
Calculating Probabilistic Distance to Solution in a
Complex Problem Solving Domain

Leigh Ann Sudol
Carnegie Mellon University

Pittsburgh, PA

leighann@cmu.edu

Kelly Rivers
Carnegie Mellon University

Pittsburgh, PA

krivers@andrew.cmu.edu

Thomas K. Harris
Tutor Technologies

Pittsburgh, PA

thomas@tutortechnologies.com

ABSTRACT
In complex problem solving domains, correct solutions are
often comprised of a combination of individual components.
Students usually go through several attempts, each attempt
reflecting an individual solution state that can be observed
during practice. Classic metrics to measure student perfor-
mance over time rely on counting the number of submissions
or focusing on time taken to complete the problem correctly.
These metrics are not robust to the correction of errors that
may increase problem solving time, and do not reflect topical
misunderstandings on the part of the student. In this paper
we propose a metric to measure the probabilistic distance
between an observed student solution and a correct solu-
tion. Students working in an online programming environ-
ment completed four practice problems. Their submissions
were then evaluated against a model of the algorithmic com-
ponents necessary for a correct solution. A Markov Model
was used to generate a problem state graph. Our proposed
Probabilistic Distance to Solution (PDS) metric was applied
to the graph to determine the distance, in program states,
from an observed program model to the model of a correct
solution. Results indicate that the PDS is useful in deter-
mining if an edit or student path is (a) typical of students
who have mastered content, and (b) productive in progress-
ing toward a solution. We offer implementation details of
PDS and implications for future work based upon current
observations.

1. INTRODUCTION
Modern data mining and classification techniques allow for
increasingly complex solution spaces to be automatically
modeled and assessed. For example, automated essay grad-
ing[10], mathematical proofs[1], and even complex computer
programs[3] can be analyzed for completeness and scored.
In these complex problem spaces, novices will often attempt
several unique edits and approaches in order to create a fin-
ished correct solution. Intelligent Tutoring Systems (ITS)
can be used to provide feedback for these attempts based on
the scoring criteria used for the assessment. Although the
models, feedback strategies and mechanisms used by each
domain vary, it is still important for researchers to assess
students’ progress and make comparisons between research
conditions in order to refine and improve such tutoring sys-
tems.

In complex problem solving spaces, such as natural language

production or computer programming, students may make
edits or submit attempts that are not directly related to the
specific learning outcomes of the tutoring task[4]. For ex-
ample, in computer programming, a student may struggle
with a compilation error, such as having a parenthesis out
of place, which is not reflective of their understanding of the
desired learning goal. Students may also produce submis-
sions that progress through multiple skills, creating a com-
plex path to solution, with many possible states[8]. We pro-
pose that normal indicators of student performance within
tutoring activities, such as time to completion or number of
submissions, are too coarse-grained to distinguish between
conceptual misunderstanding and syntactical or parsing mis-
takes that take time and multiple submissions to debug and
correct.

In this paper we propose a new metric, Probabilistic Dis-
tance to Solution (PDS) and describe its implementation
in assessing student progress on an introductory program-
ming assignment. We then apply this metric to a dataset
and highlight cases where PDS offers additional insight into
misconceptions and problem solving paths.

2. PERFORMANCE METRICS
Within-tutor measures of performance are sometimes used
instead of running pretests and posttests outside of the tu-
tor, when the creator of the tutor wants more immediate
learning feedback. Some within-tutor metrics have already
been created and used effectively in tutors; for example,
number of submissions and amount of time taken to get to
a correct state were used in a system focused on improv-
ing math scores[2]. These metrics are not as effective in
complex problem solving domains, however, due to the va-
riety of strategies used to solve problems and the difficulty
of merging them[5].

Other Intelligent Tutoring Systems use constraint-based mod-
eling to determine how well a program matches up to the
expectations of the problem; for example, Mitrovic built an
ITS for SQL that used over six hundred constraints to pro-
vide accurate and useful hints to students[7]. Le and Men-
zel also describe techniques for building constraint-based
tutors in ’ill-defined domains’, similar to the complex do-
mains we describe[6]. However, both of these approaches
require that the author of the ITS generate the constraints
by hand, which becomes very time-consuming when applied
to a broad domain (such as programming). The metric we
propose aims to improve on these models by examining more
fine-grained aspects of the problem states in a potentially

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357364535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

automatable way1.

3. THE DATA
During the fall of 2011 and winter of 2012, eighteen par-
ticipants solved four programming problems in an online
tutor[9] for computer science. The problems were presented
in the same order for each student so that comparison’s be-
tween students’ performances on problem X could be made
without the confound of which problems preceded it. Each
submission recorded data on the program’s text, start and
finish time, whether the attempt was successful, and the
feedback that was given. Participants’ submissions were
then evaluated under the model described above and were
coded appropriately. Participants generated 354 submis-
sions with 63 observed distinct model states.

