaches (traditional and adaptive methods), and the logistic
regression approach. The original data set contained twenty-three
variables which might contain redundant and irrelevant
information. Feature selection methods, such as likelihood ratio,
Pearson‘s Chi-square, one-way ANOVA F-test, Cramer’s V, and
Lambda can be used to select important variables that most con-
tribute to prediction accuracy (Guyon & Elisseeff, 2003; Saeys,
Inza, & Larranaga, 2007). Since our predictors contained categorical
and continuous variables and can obtain a better prediction accu-
racy in the preliminary computational experiment, one-way
ANOVA F-test was applied in this research to identify important
variables to target variables (i.e., ‘‘shooting performance level’’)
from the dataset. The importance value of each variable was then
calculated as (1 � c), where c is the p value of the appropriate test
of association between the candidate predictor and the target var-
iable. The variables with importance greater than 0.95 were
selected and a total of the top eleven data attributes were used
for model building, where three confidence-related data attributes,
including confidence about shooting posture, proficiency of the
eight shooting principles, and proficiency in gun use, were
included (see Table 1). The data mining software SPSS PASW mod-
eler 13.0 on the PC platform was used for building models in this
study.

Next, the preliminary computational experiments were con-
ducted to identify suitable parameter values for building models
with the five supervised classification methods. In the training of
C5.0 decision tree method, the information gain criteria and the
boosting method (number of trials = 10) were applied to grow
the initial decision tree for improving its accuracy rate. To
avoid the overfitting the training data and poorly generalizing to
new samples, global pruning was applied with pruning severity
within the range of 70–85 and the minimum records per child
branch within the range of 5–10 (Quinlan, 1992). The final param-
eter values were determined in order to minimize the misclassifi-
cation error in the subsequent validation phase. For the CART
decision tree method, both the Twoing and the Gini indices
(Breiman, Friedman, Olshen, & Stone, 1984b) were tested for grow-
ing the initial tree and the Gini index was selected with for model
building, because of its superior performance. The minimum
change in impurity to stop the tree growth was set to 0.0001.
The standard error rule was used to prune the tree based on the
validation dataset to avoid the overfitting problem, while the stan-
dard error multiplier was set within the range of 1.0–2.5 for
improving validation accuracy.

For the training of back-propagation neural networks, the num-
ber of input nodes, hidden nodes (only one hidden layer), and
output nodes were set to 27, 21, and 3, respectively. The number
of hidden nodes was determined based on the rule of thumb that



Table 2
Performance comparison of different classification methods in the shooting perfor-
mance assessment.

Accuracy Decision tree BP neural network Logistic
regression
(%)

CART
(%)

C5.0
(%)

Traditional
(%)

Adaptive
(%)

Training Mean 69.98 88.12 95.16 85.04 62.86
SD 2.76 10.72 0.55 1.68 8.89

Validation Mean 54.30 57.08 95.17 91.04 55.37
SD 7.61 7.72 4.05 4.07 11.74

Table 3
Agglomeration schedule for Ward’s minimum variance method.

Stage Agglomeration
coefficients

Percentage
of changes (%)

Number of
clusters

279 26.75 – 10
280 31.07 16.1 9
281 35.27 13.5 8
282 50.82 44.1 7
283 56.58 11.3 6
284 74.44 31.6 5
285 92.16 23.8 4
286 196.63 113.4 3
287 521.5 165.2 2
288 736.4 41.2 1
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the number of hidden neurons should be 2/3 the size of the input
layer, plus the size of the output layer. Momentum to avoid getting
trapped in a local minimum was set to 0.9, while the learning rate
which controls how much the weights were adjusted at each
update was initially set to 0.3, decreased to 0.01, then rested to
0.1 and decreased to 0.01 for every 30 training cycle until the
Table 4
Descriptive statistics of 4 clusters.

Variables Statistics Behav

Uninfo

Basic profile
Number of training lessons Mean 3.347

SD 1.927

Academy degree Mean 2.541
SD 0.558

BMI Mean 22.111
SD 2.936

Correctness of knowledge/skills
175M practice shooting score Mean 20.153

SD 23.147

Accuracy at the practice phase Mean 8.838
SD 1.250

Precision at the practice phase Mean 11.466
SD 2.752

Accuracy at the sight-in phase Mean 5.710
SD 3.635

Precision at the sight-in phase Mean 6.135
SD 6.396

Confidence of learning
Shooting posture Mean 1.486

SD 0.559

Proficiency of eight shooting principles Mean 1.811
SD 0.616

Proficiency in gun use Mean 1.351
SD 0.484
stopping criteria (training period = 5 min) was reached. For the
adaptive BPNN, the number of hidden layers, hidden nodes and
learning parameters were adjusted automatically during the train-
ing process. For the logistic regression, multi-nominal procedure
and main effects option including all the variables specified with
no interaction terms were selected.

