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“By pursuing his own interest he frequently promotes that of the society
more effectually than when he really intends to promote it.”

Adam Smith in The Wealth of Nations (1776)

Abstract

While trading on a financial market, the agents we consider take the
performance of their peers into account. By maximizing individual
utility subject to investment constraints, the agents may ruin each
other even unintentionally so that no equilibrium can exist. However,
when the agents are willing to waive little expected utility, an approx-
imated equilibrium can be established. The study of the associated
backward stochastic differential equation (BSDE) reveals the math-
ematical reason for the absence of an equilibrium. Presenting two
illustrative counterexamples, we explain why such multidimensional
quadratic BSDEs may not have solutions despite bounded terminal
conditions and in contrast to the one-dimensional case.
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1 Introduction

Assuming you have invested in a fund, are you satisfied with the fund man-
ager if she achieved a performance of 4% in the last year? You may say
that the answer depends mainly on two factors: the risk the manager has
taken and the development of the markets in the last year. In mathematical
finance, the frequently used approach of maximizing expected utility from
terminal wealth incorporates simultaneously the performance and the risk
related to a trading strategy. However, the relative performance compared
to an index or other investors is typically not taken into account, although
benchmarking may even be part of human nature and is important for a fund
manager who needs to keep the fund competitive. The goal of this paper is
to study the impacts of integrating relative-performance considerations into
the framework of utility maximization.

The model we consider consists of n agents who can trade in the same
market subject to some individual restrictions. Each agent measures her
preferences by an exponential utility function and chooses a trading strategy
that maximizes the expected utility of a weighted sum consisting of three
components: an individual claim, the absolute performance and the relative
performance compared to the other n — 1 agents. The question is whether
there exists a Nash equilibrium in the sense that there are optimal strategies
simultaneously for all agents. We make the usual assumption that the finan-
cial market is big enough so that the trading of our investors does not affect
the price of the assets.

A model similar to ours has been recently studied in the PhD thesis of
Espinosa [6] but in the absence of individual claims and with assets modeled
as [t0 processes with deterministic coefficients. These assumptions crucially
simplify the analysis and enable Espinosa [0] to show the existence of a Nash
equilibrium. He also studies its form, while our focus is on existence questions
in a more general setting and interpretations as well as possible alternatives
in the absence of a Nash equilibrium. We obtain existence and uniquess in
a stochastic framework if all agents are faced to the same trading restric-
tions. Under different investment constraints, however, an agent may ruin
another one by solely maximizing her individual utility. Different investment
possibilities may allow an agent to follow a risky and beneficial strategy, and
thereby negatively affect another agent who benchmarks her own strategy
against the less restricted one. The bankruptcy of the agents can be avoided
if agents with more investment possibilities are showing solidarity and will-
ingness to waive some expected utility. This leads to the existence of an
approximated equilibrium, in the sense that there exists an e-equilibrium for
every € > (. In an e-equilibrium, every agent uses a strategy whose outcome



is at most € away from that of the individual best response. Behind this well-
known concept stands the idea that agents may not care about very small
improvements. Our setting brings up the additional aspect of solidarity: by
accepting a small deduction from the optimum, an agent can help to save
the others from failure. Applying freely to our model Adam Smith’s citation
stated on the first page of this paper, we could say that maximizing indi-
vidual utilities sometimes leads to an equilibrium. But when one agent can
dominate another because of less trading restrictions, the invisible hand of
the market has to be accompanied with solidarity to guarantee an acceptable
outcome for every agent.

This financial interpretation goes along with an interesting mathematical
basis, which is due to the correspondence between an equilibrium of the in-
vestment problem and a solution of a certain backward stochastic differential
equation (BSDE). BSDEs provide a genuine stochastic approach to control
problems which typically find their analytic analogues in the convex duality
theory and the Hamilton-Jacobi-Bellman formalism. A BSDE is of the form

aY, = f(t,Y;, Z)dt + Z,dW,, 0<t<T, Yy=E¢,

where given are a d-dimensional Brownian motion W, an n-dimensional ran-
dom variable £ and a generator function f. A solution (Y, Z) consists of an
n-dimensional semimartingale Y and an (n x d)-dimensional control process Z
predictable with respect to the filtration generated by W.

Existence and uniqueness results have first been shown for BSDEs with
generators f satisfying a Lipschitz condition; see for example Pardoux and
Peng [14]. However, BSDEs related to mathematical finance, as in our sit-
uation, typically involve generators f which are quadratic in the control
variable. For such cases, Kobylanski [12] proved existence, uniqueness and
comparison results when ¢ is bounded and Y is one-dimensional (n = 1).
Her results were generalized by Briand and Hu [I] and Delbaen et al. [3] to
BSDEs with unbounded terminal conditions. While Kobylanski’s proof can-
not be generalized to n > 1, Tevzadze [16] presents an alternative derivation
of Kobylanski’s results via a fix point argument. This yields as a byproduct
an existence and uniqueness result also for n > 1 if the generator f is spe-
cific (purely quadratic) and & is sufficiently small (the L*™-norm of £ needs
to be tiny). The result is in line with the mantra that partial differential
equations (PDEs) can often be solved for sufficiently small data or on a suf-
ficiently small time interval, although the known existence and uniqueness
results cover only some types of PDEs. For a multidimensional quadratic
BSDE (i.e., n > 1 and f is quadratic in the control variable) like that re-
lated to our problem, no general existence and uniqueness results are known,



even when £ is bounded. On the other hand, no explicit counterexample is
available so far to the best of our knowledge.

The paper is structured as follows. We start by presenting in Section
a counterexample which is easy to understand and shows that —and why —
general multidimensional quadratic BSDEs do not have solutions. This gives
a mathematical flavor for the absence of an equilibrium in the later-presented
financial model, because we establish a relation between existence of equilib-
ria and solutions to such a BSDE. Section [3| contains the arguments and re-
sults explained above on the (non-)existence of an equilibrium. In Section
we come back to the BSDE counterexample and discuss its mathematical
scope. Finally, the Appendix contains some proofs and auxiliary results.

2 An illustrative counterexample

After some preparation, we give a counterexample to the existence of solu-
tions of multidimensional quadratic BSDEs. Throughout the paper, we fix
T > 0 and d,n € N and work on a canonical Wiener space (), F, P) carrying
a d-dimensional Brownian motion W = (W1, ... W) restricted to the time
interval [0, 7). We denote by F = (Ft)o<t<r its augmented natural filtration
and assume F = Fp. For an equivalent probability measure QQ, we define:

e the space 8% of bounded predictable processes;
e the space H}, 4(Q) of (nxd)-dimensional predictable processes (Z;)o<i<r
normed by [|Z]xz ) == Eg UOT trace(Z,Z," ) dt] 2,
e the space BMO(Q) of square-integrable martingales M with My = 0
and satisfying
M a0 1= 5P | Eal(M)r — (M), |7 < o0,

where the supremum is taken over all stopping times 7 valued in [0, T'].
In the case Q = P, we usually omit the symbol P. A solution of a BSDE

dY, = f(t, Yy, Z)dt + Z,dW,, 0<t<T, Yp=¢, (2.1)

with given n-dimensional random variable £ and generator function f is a
pair (Y, Z) satisfying with a semimartingale Y and Z € H?Ld.

The counterexample, for which we take d = 1 (dimension of W), consists
of the two-dimensional (n = 2) BSDE

dy,' = Z}! aw,, 0<t<T, Yp=¢ (22
1
dy? = —(|Z§|2 + 5|Zf|2> dt +22dW,, 0<t<T, Y2=0, (2.3)



where the terminal condition £ € L™ is given. There is an explicit solution
for the first component, which does not depend on the second. The generator
of the second component depends quadratically on the control variables of
both the first and the second dimension of the BSDE. For some choices of the
terminal condition, the second component explodes, leading to insolvability.

