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ABSTRACT 
A phase-field model is developed to simulate free dendritic 

growth coupled with fluid flow for a pure material in three 
dimensions. The preliminary results presented here illustrate 
the strong influence of convection on the three-dimensional 
(3D) dendrite growth morphology. The detailed knowledge of 
the flow and temperature fields in the melt around the dendrite 
from the simulations allows for a detailed understanding of the 
convection effects on dendritic growth. 

 
INTRODUCTION 

Dendrites are the most common microstructure found in 
engineering materials. The shape, size and orientation of the 
dendrites determine to a large extent the physical and chemical 
properties of cast and welded metals. While numerous 
experimental, numerical and analytical studies have been 
performed to understand dendritic growth in diffusion-
controlled situations [1-12], the pattern selection and 
microstructure evolution are not well understood for 
convection-controlled growth. Convection in the melt during 
solidification can be caused by buoyancy forces, dendrite� 
movement, shrinkage, or a variety of imposed flows. 

In the past ten years, the phase-field method [13-16] has 
become a popular computational tool to simulate 
microstructure formation in solidification. The main advantage 
of the phase-field method is that it avoids direct tracking of the 
sharp solid-liquid interfaces [17-19]. Based on an analysis of 
the thin interface limit, Karma and Rappel [20-22] proposed a 
computationally efficient phase-field method that allows for 
quantitative modeling of dendritic crystal growth. Beckermann 
et al. [23] employed the phase-field method to study convective 
effects on dendritic growth in two dimensions (2D). The 
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numerical results show that convection can significantly alter 
the operating state of a dendrite and dendritic sidebranching. 
Very recently, Jeong et al. [24] investigated the effect of fluid 
flow on 3D dendritic growth using an adaptive-grid finite 
element method. They found that the flow and dendrite growth 
shapes in three dimensions are very different from those in two 
dimensions. 

In this paper, our previous simulations of 2D dendritic 
growth with convection [23] are extended to three dimensions. 
Preliminary results are presented that illustrate the effects of 
convection on dendritic growth.  

 
GOVERNING EQUATIONS 

The governing equations for flow and heat transfer are the 
same as those derived in Ref. [23], while the phase-field 
equation is taken from the work of Karma and Rappel [20-22]. 
The effects of flow in the phase-field equation are neglected. 
All equations are valid in the single-phase solid and liquid 
regions as well as in the diffuse interface region, where the 
phase-field variable, ψ, varies from �1 to +1. An auxiliary 
variable, the solid fraction sε , is introduced as 

( ) 2/ψ1ε s += . The equations can be summarized as follows.  

Mass conservation: 
( )[ ] 0vε1 1s =−⋅∇ v ,                                   (1) 

where lvv  is the intrinsic velocity of the liquid. 
1 Copyright © 2002 by ASME 
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Momentum conservation: 
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where lν , p, and t are the kinematic viscosity, pressure, 
and time, respectively. The parameter 0W  is representative of 
the interface thickness (see below). The last term on the right-
hand side of Eq. (2) is a distributed interfacial force term that 
forces the liquid velocity to vanish across the diffuse interface 
as the solid approached. The coefficient h is a constant equal to 
5.514, which was determined from an asymptotic analysis that 
forces the velocity profile to approach that for a no-slip 
condition at a sharp interface located at 0.5ε s = .  

Energy conservation: 
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where D is the thermal diffusivity. The dimensionless 
temperature u is defined as )p)/(L/cT(Tu M−= , where MT , 

L, and pc  are the melting temperature, latent heat, and specific 
heat at constant pressure, respectively.  

Phase-field equation: 
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where λ is a dimensionless parameter that controls the 
strength of the coupling between the phase and temperature 
fields, and n is the interface normal. The interface thickness 
parameter W depends on the orientation of the interface and is 
given by )(saW)(W 0 nn = . In the limit of vanishing interface 
kinetics, )(nτ is chosen as ( )nn 2

s0 a)( τ=τ , with 
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where 4ε  is the anisotropy strength. All other details can 

be found in the original references [20-23]. 