Finally, the exclusive computational experiments were con-
ducted to validate the models built by the above five supervised
classification methods. The k-fold cross-validation method was
used to estimate the performance of a predictive model and k was
set to 10. Its advantage is that all the examples in the dataset are
eventually used for both training and validation. A 10-fold partition
of the dataset was created, where, for each of 10 experiments, 9
folds were used for training to build a predictive model and then
the remaining one was used for testing model validity. The perfor-
mance comparison results of different classification methods are
shown in Table 2. Among the five classification methods, the BPNN
models performed better than decision tree methods and logistic
regression, whose average prediction accuracies were all below
60% in validation. In contrast, both BPNN models had much higher
average prediction accuracies in validation that were greater than
90%. The traditional model could achieve the best performance with
a 95.17% prediction accuracy with standard deviation equal to
4.05%. Therefore, the traditional BPNN model is recommended for
use in trainees’ shooting performance assessment.

4.4.2. Learning behavior classification
This paper applies cluster analysis to determine the learning

behavior of a trainee based on confidence-based learning. The pur-
pose of cluster analysis is to assign a set of data objects into several
clusters, so the data objects in the same cluster are similar. This
research applies the two-stage clustering analysis method, Ward’s
minimum variance method (Ward, 1963) followed by the k-means
method (Hartigan & Wong, 1979), as proposed by Punj and Stewart
ior

rmed Misinformed Doubt Mastery

3.405 3.689 4.266
1.992 1.924 1.978

2.633 2.767 2.719
0.616 0.794 0.826

22.387 22.694 23.079
2.628 2.801 2.836

20.270 77.344 83.944
24.887 26.186 17.001

8.784 5.876 5.547
1.162 1.725 1.552

11.029 6.927 6.243
2.283 2.911 2.533

2.690 2.204 1.945
1.412 1.121 0.853

2.033 1.970 1.898
1.365 1.115 1.245

2.265 1.967 2.719
0.488 0.350 0.453

2.469 2.133 2.812
0.522 0.502 0.393

2.122 1.911 2.297
0.437 0.323 0.494
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(1983). Table 3 presents the agglomeration schedule which pro-
vides a solution for every possible number of cluster from 1 to
10 and the corresponding agglomeration coefficients. This coeffi-
cient is the squared Euclidean distance between the two cases of
clusters being combined. The coefficient can be used as a stopping
rule that evaluates the changes in the coefficient at each stage of
the hierarchical process. Large coefficients indicate that two very
different clusters are being merged. The researcher looks for large
increases in the value for determining the optimal number of
clusters.

From Table 3 we can see that the noticeable jumps in percent-
age increase occur when going from 4 to 3 clusters. Therefore, the
promising number of clusters is 4. Then the k-means method is
applied to improve the quality of each clusters using the number
of clusters as 4. The descriptive statistic for each cluster is dis-
played in Table 4. The major characteristics of each cluster are
evaluated and a class name is assigned on each cluster based on
the CBL framework in Fig. 1.

� Cluster 1: Uninformed

This cluster contained 37 trainees and had the smallest number
of training lessons attended (3.347) among the four clusters. In the
confidence of learning dimension, the confidence levels for shoot-
ing posture, proficiency in the eight shooting principles, and profi-
ciency in gun use on shooting were the worst among the four
clusters. In addition, for the correctness of knowledge/skill dimen-
sion, their shooting precision and accuracy at the sight-in and prac-
tice phases were the worst, and the average shooting score in the
practice phase was only 20.153. In summary, trainees in this clus-
ter had not learned the knowledge/skill from previous training les-
sons and they also lacked confidence in their knowledge/skill.
Therefore they can be classified as ‘uninformed’.

� Cluster 2: Misinformed

This cluster contained 98 trainees, with an average of 3.405
training lessons attended, which is slightly more than the
‘uninformed’ cluster. For the confidence of learning dimension,
Table 5
Feature selection for shooting behavior classification.