Theorem 2.1. For some £ € L™, the BSDFE , has no solution.

Proof. From ({2.2)), it follows that Y is explicitly given by V! = E[¢|F;] and
Z*' is uniquely defined via Itd’s representation theorem through

T T
£=E[5]+/0 Zdw,, E[/O |Zt1]2dt]<oo.

We now use Z! in ({2.3), which implies

E{exp</0T|Zt1|2dt)} :eXp(YbQ)JE{S(/ Z%W)J < exp(¥)

since the stochastic exponential E( [ Z*dW) is a positive supermartingale.

This gives Y = oo if E[exp( fOT |Z}|>dt)] = oo, and the result follows by

setting & = fOT ¢ dW; € L™ for ¢ given in Lemma |A.1|in the Appendix. [

The underlying mathematical reason presented in Lemma is that
there exists a bounded martingale whose quadratic variation has an infinite
exponential moment. Since the generator in depends quadratically on
both Z! and Z2, this leads to explosion. In Section |4, we will discuss some
mathematical aspects of this phenomenon in more detail.

3 Maximizing the relative performance

After we have seen that multidimensional quadratic BSDEs need not have
solutions, we study a financial problem, its link to existence issues for such
BSDEs and how altering the problem can lead to solvability. We start by
introducing the problem formulation and then group the results based on
different types of trading restrictions for the agents.

3.1 Model setup and preliminaries

The financial market we consider consists of a risk-free bank account yielding
zero interest and m traded risky assets S = (S7) j=1,.,m With dynamics

d
dsf = Spldt+ ) Slol AW}, 0<t<T, >0, j=1,....m
k=1

b}



the drift vector g = (1)j—1.. . as well as the lines of the volatility matrix
o = (07%);=1,m, are predictable and uniformly bounded. We assume that o

has full rank and that there exists a constant C' such that

1
C|B)*>B"To0' > 5|5|2 a.e. on Q x [0, 7] for all 3 € R™.

The market price of risk 6 := o (JJT)_lu is then also uniformly bounded
and W := W + J 0dt is a Brownian motion under the probability measure P
given by 4. E(—[0aW),.

We con31der n agents. Any agent ¢ can trade in S subject to some per-
sonal restrictions and has to pay (or is endowed with) a claim F; € L* at
time 7. This means that agent ¢ uses some self-financing trading strategy

mt = (71, ..., 7™) valued in A;, where A; is a closed and convex subset of
R™. We denote by P} the projection onto A;oy, i.e., P}(x) := argmin |z — 2|
FAS Aiat

for x € R?. If agent i starts with zero initial capital, her wealth at time ¢
related to a strategy 7 is given by

t
/ T dSJ —/ o, dW,.
0

Any agent ¢ measures her preferences by an exponential utility function
Ui(x) = —exp(—nx), x € R, for a fixed 7; > 0. Instead of maximizing
the classical expected utility E[U; (X7 — F;)], agent i takes also the relative
performance into consideration and maximizes over 7’ the value

Ve ::E[Ui((l—Ai)X?M (x5 ——ZXM> )]

DY .
:E[Ui(XT e —F)] (3.1)
i

for a fixed \; € [0,1] and given the other agents j # i use strategies 7/. The
set A; of admissible strategies for agent 7 is given by

A; = {7ri R™-valued, predict. | 7 € A; a.e. on Qx[0,T), X" e BMO(P)}

We set A := A; x---xA,. Because we assume that each agent maximizes her
expected utility without cooperating with the other agents, we are interested
in Nash equilibria.

Definition 3.1. In this setting, a strategy # € A is a Nash equilibrium if
for every i, VI > Vf’ﬂﬁl for all ™ € A;.



The classical problem of maximizing E[U;(X™ — F})] has been studied by
Hu et al. [10] in the same setting, but with not necessarily convex A;. They
give in Theorem 7 a BSDE characterization for the optimal strategy and the
maximal expected utility. Although their definition of admissibility slightly
differs from ours (class (D)- instead of BM O-condition), their Theorem 7 still
holds under our definition in the case A\; = 0 for all 7, which can be seen from
its proof and which we later use several times. Our choice of admissibility
allows for both regaining the assertion of Hu et al. [I0] in the case A\; = 0 for
all 2 and deriving in Lemma a BSDE characterization for general \;. By
Theorem 3.6 of Kazamaki [I1], the condition X™ € BMO(P) is equivalent
to [ 7o dW € BMO(P) because 6 is bounded.

In contrast to optimizing E[U;(XF — F})], we maximize E[U;( X5 — F})]
with F; := n)‘_il Z#i X&' + F,. Since F; is unbounded and depends on the
other agents’ strategies, the study is more involved. This problem of agents
concerning the relative performance has also been considered in the PhD the-
sis of Espinosa [6]. In a simpler setting where o and 6 are deterministic and
without claims F}, he proved the existence of a Nash equilibrium and gave a
characterization in his Theorem 4.40. In our stochastic model, a counterex-
ample in Section [3.3| will show that there need not exist a Nash equilibrium
and only a notion weaker than a Nash equilibrium might be satisfied.

The following result, which relates a Nash equilibrium to a BSDE, is
an analogue to Theorem 7 of Hu et al. [I0]. However, one has here no
uniqueness and existence result for the BSDE. In fact, the counterexample
in Section [3.3| shows that existence does not hold in general. To formulate
the result, we recall the reverse Holder inequality R,(Q). For p > 1, an
equivalent probability measure Q and an adapted positive process M, we say

M satisfies R,(Q) <= 3C s.t. esssup Eq[(My/M,)P|F.] <C. (3.2)

T stop. time
Lemma 3.2. There is a one-to-one correspondence between the following:
(i) a Nash equilibrium 7 € A such that for any i, there exists p > 1 with

Ai ZX;,ZJ)‘}"} satisfies R,(P); (3.3)
i

Bl (6 -2
n_

(i) a solution (Y, Z) with [ ZdW € BMO of the multidimensional BSDE
2
dy; = (‘9t| N

Ai
n—1

, 1 , ) 1
Zi+ =0, - 13;(2; + —et>
i i

2 X N
)dt+zg A1,

. C | .

Vi = Z/ Pg<2g+—9t)dwt+m, i=1,...,n (3.4)
7170 Uk

The relation is given by 7'o = P'(Z" + -0) and V" = —exp(n;Yy).

7



Proof. Assume (i) holds and fix 7. One can show by dynamic programming
similarly to Lemma 4.24 of Espinosa [6] that for any 7% € A;, M™ given by
) 7'ri )\’L ~ 7
M = e "7 esssupE {Ui (X; — X - > X7 - F) ‘]—}] (3.5)
K€EA; n— 1 .
JFi
has a continuous version which is a supermartingale and a martingale for
7' = @', This uses that for any 7*, 7" € A and stopping time 7, we have
Wi]lﬂo,ﬂ] + %i]l]]T’T]] € A;. A variant of Itd’s representation theorem implies

. i ~. ~ . T ~ . '~
Mfr’:Mgg(/Z%dW) for Z' with/ | Zi|? dt < oo as. and M§ < 0.
0

Theorem 3.3 of Kazamaki [I1] yields [Z?dW € BMO because of (3.3)
and the boundedness of F;. We set Z' := %Zi + #'o, which again satisfies
[ Z?dW € BMO because #* € A;. For any ©" € A;, we obtain

Mﬁi = exp(meri — Th-XWi)Mfri = MgriniBTri, where

N™ ::g(m / (Zi—wia)dw),
2
L i i l i 2
B .—exp(Q/(‘Z —l—mﬂ o )dt).