NUMERICAL METHOD 
      The energy and phase-field equations are solved using an 
explicit finite difference method on uniform grids that are 
different from each other. The node spacing for the energy 
equation is exactly twice as large as the one for the phase-field 
equation, as illustrated in Fig. 1. This can be done without loss 
of accuracy, because the thermal diffusion length is much 
larger than the diffuse interface thickness. The temperatures on 
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the fine-mesh nodes for use in the phase-field equation are 
obtained by linear interpolation. Extensive numerical tests were 
performed to validate this approach for the ranges of the 
governing parameters considered here.  
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Figure 1. Configurations in the fine and coarse meshes. 
(a). One coarse grid (big cube) in finite difference scheme (or 
one element in finte element scheme). Nodes for temperature 
are defined on 8 corners, namely 81 T~T ( 8T  is not shown in 
the figure). Nodes for velocity are defined on the 6 surface 
centers of the coarse grid, namely 61 V~V ( 64 V~V  are not 
shown in the figure). Pressure p is defined on the volume center 
of the coarse grid.  (b). 8 fine grids (cubes)  that correspond to 
one coarse grid. Nodes for the phase-field variable are defined 
on every corner of the fine grid, namely P1~P27 (P20~P27 are not 
shown for clarity). 

 
The mass and momentum equations are solved using a 

modified version of the finite element CFD code FEATFLOW 
[25]. This code was originally developed by Turek and 
coworkers in the Department of Mathematics at the University 
of Dortmund, Germany. Descriptions of the discretization 
technique, the error control method, and the multi-grid solution 
scheme can be found online [25]. The code was modified to 
accommodate the non-standard forms of the mass and 
momentum equations, Eqs. (1) and (2). As shown in Fig. 1a, 
the velocity is defined at the center of the six surfaces of the 
element, while the pressure is defined at the center of the 
volume element. Most importantly, the element edge length is 
again twice as large as the node spacing used in the solution of 
the phase-field equation. Since most of the total computational 
2 Copyright © 2002 by ASME 
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effort is associated with the solution of the flow equations, this 
method offers tremendous savings in both computer time and 
memory. It was verified through extensive numerical tests that 
the use of a coarser mesh for the flow equations does not 
sacrifice accuracy for the cases considered here. The velocities 
were interpolated to the appropriate locations for use in the 
solution of the energy equation. The flow equations are solved 
in a fully implicit manner. As found previously by the present 
authors [23], this allows for the use of a larger time step (about 
five times as large) for the flow equations than for the phase-
field and energy equations; however, this procedure was not 
utilized in the present study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. 2D view of the non-uniform mesh for calculating the 
cylinder drag at low Reynolds numbers. 3D mesh is simply 
extended by this 2D mesh in the z direction. The domain size is 
10x10x0.8. (a). Complete 2D view of the mesh. (b). Better 
view of the 2D mesh in the center region of the domain. The 
circle (cylinder in 3D) is defined by a (stationary) distribution 
of the phase-field variable, which varies in a hyperbolic tangent 
fashion. 

Numerous benchmark problems were solved using the 
present 3D code in order to validate the numerical method. 
Only one of these, flow around a cylinder at low Reynolds 
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numbers, is described here. The cylinder was represented by a 
(stationary) distribution of the phase field variable, which 
varies in a hyperbolic tangent fashion across the cylinder-fluid 
interface. In other words, the cylinder was not explicitly 
discretized. For the present simulations at low Reynolds 
numbers, the computational domain has to be much larger than 
the cylinder so that the flow field is not influenced by the 
boundaries[26]; hence, a non-uniform grid of hexahedral 
elements was utilized. A two-dimensional cut of the mesh is 
plotted in Fig. 2a. Since the elements are densely concentrated 
at the center of the cut where the cylinder is present, an 
enlarged view of this region of the mesh is shown in Fig. 2b. 
The flow is from left (x=0 plane) to right (x=10 plane) in this 
figure. A uniform inlet velocity and a zero-velocity gradient at 
the outlet are used as boundary conditions on these two planes. 
Slip boundary conditions are applied at the bottom (y=0 plane) 
and top (y=10 plane) boundaries. Two-dimensional results for 
an infinitely long cylinder are desired for the comparison with 
the benchmark results. Hence, slip boundary conditions are 
applied on the front and back boundaries. Then, the size of the 
domain in the z-direction (parallel to the axis of the cylinder) is 
arbitrary.  
     Using the computed flow results, the drag coefficient, CD, of 
the cylinder was determined as a function of the Reynolds 
number. A comparison of the present results for the drag 
coefficient with previous experimental measurements [27-28] is 
shown in Fig. 3. The agreement is good for all Reynolds 
numbers. 
 