Rank Attribute Importance

1 175M practice shooting score 1.000
2 Precision at the practice phase 1.000
3 Accuracy at the practice phase 1.000
4 Accuracy at the sight-in phase 1.000
5 Number of training lessons 1.000
6 Confidence about shooting posture 1.000
7 Confidence about proficiency of the eight shooting

principles
1.000

8 Confidence about proficiency in gun use 1.000
9 Precision at the sight-in phase 0.968

10 BMI 0.709
11 Academy degree 0.464

Table 6
Performance comparison of different classification methods in shooting behavior classifica

Accuracy Decision tree

CART (%) C5.0 (%)

Training Mean 88.16 98.66
SD 1.58 0.86

Validation Mean 76.80 83.75
SD 7.70 5.13
the confidence levels on related attributes were worse than the
‘mastery’ cluster, but better than the other two clusters. Although
the trainees in this cluster had enough confidence in their knowl-
edge/skill, for the correctness of knowledge/skill dimension, the
shooting precision and accuracy were slightly better than those
in the ‘uninformed’ cluster, and the average shooting scores in
the practice phase was only 20.27. In short, the trainees in this
cluster had good confidence in their knowledge/skill, but the cor-
rectness of their knowledge/skill is poor. Thus, they can be classi-
fied as ‘misinformed’.

� Cluster 3: Doubt

This cluster contained 90 trainees, with an average of 3.689
training lessons attended, which is slightly less than the ‘mastery’
cluster. For the confidence of learning dimension, the confidence-
related attributes were slightly better than the ‘uninformed’
cluster. For the correctness of knowledge/skill dimension, the
shooting precision and accuracy at the sight-in and practice
phases were worse than those in the ‘mastery’ cluster, but better
than the other two clusters. Furthermore, the average shooting
scores in the practice phase was 77.344. In short, the trainees
in this cluster had poor confidence in their knowledge/skill, but
they had good correctness of knowledge/skill, which was only
worse than those in the ‘mastery’ cluster. Thus, they can be clas-
sified as ‘‘doubt’’.

� Cluster 4: Mastery

This cluster contained 64 trainees, with an average of 4.266
training lessons attended, the most among the four clusters. In
both confidence of learning and correctness of knowledge/skill
dimensions, this cluster outperformed the other three clusters. In
addition, the average shooting scores in the practice phase was
83.944. In short, the trainees in this cluster not only were confident
in their knowledge/skill but also had excellent knowledge/skill cor-
rectness. Thus, they can be classified as ‘mastery’.

In addition, the supervised classification methods were used to
predict trainee learning behavior based on the data collected from
shooting training sessions. A new categorical attribute, knowledge
quadrant, was added to the data set, and its value ranged within
the 1-to-4 scale representing ‘uninformed’, ‘misinformed’, ‘doubt’,
and ‘mastery’ categories. A one-way ANOVA F-test, was also used
to select important variables that most contribute to prediction
accuracy of behavior classification. The variables with importance
greater than 0.95 were selected and a total of the top nine data
attributes were used for model building (see Table 5). Similar to
the shooting performance assessment, preliminary experiments
were conducted to select suitable parameter values for model
building. Then, 10-fold cross-validation was used to validate the
performance of a predictive model. The prediction results are
shown in Table 6. Though all five methods could obtain validation
performance greater than 76.8% accuracy, only the BPNN approach
had greater than 95% accuracy. The adaptive BPNN approach is
tion.

BP Neural net Logistic regression (%)

Traditional (%) Adaptive (%)

95.16 98.27 91.54
0.48 0.27 3.84

95.15 98.28 78.53
4.37 2.44 9.05
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Fig. 3. System framework of the assault rifle shooting SBT.

Table 7
Sample rules for classifying trainees’ learning behavior

Rule no. Knowledge/skill dimension Confidence dimension Behaviora Confidence
level

175 Practice
shooting score

Sight-in
precisionb

Training
times

Shooting
posture

Eight shooting
principles

Proficiency
in gun use

1 (0,30] L 1 0.933
2 (0,30] M L 1 0.717
3 (30,60] L 1 0.889
4 (0,30] M M–H 2 0.871
5 (0,30] H 2 0.815
6 (30,60] M P6 L–M M 3 0.857
7 (60,75] L–M 3 0.863
8 (75,100] L–M 3 0.852
9 (75,100] H 4 0.929

a 1: ‘‘uninformed’’, 2: ‘‘misinformed’’, 3: ‘‘doubt’’, 4: ‘‘mastery’’.
b Precision (cm): High: a < 3.8, Medium: 3.8 6 a < 10.1, Low: a P 10.1.
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recommended for system deployment, because its accuracy rate
was 98.28%.