The P-supermartingale property of M™ implies that M™ / N™ = ME 'B™ is

2 . 1 .
_ ‘Z’ =0 — i
1

a Q™ -supermartingale where % = N%i, using that N™ is a P-martingale

by Theorem 2.3 of Kazamaki [II]. Because B™ is a continuous Q™ -sub-
martingale and of finite variation, it is nondecreasing, i.e., for any 7* € A;
2" — ;-0 —7'o| > |Z" + -0 — 70| a.e. Hence, we get #'c = P (Z + #9),
using that a strategy 7’ satisfying 7'c = P*(Z° + %9) can be chosen pre-
dictable by Lemma 11 of Hu et al. [I0]. Weset Y := _- log(—M™ exp(n,X™))
and obtain for dY;' the expression in (3.4)) after a straightforward calculation.
Moreover, 1) implies Y’ = ey izi Jo Tiot dW, + F;. Since this holds for
any 7, we have w'c = PZ(ZZ + %6) for all 7 and 1) follows.

Suppose (ii) holds, define 7t by /o = PI(Z7 + 7%6) for all j and fix 7. Like
in Lemma 12 of Hu et al. [10], we obtain [ P*(Z"+ ULQ) dW € BMO so that
7t e A;. For 7' € A;, we set Rv™ = — exp(—m(X”i —Y")), which satisfies

R™ = — exp(n;Yy) € <7h‘ /(ZZ — 7o) dW)

2
X exp(%’/’ZZ +—0—7'c
i

2 ) 1 . ) 1 2
_ ]ZZ + - Pl(Z’ + —9)] dt).
;i Uk



We deduce that R*™ is a martingale and V;* = — e_xp(mYZ) For any 7° € A;,
R™ is a supermartingale and we have V= R{™ >E[Ry™ | =V w70

(]

In the specific case where all F; = 0 and p as well as o are deterministic,
one can construct a solution to the BSDE (3.4)) by choosing a deterministic Z
with 21 = 2550 Pi(Z7 4 -0) for all i if T ,); < 1. This is possible
because then the mapping ¢ defined by

z s pl(2) = 7 (29 (3.6)

J#Z

is invertible by Lemma 4.41 of Espinosa [6], who also shows that ¢!
Lipschitz-continuous uniformly in ¢. Since [ ZdW is in BMO for this deter-
ministic Z, the strategy 7 satisfying #'c = P*(Z* + i@) is a Nash equilibrium
by Lemma [3.2] Hence, we regain the form of a Nash equilibrium stated in
Theorem 4.40 of Espinosa [0] for this deterministic case. In the following, we
give a brief alternative derivation which does not use BSDEs.

Remark. In this remark, we fix ¢ and assume F; = 0 and that p and o are
deterministic. Supposing m/ € A; for j # i are deterministic, we obtain from
(3.1)) for any (possibly stochastic) 7 € A; that

T
Vi Ep[exp</0 (n—lzﬂtat nmtat+9t> th)}e 5lo

_Ep{é’(/(n_lija—nzwa—i-@)dW)
xexp( n—lzwtat 7717Tt0t+‘9t

i oy
{(/(n Zﬂ'a’ 7717r0+9)dW)T]

)\ 1

xexp(né/o ‘n—letUtJr 9t—7TtUt dt—§/ |9t|2dt)7

S o+ niQ) Thus we have

T i )\Z j 1 7
sup V; —exp(2/0 )n_lgﬂgat—i-agt—ﬂtat

mieA;

T

where 7'oc = Pi(

Y
dt — = [ |6,>dt ).
2 /o




This shows the existence of a Nash equilibrium 7 € A given by

#lo = P" (gp‘l’i(%ﬁ, e %9))
(G a) <)
= (n— Zﬂja—l— 9) 1=1,...,n,

JF

where =% denotes the i-th component of the inverse of ¢ given in (3.6)). ¢

While we do not need the BSDE formulation in the presence of deter-
ministic parameters, it is helpful in the general case. The multidimensional
BSDE ({3.4)) is coupled via its terminal condition. By using the mapping ¢

defined in (3.6)), we can rewrite (3.4]) as

dre = — i o N (G) — (‘“Q)\dtJrCtth, 0<t<T,

. . 1

rszFi+— edeS——/ |0,|% ds, i=1,...,n, (3.7)
ni Jo 2ni Jo

where (* ;= (pi(Zl + 17%0’ AL n%@) and

Fi =

t ) ) 1 R 1 t 1 t
P (Zg + —es> i, + —/ / 10,2 ds.
0 1y i Jo 21 Jo
(3.8)
Because ¢! is Lipschitz-continuous, shows that we are dealing with a
multidimensional quadratic BSDE.
In the following remark, we briefly mention two articles related to other
financial applications of multidimensional quadratic BSDEs.

Remark. El Karoui and Hamadéne [4] consider certain games with two
players. In a Markovian framework, they give a characterization for an equi-
librium in terms of a solution of a multidimensional quadratic BSDE. For
their setting, the coupling of that BSDE is weak, namely it is assumed that
the i-th entry of the driver f is dominated by C'(1 + |2'|?) for some positive
constant C'. However, no existence result for such a BSDE is provided.
Cheridito et al. [2] follow in the footsteps of Horst et al. [9] to solve a
problem of valuing a derivative in an incomplete market by equilibrium con-
siderations. In Horst et al. [9], the problem can be solved in a one-dimensional
framework, since the derivative is assumed to complete the market. Cheri-
dito et al. [2] do not impose this condition, which makes the analysis much

10



more involved. The authors solve the problem in a discrete framework, but
close their work with considerations on the continuous case. The latter leads
to a fully coupled multidimensional quadratic BSDE, whose solvability is
unkown. O

3.2 Agents having the same constraints

In a situation where all agents are faced to the same constraints given by a
linear subspace of R?, there exists a unique Nash equilibrium 7 and we can
give a BSDE characterization for 7 similarly to Hu et al. [10].

Proposition 3.3. Assume that A; = A are the same linear subspace for all
i=1,....,n and T’ \; < 1, and set P = P'. Then fori =1,...,n, the
decoupled BSDFEs

) 0,|2 i
dlﬂlz€:<| a s

1 1
G+ =0, P(G+-0,)
T M

2 . ~ .
) dt+ ¢ dW,, Th=F (3.9)

have a unique solution (I', () € S ><Hid. There is a unique Nash equilibrium
e A. It is given by V' (7,)or = Pt(C,f + %@), where the linear mapping 1
is defined by z +— i(2) 1= 2" — AL >z 7 Moreover, Vi7 = —exp(n,Tg).

n
Proposition shows that the agents’ maximal expected utility is the
same as in the case without interaction. However, the optimal strategies are
different. Since all agents have the same constraints, an agent can completely
hedge against the others agents’ behavior. This implies that the optimal
strategy accounts for the others agents’ behavior, while the maximal expected
utility is unaltered compared to the situation without interdependencies.

Proof of Proposition[3.5 Because A; = A is a linear space and 1 is invert-
ible due to II}_;\; < 1, we have 7 € A <= ¥(m) € A. This implies
SUDric 4, Vf’ﬁ]# = SUPpc 4, E[Ui (Xg — E)] for all 77 € A;. Applying Theo-
rem 7 of Hu et al. [10] to the latter optimization problem yields the result. [J
Remarks. 1) The proof shows as well that there exists no m € A with

V™ > V7 for some i and Vi > Vf for all 7,

which means that 7 from Proposition |3.3]is also a Pareto optimum.