 
 
 
 
 
 

Re

C

0 2 4 6 8 102

4

6

8

10

12

14

16

18

20

Huner and Hussey (exper.)
Tritton (exper.)
Present numerical

D

 
 

Figure 3. Cylinder drag coefficient at low Reynolds numbers. 
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Figure 4. Physical and computational domains. The size of the 
physical domain is 204.83. The computation domain is only one 
quarter of the physical domain (the first octant with black 
color) due to symmetry. Fluid with uniform velocity (U=1) 
passes over the sphere seed initially fixed in the center of the 
physical domain. 

 

RESULTS 
Figure 4 shows the physical domain and conditions used in 

the present simulation of free dendritic growth in the presence 
of melt convection. A spherical seed at the melting temperature 
(u=0) is located in the center of a cubic domain of volume 
204.83. The [100], [010] and [001] crystalline directions are 
aligned with the x, y, z coordinates, respectively. Undercooled 
melt enters the domain at the x=0 plane with a uniform velocity 
of U=1 and dimensionless temperature of uin=∆=�0.55. The 
melt exits at the opposing end of the domain. Symmetry or slip 
boundary conditions are imposed on the four planes normal to 
the inlet and outlet. For the present low Reynolds number flow, 
symmetry allows the computations to be performed in only a 
quarter of the domain. Other conditions include D=4, 

05.04 =ε , and 5.2D/Pr =ν= . The calculations were 
performed on a uniform grid of 128x64x64 nodes for the flow 
and temperature fields and of 256x128x128 nodes for the phase 
field. 

Figure 5 shows computed dendrite shapes at various times. 
Since the dendrite would be completely symmetric in the 
absence of flow, it is obvious that the convection dramatically 
alters the growth morphology. The arms growing into the flow, 
in the upstream direction, grow much faster than the cross- 
stream arms. The arm pointing in the downstream direction 
grows so slowly that it is virtually non-existent. 

The flow field is illustrated in Figs. 6 to 8. Fig. 6 shows the 
general characteristic of the streamlines around the dendrite. 
Figs. 7 and 8 show representative streamlines on the upstream 
and downstream sides of the dendrite, respectively. The flow 
advects heat from the upstream to the downstream side. 
Consequently, the temperature field around the dendrite is very 
asymmetrical, as shown in Fig. 9. The temperature gradients 
are largest at the upstream tip, resulting in the large growth 
velocities there. The temperature in the wake of the dendrite is 
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more uniform and closer to the melting point. Compared to the 
downstream arm, the cross-stream arms suffer much less from 
the convective transport of heat. This can be seen from the 
streamlines in Figs. 6 to 8. Most of the fluid that passes near the 
upstream dendrite arm and gets heated, flows through the space 
between the four cross-stream arms. The melt that passes 
directly by the cross-stream arm tips originates primarily from 
the far field and is not heated by any upstream structure. As can 
be seen from Fig. 6, the shape of the cross-stream arm is very 
asymmetrical in the z plane, which again is caused by advection 
of heat around those arms. 

 

CONCLUSIONS 
A phase-field method has been developed to simulate free 

dendritic growth in three dimensions in the presence of a forced 
melt flow. Convection is found to significantly alter the growth 
morphology of dendrites. While the flow and temperature 
results presented here allow for a qualitative understanding of 
the effects of convection, a comparison of the predictions with 
relevant dendrite growth theories and experimental results is 
still underway. 
 

 
 
 

 

 

 

 

 

 

                   

 

 

 

 

 

 
Figure 5. Microstructure evolution of the dendrite under 
convection. The dimensionless time interval is 80/t =τ∆ . 
The input parameters are 55.0−=∆ , D=4, 05.04 =ε , 

5.2D/Pr =ν= , U=1, and 383.6=λ . 
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Figure 6. Streamlines around the dendrite viewed in z direction. 
 
 
 
 
 
 
            

 

 
 

Figure 7. Streamlines near the upstream arm viewed from 
negative x direction 
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Figure 8. Streamlines near the downstream arm viewed from 
positive x direction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 9. Temperature field around the dendrite. The black line 
represents the interface contour. (a) 3D temperature field 
around the dendrite. The first octant was cut for better 
visualization. Temperature below �0.47 was not shown for 
clarity. (b) 2D temperature field at y=0 plane. 

(a) 

   (b) 
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