Though the ANN approach produced high accuracy rate for pre-
dicting a trainee’s shooting performance, it is difficult to interpret
the knowledge inside it. Thus, we applied the decision tree
approach to discover useful patterns to improve trainee’s trainee
learning behavior which might result in better shooting perfor-
mance. The obtained decision rules are summarized in Table 7.
For example, Rule 1 shows that if a trainee’s 175-meter practice
shooting score is less than 30, and s/he has a low confidence about
shooting posture, then the trainee is ‘uninformed’ with confidence
degree 93.3%. In addition, Rule 4 shows that if a trainee’s 175-
meter practice shooting score is less than 30, but s/he has a
medium confidence about shooting posture and even has a med-
ium-to-high confidence about proficiency in gun use, then the
trainee is ‘misinformed’ with confidence degree 87.1%. Further, it
is interesting to note that the shooting score in the practice train-
ing is the dominant factor for shooting behavior classification in
the correctness of knowledge/skill, while the confidence about
shooting posture followed by confidence about proficiency in gun
use and the eight shooting principles are the important influential
factors in the confidence of learning dimension. Therefore, in addi-
tion to a good shooting score in the practice training, a ‘‘mastery’’
trainee should have high confidence in shooting posture. These
rules can be used as a guideline to educate trainees to improve
their shooting skills and confidence.
4.5. Model deployment

The training evaluation system was developed based on the
models identified in the previous stages and implemented with
Microsoft Visual Basic on the PC platform. The system framework
is shown in Fig. 3. The simulation-based training process can be
divided into the following three steps:

Step 1: Simulation-based training lessons

At first, the instructor asks each trainee to fill in the question-
naire containing the basic profile and confidence related questions.
Following three stages of training lessons, the simulator replicates
various scenarios and events and gathers shooting data of individ-
ual trainees during the training lessons. Then the shooting data and
questionnaire data are fed into the training evaluation system.

Step 2: Diagnosis

The training evaluation system analyzes shooting data from the
simulator and the trainees’ profile data, and assesses trainees’
shooting performance and their learning behavior. The system
then produces recommendations for the instructors and trainees.

Step 3: Prescription

According to the quadrant where an individual trainee is, the
knowledge gap of each trainee can be identified and appropriate
feedbacks can be given for trainees. The instructor can provide
more solid advice based on his experience and recommendations
from the system.

4.6. Discussion

Depending on the behavior of an individual trainee, we suggest
the following guidelines to improve the learning outcomes. For the
‘uninformed’ trainees, it appears that the trainees cannot fully
understand and absorb shooting knowledge to improve their skills.
Therefore, they will lose their confidence gradually, because of
their low shooting scores. In this situation, the instructors should
gather the ‘uninformed’ trainees into a group, instruct them care-
fully with more patience and attention to enhance their confi-
dence, and ask them to practice diligently to progressively
improve their basic shooting knowledge and skills.

For the ‘misinformed’ trainees who are over-confident, instruc-
tors can adjust their mindset, find their weaknesses on shooting
knowledge/skill, and improve their shooting knowledge/skill by
repetitive practice during the training lesson. On the other hand,
for the ‘doubt’ trainees, the instructors should take the initiative
to acknowledge their correct knowledge/skill during training les-
sons in order to improve their self-confidence. Then their shooting
precision and accuracy can be gradually improved to increase their
shooting stability. Finally, for a ‘mastery’ trainee, instructors still
can refine their knowledge/skill and confidence toward a higher
expert level, such as sniper. Furthermore, the ‘mastery’ trainee
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can be a role model for the other three types of trainees. Instructors
may empower the ‘‘mastery’’ trainees to assist in training less
capable trainees, thereby consolidating their knowledge, skills,
and self-efficacy.

5. Conclusions

This paper integrated a data mining approach with the theory of
confidence-based learning to improve training evaluation for SBT.
Data mining techniques were used to analyze data generated from
SBT to assess trainees’ training performance and learning behaviors.
The proposed methodology was illustrated with an example of a
real case of Taiwan’s infantry marksmanship training. The results
show that the proposed methodology can accurately evaluate train-
ees’ performance and their learning behaviors, and discover latent
knowledge for improving trainees’ learning outcomes. Future
research will integrate expert systems with the developed training
evaluation system that can provide more comprehensive feedbacks
to trainees for improving their learning outcomes. In addition, the
developed data mining methodology can be applied to other appli-
cation domains, such as: management education.
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