2) The BSDEs (3.9)) correspond to (3.4). Indeed, define (Y, Z) by
1 1 1 1

(Ctl + =0 G+ —9t> = @t(Ztl + =0 .. 2"+ _9t>>
m Tin m n

A TN !
Y:r+n_1;/P(ZJ+n—je)dW,

11



with the invertible linear mapping ¢; given by (3.6). Because of A; = A for
all 4, 1= > P(Z] + %6&) is in 0; A, and we obtain
J

G+ = PG+ —8)

n—1

;o1 i j 1

PR | PR |
Zt+—0t—Pt<Zt+—8t)
i uh

o A\ 1
G+ 0+ =S R (2 +—6,)
i g T;

Therefore, the BSDEs (13.9)) are equivalent to (3.4)). O

We now give an easy counterexample for the case \; = 1 where the BSDE
has no solution. We take n = 2 (number of agents), d = 1 (dimension
of W), o =1,0 =1, Ay = Ay = R (no constraints), 7 = 17, = 1 and
A1 = Ao = 1 (only the relative performance matters). The BSDE equals

1 - 4 X
dy! = 7 dt+ Zraw,, Y} = / (Z2 + 1) dW,,
0
1 - T X
dy? = §dt + Z2dW,, Y7 = / (Z}+1)dW,.
0
By combining these equations, we obtain

T T . T R
§+/ Ztlth:/ (ZZ +1)dW, — Yy
0 0

. T T .
:WT—Y()1—§+/ (Z! +1)dw, — Y7,
0

This implies R
2Wr =T + Yy + Yy,

which is a contradiction, because the right-hand side is stochastic while the
left-hand side is deterministic. One can interpret this example as follows:
Both agents care only about the relative wealth. Since the market price of
risk 6 is nonzero, there is some risk inherent in the model and each agent
wants to hedge against this risk. For any given strategy 72 € A, of agent 2,
the optimal strategy of agent 1is 7' = 72 +60 = 72 + 1 € A;. Analogously,
72 = ' +1 € A, is the best response of agent 2 to any given strategy
7t € A, of agent 1. By trying to hedge, the first agent transfers the risk to
the second agent, who then transfers it back to the first. Because of \; =1,

12



no agent reduces the risk, but instead each agent iteratively passes the buck
to the other. In the end, both agents break down so that there is no Nash
equilibrium. This counterexample can also be interpreted in the context of
copycat hedge funds, which try to imitate the strategy of a successful hedge
fund. If a hedge fund copies the strategy of another fund which itself mimics
the former fund, then no equilibrium can exist because the interdependence
mutually amplifies the strategies.

3.3 Agents with ordered constraints

Throughout this section, we assume II?' ;\; < 1 and that A; are linear sub-
spaces of R? satisfying
A1 DA 2D A,

We start with a counterexample for the case where two agents have different
constraints. The first agent copes with a bounded claim F} by choosing a
suitable hedging strategy. However, the second agent is affected by the first
agent’s hedging strategy, which makes the second agent break down.

Theorem 3.4. There exists a counterexample with n = 2, linear spaces
A1 D As and A Ay < 1 where there is no Nash equilibrium.

Proof. We take d = 2 (dimension of W), 0 = (2 x 2)-identity matrix, § = 0,
A; = {(z,z)|x € R}, Ay ={(0,0)}, ;1 =2/(w* + 1) (this choice will later
simplify computations; 7 denotes here the number 3.141 ... and not a strat-
egy), 12 = 1, F5 = 0, F} to be chosen later and A\; = Ay = 1/2. We obtain
for the corresponding BSDE that

1

v = ————
! 2(72 4 1)

\zP — ZPP P At + ZzHaw,, Y = R, (3.10)
1 e
dy? = —§!Zf\zdt + 2} AW, Yi = 1/ (ZoH 4+ Z9%) d(Wi +W3). (3.11)
0

The first component does not depend on the second, and has for any
bounded F} a unique solution (Y, Z') with [ Z'dW € BMO. This solution
is plugged in to solve for the second component. Similarly to the coun-
terexample presented in Section , we construct an I} such that Y2 explodes.
The difference to the first counterexample is that has a quadratic gen-
erator and depends on Z! via a dW- and not a di-integral.

We set F} := (7% + 1) logS(deWl)T for ¢ from Lemma @ with

T
logE(/(dW1> € 8™ and E{exp(ﬁijl/o gtthl)] =o00. (3.12)
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The BSDE ([3.10) has the explicit solution
Yi=(n+ 1>log€< / <dwl), 7V = (R 4+ 1)¢, 2 =0

From (3.11)) and (3.12)), it follows that

2 ]_ T 1.1 7T2 + ]. T
eYo :]E{@(p(z/ Z, d(th—i—Wf)ﬂ Z]E{exp( 1 / Ctde)} = 00
0 0
(3.13)

by conditioning on the o-field generated by W' and using Jensen’s inequal-
ity. Therefore, the coupled BSDE (3.10)), (3.11) has no solution and there

is no Nash equilibrium satisfying (3.3) by Lem. To see that there

exists no Nash equilibrium at all (even without l} we note that a can-
didate Nash equilibrium # € A must satisfy 7! = %(1, 1) (optimality
for agent 1) and 7% = 0 (trading restrictions of agent 2). But this gives
Vi = E[Us(= s [if 2(Z + 212 (W) + W2))] = —oo by (3.13). O

The trading constraints in the counterexample might look restrictive, but
it is possible to generalize the counterexample to higher-dimensionsional W,
while giving the agents more trading possibilities. For d > 2, one can de-
duce an analogous counterexample with A; = {(z,z,y1,...,vy4-3)|%, y; € R},
Ay ={(0,0,1,...,ya-3)|y; € R}; in that case, Y? satisfies

dy? = —%(]valf + |22 At + 22 aw,

d T
RN [exp (ng B Z/ Zt2,z‘ thz)] > E[exp(E[Yﬂg])],
i=3 V0

where G denotes the o-field generated by W and W?2.

Theorem shows that having A; as ordered linear spaces is not enough
to guarantee the existence of a Nash equilibrium. Even if the first agent does
not concern the relative performance, her choice of a hedging strategy for F}
may bankrupt the other agents. While the first agent can hedge against all
other strategies, her strategy may negatively influence the other agents and
ruin them. Assuming that the first agent wants to avoid the ruin of the other
agents, she might be willing to reduce her wealth a little bit. Continuing this
idea for the other agents, we come to the following relaxation of a Nash
equilibrium.

Definition 3.5. We say that there exists an additively approximated equi-
librium if for every e > 0, there is (7Y, ... ") € A such that for any 1,

‘/;ﬁe +e> V;wi,ﬁ'ﬁ’j# for all 7Ti c Az (314)
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A multiplicatively approximated equilibrium ezists if for every e > 0, there
is (791, ..., 7%") € A such that for any i,

FEIFL

11—V > V™ for all @ € A, (3.15)

Note that we use (1—¢) and not (14€) in (3.15)), because V; is negative. In
the literature, there exists the notion of e-equilibrium, which corresponds to
the situation where holds for a fixed € > 0, instead of all ¢ > 0. Given
the existence of a Nash equilibrium, calculating such a fixed e-approximation
instead of the true Nash equilibrium can be more efficient and easier to
implement; see for example Hémon et al. [§]. In our setting, we can relate
the notion of e-equilibrium to the aspect of solidarity. If the more powerful
agents are willing to deviate little from the expected utility associated to the
best response, then the other agents do not break down and they can even
find themselves “almost” optimal strategies in the sense of Definition [3.5]

Theorem 3.6. There exists an additively as well as multiplicatively approz-
imated equilibrium.

Because of its length, we present the constructive proof of Theorem [3.6|in
the Appendix, but give here a brief outline. Its idea is that for agent 7, only
the strategies of agents 1,...,7 — 1 really matter because she can hedge the
other strategies. Therefore, one starts to consider the first agent’s optimiza-
tion problem when the strategies of all other agents are zero, and constructs
an auxiliary strategy which leads to a deviation of at most € > 0 from the
optimum and whose wealth process is bounded. Then one builds an auxiliary
strategy for the second agent taking into account the first agent’s strategy.
To keep “almost” optimality for the first agent, her strategy has to be up-
dated. One iteratively continues with the third until the n-th agent. One
could slightly adapt the proof to show the existence of an approximated
equilibrium such that additionally the strategy for agent n is optimal, i.e.,
and hold for ¢+ = n also with € = 0. The underlying reason is
that agent n cannot negatively affect the other agents because her strategy is
hedgeable by the others. The following result says more about convergence
of approximated equilibria in the case of two agents.

Corollary 3.7. Assume n = 2 and let (ex)ren be a strictly positive se-
quence with limg_o €, = 0, and let for each k, 7% € A be an approxi-
mated equilibrium constructed as in the Appendiz (proof of Theorem with
e replaced by € ). Suppose that there exists a Nash equilibrium 7 € A with
HX’AT*’1 < where

_1
dnz Az’

|BM01(I@’) = sgp H Eg “XTﬁ*’l - thl

}BMol(I@’)

HXﬁ.*,l

7|

‘LOO
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with the supremum taken over all stopping times T valued in [0, T]. Then we
have limy_,oo V7" = V7" fori=1,2.

The proof of Corollary [3.7, which is based on the convergence of the
BSDEs related to V;** | is contained in the Appendix.

3.4 A glimpse of general constraints

We conclude the financial considerations by some results for general closed,
convex sets A;. We do not impose any restrictions on the relations of the A;.

3.4.1 Sequentially delayed equilibria

We first introduce a further relaxation of a Nash equilibrium.

Definition 3.8. We say that there exists a sequentially delayed equilibrium
if for any strictly positive sequence (eg)ken with limg_ o€ = 0, there is
(7*)ren C A such that for any k € N andi=1,...,n,

fhii ph—1j7i i gkl

Vi

f +e, > VT for all ™ € A;, (3.16)

where we set 7° = 0.

Roughly speaking, says that #%% is “almost” optimal (up to )
for agent ¢ when the other agents use the delayed strategies #*~197%. Defi-
nition would correspond to if 7*=1937% were replaced by #%77%. In
a way, the concept of sequentially delayed equilibria is opposed to that of
trembling-hand perfect equilibria. That notion, which has been introduced
by Selten [15], is a refinement of a Nash equilibrium. Roughly speaking, a
trembling-hand perfect equilibrium is robust against small deviations (“trem-
bling hand”). In contrast, a sequentially delayed equilibrium is a weaker no-
tion than that of a Nash equilibrium and gives a way of approaching a status
which can be acceptable for all agents. The idea behind Definition |3.8|is that
the delay makes the problem easier to handle and in the limit £ — oo, it
does not matter whether one has #%~197% or #%J7% in (3.16)). Before making
this statement precise in Corollary [3.10] we give an existence result.

Proposition 3.9. For any family (A;)i=1,.n of closed sets, there ezists a
sequentially delayed equilibrium.

Proof. Let (ex)ken be a strictly positive sequence with limg_ .o, € = 0. We
construct iteratively a sequence (7*)ren C A satisfying (3.16). Fix k € Nand
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ie{l,...,n}, set #° = 0 and assume that for any j € {1,...,n}, X7’
bounded. By Theorem 7 of Hu et al. [10], there exists p € A; such that
ﬂ.i ﬁ.k—l,j#l

sup V"~
TiEA;

~k—1,j#1%

= VPF
We define a sequence of stopping times by
= inf {¢ € [0,7] such that |X7| > (} AT, (€N

and set pﬁ) = ﬁll]]o T[]] e A; such that Xg“) = sz. Using that the ran-
Z i XT 7" is bounded, the a.s.-converging sequence

-1
(U (Xp —Fi— =4 Z#z AR ]))jeN is uniformly integrable by the same ar-

gument as above ((A.2)). Therefore, we have

. p(0) gk—1,j7i p® - /\z Ak=1.j p, kL7

Jim V; _151010E{U(XT F n—lZXT >] v, :
JFi

Choose L € N such that

ﬂ.k 1,5#1

(L) pk—1,j#i
Vip 7 Vp — e,

and set 7% := p(I) By construction, 1} is satisfied and X{ﬁkl is bounded.
The proof follows from iteratively using the above procedure. O]

Corollary 3.10. Let (7*)ren C A satisfy (-) Fiz i and assume that
there exists 7 € A with fT klth — fo 720 dW, a.s., and that both
U; (X”M“—n_1 Z#ZX” ]) cmdU( ] Z#ZX’T ’J) k € N, are uniformly
integrable. Then V7™ > V77 for all 7 € A; with bounded X7

Proof. Fix 7' € A; with bounded X% Using the uniform integrability, we
obtain both limy .. V777" = V77 and limy_o VATEH = T
The assertion follows from (|3.16|). O]

3.4.2 Models close to the martingale case

In the martingale case, where S is a P-martingale, 6 is zero. Then the strategy
7 = 0 is a Nash equilibrium by Jensen’s inequality if F; = 0 for all . The
idea behind the following result is that we still can find a Nash equilibrium
if we are not exactly in the martingale case, but in some sense, close to it.
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Proposition 3.11. Assume Il | \; < 1, that every A; contains zero and that
for any i there exists a constant ¢; such that

I R Y
E+_ Qtth— |0t| dt — C;
ni Jo 2n: Jo

for some sufficiently small €; > 0 depending on (n;)j=1,..n, (Aj)j=1,..n and
n. Then the BSDE has a unique solution (I',¢) with sufficiently small
sup, ||Ty — ¢z andm/g dWHBMO(]fD)' Defining #lo; = Py (gpt_l’z(g)) for
given in (@), w18 a Nash equilibrium.

o>

Proof. We first show existence and uniqueness of a solution of (3.7)) by apply-
ing Proposition 1 of Tevzadze [16]. To this end, we verify that the generator
is purely quadratic, i.e., there exists C' such that

e (@) = Pie M @) = e 0) = Bi(er ") | < C(lal + [bl) o — b
' 3 ' (3.18)

for all a,b € R™ % Setting @ = ¢; ""(a) and b = ¢; "*(b) and using 0 € A;,

we have that

a— B@P - - PO
(|a—P’ I+ b= F@)])|Ila - Fi@] - [5- P)]|
(la| +10])|a — b+ Pi(a) — P (b)|

< 2(|a| + |b])]@ — b|.

By Lemma 4.41 of Espinosa [6], ¢ is invertible and ¢! is Lipschitz-continuous
with a constant L depending on (A;);=1,.. ., and n. Therefore, we obtain
a — E| < Lla — b| as well as |a| < L|a| and |5‘ < L|b] using p~1(0) = 0.
This yields (3.18) with C' := 2L%. Proposition 1 of Tevzadze [16] now gives
existence and uniqueness of a solution (I, () of under the assumption
. Setting Z' = ¢~ (() — ;-0 and defining Y’ via , the pair (Y, Z)
solves the BSDE . Since deW € BMO (I@)) and 6 is bounded, [¢dW
is in BMO(P) and so is | Z dW because ¢! is Lipschitz-continuous. Hence,
the assertion follows from Lemma [3.2] m

4 About the scope of the counterexample

We now put the counterexample of Section [2| into a broader context by pre-
senting and discussing some related results.
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4.1 Limitations of the counterexample

In this section, we show that the counterexample works only if the depen-
dence of is quadratic in both Z! and Z2. If it is subquadratic in Z!
or Z2, one can always construct a non-exploding solution, even when the
dimension of Y is higher than two, with Y7 for j > 3 satisfying equations
analogous to . This is a consequence of the following two results.

Proposition 4.1. Let £ € L™, § be a predictable process with [ SdW in
BMO, and € € (0,2]. Then the one-dimensional BSDE
1
4y, — _(|gt|2—f n 5]242) dt+ Z,dW,, 0<t<T, Yr=¢ (41

has a unique solution (Y, Z) with (fOT | Z,|? dt) vz exp (supseo 7y [Yil) € L? for
all p € [1,00). The martingale [ ZdW is in BMO and Y is bounded.

Theorem [2.1| shows that the assertion is not true for € = 0. However, the
assertion still holds if | Z;|? in (4.1]) is replaced by c|Z;|* for some constant c.

This can be seen by multiplying the new BSDE with 2¢ and setting Z = 2¢Z
and Y = 2¢Y.

Proof of Proposition[f.1. Since [ 3dW € BMO, there is k > 0 such that

eloa(s [ wtu)|

by the John-Nirenberg inequality (Theorem 2.2 of Kazamaki [11]). We recall
that this inequality says

T
1
2 £
E[exp(k/T 5 dt)‘ T} = 1 _kQHfﬁd” HQBMO o 4.2)

for 0 <k <

< Q.
oo

K :=sup

T

m and any stopping time 7. Let p > 1 and use

plz]*c < p2/6/k2/6’1 + k|z|* forz €R

T p2/€
E{exp <p/ ’ﬁt|276 dt) ‘f7:| < KGXP<W> < 00. (43)

This implies by Corollary 6 of Briand and Hu [I] the existence of a unique
solution (Y, Z) of with (fOT |Zt|2dt)1/2, exp (supepo .71 |Yi]) € LP for all
p € [1,00). The solution satisfies ¥; = logE[eXp(j;T B>~ ds + &) |F] for
t € [0, T], which is bounded by . The BM O-property of [ Z dW now fol-
lows from considering over an interval [, T] and taking J,-conditional
expectations. O

to obtain
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We next give a completely analogous result to Proposition when (4.1))
is subquadratic in (; instead of Z;. However, its proof is different.

Proposition 4.2. Let £ € L™, ( be a predictable process with [ 3dW in
BMO, and € € (0,2]. Then the one-dimensional BSDE
1
dy; = —<|ﬁt|2 n §|Zt|2‘€> dt+ Z,dW,, 0<t<T, Yr=¢  (44)

has a unique solution (Y, Z) with (fOT | Z,|* dt) 2 exp (supseo 71 [Yil) € LP for
all p € [1,00). The martingale [ ZdW is in BMO andY is bounded.

Proof. Set ¢ := (4] fﬁdWH%Mo)_l/e. By defining Y := ¢,Y and Z := ¢, Z,
the BSDE (4.4) is seen to be equivalent to

1

1—e€
2c;

4V, = (el B+ s |Z ) At Zoaw,, 0T, V=g (45)

By the John-Nirenberg inequality 1} c fOT |3¢|* dt has an exponential mo-
ment of order 2¢”'. Therefore, Theorems 2.1 and 3.3 of Delbaen et al. [3]

imply the existence and uniqueness of a solution (37, Z ) to 1} in a suitable
class, and there exist constants ¢, and c3 such that

T
<Y, <c3+ ci’e logE[eXp (ci/ ]53]2 ds>
t

ft}, t€[0,7].

This shows by that Y is bounded, and so is Y for the solution (Y, Z)
of . To prove the BM O-property, we may assume that f Z dW is a true
martingale (otherwise we use a localization argument). From [td’s formula,
it follows that, for any stopping time 7,

T T
1
& — 2 :/ 227, th+/ 26 (—|6i* = 5122 +1Zi%) dt.

Since |Z;|?*7¢ < |Z;]* +1 and Y is bounded, we obtain that E[fTT | Z;|? dt‘]—}]
is bounded, which concludes the proof. O]

4.2 A second counterexample: resonance

In the counterexample of Section [2] explosion happens because the generator
of the second component depends quadratically on the control variables of the
first and second dimension of the BSDE. In view of Section 4.1} the explosion
can happen only if it is quadratic in both components. We next present
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another counterexample, where the reason for the explosion is different. In
this case, the components of the BSDE are mutually dependent, which leads
to an explosion and causes insolvability.

We take again dimW = d = 1 and consider the three-dimensional BSDE

dYtl = Zt1 thv Y; = 57 (46)
dY}? = — (|12} 1>+ |Z})?) dt + 2} AW, Y2 =0,
dY? = —4|Z2 > dt + Z} dW, Yi=0,

where the terminal condition £ € L* is given. In contrast to the first coun-
terexample, the generator of has no (quadratic) dependence on Z2. We
will see that the explosion here is related to the mutual dependence of
and . For a certain choice of £ € L®, Z! is big in some sense, and the size
is amplified by the interdependence of and , which finally leads to
a collapse of the whole BSDE system f. We call this phenomenon

resonance due to its analogy in physics.

Theorem 4.3. For some & € L™, the BSDE @f@ has no solution.

Proof. As in Theorem , we take £ = fOT ¢, dW, with ¢ given in Lemma [A.1

and satisfying £ € L and E exp(fOT ¢i|*dt)] = oco. We have Y,! = E[¢|F]
and Z' = ¢ by (4.6). From (4.7) and (4.8), it follows that

T
f 1
eY02+Y035</(ZQ+Z3)dW> :eXp</ <|Z}|2+;|Zf\2+§\Zf’|2—Zfo) dt).
T 0

Using —Z7Z} > —3|Z2|* — 1| Z}* and that ([ (Z* + Z*)dW) is a positive
supermartingale, we obtain by taking expectations that

T
i > E[exp (/ (12, ) + 3|12}) dt)] = o0.
0

This shows Y@+ Y = oo and that there cannot exist a solution to (4.6))—(4.8)
for £ = fOT ¢ dW; € L™ with ¢ given in Lemma [A.1] O

Remarks. 1) The reason for the explosion is that the possible solutions

to (4.7), (4.8)) amplify each other. Assume that (4.7)), (4.8) has a solution for
the Z! given above. From (4.7)), it follows that

]E{exp (/OT Z? thﬂ > e_YOQIE{eXp (/OT |Zt1|2dt)} = 0. (4.9)
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For any local martingale M, we have

1/2

Elexp(Mr)] = E[€(2M);* exp((M)7)] < Elexp(2(M)r)]
by Holder’s inequality, using that £(2M) is a positive supermartingale. Ap-

plying this to yields E [exp (2 fOT |Z}|?dt)] = oo. The combination with
gives

T ) T
E[expe/ VA thﬂ — e V02K [exp(Q/ \Zt2|2dt>] = 00,
0 0

and thus E[exp (3 fOT |Z}>dt)] = co. Analogously to , we obtain that
E[exp (3 fOT Z}dW,)] = oco. Proceeding iteratively like above, we deduce
]E[eXp(QL,c fOT Z? th)} = oo for every k € N, which implies that [ Z?dW
is not in BMO by the variant of the John-Nirenberg inequality stated in
Theorem 2.1 of Kazamaki [II]. As this procedure only shows that there
exists no solution (Y, Z) with [ ZdW € BMO, it is not enough for proving
Theorem but it gives intuition for the explosion.

2) We can interpret the counterexample in terms of financial economics.
Consider the following three agents:

e a bank, which is based in a country A, wants to achieve a value &;
e country A, whose economy depends on the bank’s portfolio fluctuation;
e country B, whose economy depends on country A, but not on the bank.

If we denote by Y the wealth development of agent ¢, the system f
can be understood as a toy model for this situation. The counterexample
tells us that if the bank wants to achieve a highly risky (but still bounded)
value &, the economies in both countries break down, because the bank’s risk
is transferred to country A and then leveraged by the dependencies between
countries A and B. O

Our counterexamples show that dimensions matter in stochastics. This
issue of dimensionality has already been pointed out by Emery [5]. While
the stochastic exponential of any bounded continuous martingale is a true
martingale, he gave an example of a bounded continuous matrix-valued mar-
tingale whose stochastic exponential is not a true martingale. Both Emery [5]
and our counterexamples show that integrability properties of stochastic pro-
cesses may crucially depend on the dimension, although Emery [5] and our
counterexamples are in completely different settings.
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4.3 An extension of the first counterexample

The counterexample presented in Section [ falls into the class of multi-
dimensional quadratic BSDEs with generators that have linearly dependent
components. For their definition, we take an n-dimensional £ € L*°, a vector
ay = (a1, ..., a1,) € R and a function g : [0, 7] x R™?¢ — R satisfying, for
some positive constant C,

lg(t,z)] < C(1+ trace(zz")) for (t,2) € [0,T] x R™.
Define the generator G : [0, T] x R™*¢ — R" by

G(t,z) == arg(t,2) = (ang(t,z),...,ag(t,z)) for (t,z) € [0,T] x R™*.
(4.10)
With the above elements, we analyze the BSDE

Take now a set of vectors {a;}i—2
orthogonal basis of R", i.e.,

-----

span{ay,...,a,} = R" and @; - a; = 0 for i # j. (4.12)

We set A = (ai;)i j=1...n, which defines an (n x n)-dimensional matrix whose
inverse A~! exists by construction.

We define a new system of BSDEs by applying A to the BSDE .
We set (U, V) = (AY,AZ) and h(t,z) = AG(t,z). Because of and
(4.12]), we have

hi(t,z) =a; - G(t,z) = a; - a1g(t,z) =0 for every i =2,... n.
Hence, for i # 1 the BSDEs for (U, V") are trivial and given by
AU} = ViAW, 0<t<T, Uk=a;-E.

Since £ € L™, a unique solution (U?, V) of the above equation exists by
It6’s representation theorem and it satisfies (U?, [VdW) € 8= x BMO.
However, the case ¢ = 1 is different. It leads to the BSDE

AU} = hy(t, Z) dt + VAW, = |ayPg(t, A7V) dt + VAW, 0<t<T,
Up=a-€. (4.13)

At this point, all (U?, V?) for i # 1 are determined. So (4.13) reduces to the
usual case of a one-dimensional quadratic BSDE. Its generator satisfies

lar?lg(t, AT'VE)| < C(L+ Hy + V'),
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with the positive process H representing a linear combination of quadratic
terms of V2 ..., V" such that [HdW € BMO. If the one-dimensional
BSDE can be solved, then so can the multidimensional BSDE .

The problem of solving boils down to the question of how random
H can be, and for this, we recall some existing results for one-dimensional
BSDEs. In Kobylanski [I12] and Morlais [13], existence and uniqueness are
obtained under the assumption that H is uniformly bounded. This assump-
tion allows to conclude that the solution is bounded and satisfies a BMO-
property. Unfortunately, the restrictions imposed by these results are too
strong for our BSDE (4.13).

The only viable options in the literature are Briand and Hu [I] and Del-
baen et al. [3]. The latter strengthens the result of the former by proving
uniqueness in a bigger class of solutions. Proposition 3 of Briand and Hu [I]
yields existence under the assumption E [exp (2(]2p fOT H,; dt)} < oo for some
p > 1. For our BSDE with f\/ﬁdW € BMO, exponential mo-
ments of fOT H, dt exist only under certain conditions and are implied by
the John-Nirenberg inequality . If || S vH dWH puo 1s small enough,
we can conclude that a unique solution (Y, Z) exists, Y is bounded and
[ ZdW is in BMO. Our counterexample of Section [2| demonstrates that
J VHdAW € BMO is not enough to guarantee existence of a solution, and

one really needs a further condition on the exponential moments of fOT H, dt.

Acknowledgments

We thank Nizar Touzi, Gilles-Edouard Espinosa, Ulrich Horst and Martin
Schweizer for stimulating discussions and helpful comments. Christoph Frei
gratefully acknowledges financial support by the French Decision Science
Project. This research of Gongalo dos Reis is supported by the Chair Finan-
cial Risks of the Risk Foundation sponsored by Société Générale.

Appendix

A.1 Auxiliary results

Lemma A.1. There exists ¢ € H}, with
T
/CdVV1 € S™ and E{exp(/ |Q|2dt>] = 0.
0
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Proof. The following construction is inspired by the proof of Lemma 2.7 of
Kazamaki [T1]. Define

t
1
M, = dwl, telo,T Al
t /0 m s [ ) ( )

so that (M;)o<t<y is a continuous martingale on [0, u| for every u < 7. We
set 7:=1inf{t > 0: |M;| > 1} and (; := Wﬁﬂ[[()ﬂ']]<t) so that | [ ¢dW?| is
bounded by ;7. It remains to show that E[exp(fOT |¢¢|*dt)] = co. For this,
we define an auxiliary function h : [0,00) — [0,T) by h(t) := T(1 —e™"),

which fulfills
MO T
ds=log ——— =¢ t 0 .
/0 s =l =t 1€ [0.00)

We set By := M), 0 <t < oo, implying that (B;)o<t<oo i an (Fh(r))o<t<oo-
Brownian motion. The random variable h™(7) is the (Fp())o<t<oo-Stopping
time when B first leaves [—1 1] From Lemma 1.3 of Kazamaki [11], it follows

that E[exp(";h_l(ﬂ)} = for all & € [0,7/2). Therefore, we obtain

cos(a)

slew( [ 6rar)] <Bleo (T ﬁdt)] — Efexp(Th1(n)]

1
= lim E[exp( h_1(7)>] = lim —— = 0.
o 1)2 2 a/7/2 cos() O

The result is unchanged if one replaces in the definition (A.1]) of M the

function s — \/% by another continuous function g : [0,7) — R which

satisfies fo 9(s)?ds = oo and [, |g(s)]>ds < oo for every t € [0,T). For
any given ( € 'ngd Wlth [ ¢dW?! € 8, there exists a constant ¢ such that

%Xp (c fOT |Ct|2dt)] < 00 by the John-Nirenberg inequality 1) Lemma
A

shows conversely that for any fixed constant ¢, there exists ( € H%d with
[¢dW?' € 8% and Eexp(c [ |¢2dt)] =

Lemma A.2. There exists ¢ € H}, with

2 1 T
logg(/g“dwl) €S> and Iﬁl{exp(7T 2_ / Qthl)} = 00.
0

Proof. Similarly to (A.1), we define M, = [ ﬁdwl for t € [0,T) and
set 7 = inf{t >0 : ’Mt — —logT t| > 1} and ( = F]IHOT]]( ). Be-
cause we have (M), = fot 7—ds =log 7= for t € [0,T), log&( [ (dW?) is
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bounded, and 7 is the first time that (M) leaves [1/e,e]. We recall the
function h : [0,00) — [0,7T") given by h(t) := T(1 — e™"), which is the in-
verse of ¢+ log % We set B; := M), 0 <t < 00, so that (B;)o<t<oo
is an (F())o<t<oo-Brownian motion. The random variable h~!(7) is the
(Fh(t))o<t<co-stopping time when the drifted (Fi))o<t<co-Brownian motion
(Br — t/2)0<t<oo first leaves [—1,1]. Lemma 1.3 of Kazamaki [I1] implies

Eq [exp (O‘;h—l(f)ﬂ _ Cosl(a) for all a € [0,7/2),

where 4@ (l B )

Q.= g1 = E(3M)_. For § > (7° +1)/8, we obtain

h=1(T)

T

e (5 [ )| = B[ ()

1
2

b, {W exp (071 (r) = S0, )|
> e V2B, [GXP((ﬁ - %WW))}

and hence

Erlexp(26),)] = Ep [ewﬁﬂ exp (ﬁ = dt)}

T
> ¢ ¥R {exp (6 — dt)]

=

so that Ep [exp (T4 fOT ¢ AW = Ep[exp (5 M,)] = oc. O

A.2 Proofs of Theorem [3.6] and Corollary
Proof of Theorem[3.0. Fix e > 0 to show (3.14]) and (3.15)). We assume € < 1

without loss of generality.

1. Step: Construction of an auziliary strategqy for agent 1.

We start by looking at an auxiliary problem for the first agent. By Theorem 7
of Hu et al. [10], there exists p € A; such that

sup E[U, (X} — [)] =E[U: (X} — F)].

pEAL
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We define a sequence of stopping times by
7 := inf {t € [0, 7] such that |X]| >k} AT, keN

and set p®) := p1 A, such that X2 = X7 . B Fy is bounded
p = plyory € Ay such that X, = XT . Because 7 1s bounde

and (Ul (Xf»ogth
bounded process (see the proof of Theorem 7 of Hu et al. [10]), the process
(Ul (Xf — Fl))0<t<T is of class (D). Hence, the sequence (U1 (ka — Fl))
converging almost surely is uniformly integrable and thus, we have

can be written as the product of a martingale and a

keN

Iim B0y (x5 - 7 )| = EB[U) (X - 7). (A.2)

Choose K € N such that

B[t (X3 - B)| = max {E[t2 (X} — )] — €, 2 L E[v(x2 - F)] 3

—€
For notational convenience, we set 71 := p) where 7+ stands for the
auxiliary strategy of agent ¢ in the j-th iteration.

2. Step: Construction of an auxiliary strategy for agent 2 and adaptation of
the first agent’s auxiliary strategy.

We now construct an auxiliary strategy 7(>!) for agent 2 in a similar way;
we simply replace n; by ny, Uy by Us, and F} by Fy + %X?“’U, which is
bounded by construction. Because there is interdependence between agents
1 and 2, we need to adapt the strategies by setting

At

1
(22) ._ (2,1) (12) ._ (1,1 (2,2)
m : 1—/\1/\2/(71—1)2% , =T +n_17r
to achieve that
222 R ap_cen o R oy jan o M e o
n—1 n—1 n—1

Since A;, A, are linear subspaces with 4; D A,, we have 73?2 € A, and
7'('(1’2) € Al.

3. Step: Construction of an auxiliary strategy for agent i and adaptation of
the auziliary strategy of agents 1,...,1 — 1.

Like above, we construct an auxiliary strategy 7% for the third agent,
replacing 7, by ns, U; by Us, and F} by F;+ %(X%ug) +X$(2’2)). To

A A2
account for the interdependence, we set A}, := % and define
T (n—-1)2
1
733) . - - GO
- ()‘1,2 + /\271))\3/(n —1)
7-‘-(273) = 7T(2’2) + )\?727-‘-(373)’ 77(173) = 7T(172) _'_ )\;7‘717-‘-(373)’
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achieving that

3,3 A3 1,3 2,3)) _ (3,1 A3 1,2 2,2
RO - 2 (509 4 70) = g0 - I (702 4 722,
S L S G CE) QRCE B B (E)
n—1 n—1 ’
03— AL (209 | 169) _ 02 - M2
n—1 n—1
Continuing iteratively like this, we finally obtain strategies 70" ... 7).

(The procedure works since we can solve in each step a system of linear
equations with non-zero determinant because of the assumption II7" | \; < 1.)

4. Step: Definition of 7€ and verification of and (3.15).

We set 77 := 70" € A; for all j. For fixed i, we have by construction that

- e 1, )\Z i Gyi—1 1
v :E[Ui(){;&”—n_lzx;( )—Fi)] > max {a; — ¢, ——ai .
j=1

A’L - J,i—1
where a; := sup E {Ui (X; — Z X%( R E)]
=1

PEA; n—1
~ sup E{U < Xp— S F)} ——
pedi Z ton-l ! ' mieA; ' '

i
Therefore, both (3.14)) and (3.15) are satisfied by this (7!, ... #"). O

Proof of Corollary[3.7. From (A.2), we obtain limg .., Vi7" = V/*| where

7ot = %11y, 1y for some stopping time 7%. We study the BSDEs related to

Vi . By construction and Theorem 7 of Hu et al. [10], we have
—exp(mY?) — e < VF* < —exp(nYy"),

where (Y®, Z(®) is the unique solution in (S, H3 ;) of the BSDE

w _ (10 may w1 2, Lo\ ®) 41
dy;" = 2772—3215 +%‘9t_Pt<Zt +%9t>‘ dt + 2,7 dW,

Y = M X5 4 By = M X 4 B

Because Fy and 6 are bounded, there exist constants ¢; and ¢; (not depending

on k) such that for any stopping time v, v® > AoEs [Xf}:’l F,] + 1 and

E([(n22® +0) dW)
E([ (n2® +6) dW)

T
L < exp (/ 0 AWy +m20 (Xi:’l_EP [X::J

]—“V})JFCQ)
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so that Holder’s inequality implies for any p, ¢ > 1 and some ¢3 > 0 (depend-
ing on p and ¢ but not on k or v)

: [5 (J (29 +0) W)}

—LIF,
E(f(mzZ® +6)aw)”

<) dh

. ﬁ.*,l 1 .
The aAss?mptlon HX HBMOl(IP) < nn enables us to choose p,q > 1 with
ap|| X7 ® < 4172)\2 Using HXTM HBMO1 = ”Xﬂ L(B)

tain from the variant of the John-Nirenberg mequahty stated in Theorem 2.1

of Kazamaki [I1] that

we ob-

Al 2l 1

]E]l} |:eXp (qan)\Q (XTk: o EI@’ [er ) ‘F } 1 — 4gpmahs HX ||BM01([@>) )
which shows that there exists p > 1 such that £( [(7.Z2" + 6) dW) satisfies
the reverse Holder inequality 2, (I@’) uniformly in k; compare . This im-
plies by Theorem 3.3 of Kazamaki [11] that the BMO (If”)—norm of [ Z® W
is bounded uniformly in k. One can now show similarly to the proof of The-
orem 2.1 of Frei [7] that limj_,. Yo(k) = YE)(OO), where (Y(*), Z(>9) is the
solution of the BSDE related to V,* . Therefore, we obtain

lim V5™ = — lim exp(n:Y5") = —exp(n2¥g™) = V57,

k—o0

which concludes the proof. n
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