3.1 Feature Space
For each program submission, the participant’s code was
translated to a vector of binary features representing the in-
clusion of semantic program features, correctness outcomes,
and compilation success. The semantic program features fo-
cuses on the inclusion of algorithmic components such as a
looping structure, decision structure, use of the loop con-
trol variable in an array access, and inclusion of a return
statement. The data collected represents a model of pro-
gramming as a time series within a high dimensional binary
space. The algorithms required by the four problems were
similar in terms of features required. This model of required
algorithmic elements was based upon the thesis proposal of
the first author, and employs identifying the use of semantic
structures as well as correctness testing using JUnit.

3.2 Two similar solutions
Figure 1 illustrates two participants’ paths from an empty
start state to a correct finished state. State A represents
code that has all of the correct algorithmic components, is
compilable, but does not return the appropriate value. State
B represents code that has all of the correct algorithmic com-
ponents, but does not compile, so it cannot check the final
return state. Participant 5 corrected a sign error (step 2),
then a syntax error (step 3), and finally another sign error
(step 4), which resulted in a correct solution. Participant
12, on the other hand, initially submitted code that did not
contain a return statement, indicating a misunderstanding
about how information is communicated back from the func-
tion. State C represents an observed model state where three
of the features are marked incorrect for the submission. The
participant then made a small change resulting in the same
model state for the code (step 2), then added a return state-
ment based on a compile message (step 3), and finally fixed
another compile error and submitted a correct solution (step
4). Although these two participants have the same number
of submissions, the reasons for and the nature of the sub-
missions are very different and expose a misconception by
Participant 12.

Because each submit may represent multiple edits or steps
in the problem solving process, simply counting the number
of submits as a measure of errors across steps is not informa-
tive enough to express the difference between students who
make errors with regard to the learning goals of the activity,

1Automation of this model’s generation will be done in up-
coming work, as proposed in [9].

S
A

C
B F

1

1
2

3
4

2
3

4

Participants

 #5

 #12

Figure 1: Comparing two student paths - Problem 2

and errors that do not inform measures of desired learning
outcomes.

3.3 Traditional Measures of Performance
Students tended to reduce overall time taken to solve prob-
lems as they moved through the set of problems (see Table 1,
where SD is the standard deviation for the indicated prob-
lem). Students were performing think-aloud protocols while
completing the problems, making the time to submit slightly
exaggerated due to verbalization.

Problem # Mean/Median Min Max SD
1 4.06 / 3 1 14 3.13

of 2 7.44 / 4 1 49 11.35
Submits 3 4.56 / 2 1 23 5.71

4 3.61 / 3 1 9 2.45
1 625 / 452 93 2121 510

Overall 2 571 / 364 134 1795 490
Time 3 437 / 331 103 1438 349
in Seconds 4 363 / 315 53 1199 279

Table 1: Traditional Statistics for Student Data

The ability level of individual participants varied greatly,
with some participants submitting final solutions with min-
imal modifications from their first attempt, while other par-
ticipants struggled and progressed through multiple incor-
rect model states before arriving at a correct solution. In-
dividual participants were consistent in their performance
across problems either doing well or struggling with all of
them. The traditional measurement metrics can be used to
separate participants into two groups: high performers (stu-
dents who were able to quickly solve the problems), and low
performers (students who needed time and several attempts
to get a problem right).

Of the seven students requiring more than six submissions to
solve at least one problem, only two averaged fewer than six
submissions per problem. These seven students also tended
to take more than 500 seconds (8.33 minutes) overall to solve
their problems, apart from the two mentioned above, who
have individual outliers above that line. This disjoint group-
ing suggests that we can subdivide the low performing group
into students who performed uniformly badly and students
who struggled only with a specific problem.

The eleven high performers all averaged four or fewer sub-
missions to reach a correct answer, and all clustered under
an average of 400 seconds (6.66 minutes), with the exception
of one student who took nearly eighteen minutes to finish
the first problem, but only needed to submit once.

4. PROBABILISTIC DISTANCE TO
SOLUTION

In order to draw generalizations about how program states
correspond to student performance and other latent factors
such as learning, we aggregated all student submission paths
for each problem into a network (see Figure 2). The network
nodes S1 · · ·Sn−1 are possible program states with an end
state node E, and the edges are the observed transitions
between states.

For each node, we use our observations to compute a Max-
imum Liklihood Estimate (MLE) transition probabilities to
every other node. Given the number of observed transitions
from state x to state y (Tx,y), we estimate the probability
of being in state y at time t, with the MLE:

p̂(Sy(t)) = P (Sy(t)|Sx(t− 1)) =
Tx,y∑
i

Tx,i
(1)

This is a equivalent to a Markov chain estimate with a 1-
state history.2

By modeling each edge as a transition probability and dis-
tance between states, we use a set of linear equations to
calculate a mean distance from each state to the end (suc-
cessful completion) state. With

• n− 1 non-terminal states S1 · · ·Sn−1 and an end state
E,

• and with each state S having transition probabilities
Ps,1 · · ·Ps,n−1 and Ps,e,

• and transition distances Ds,1 · · ·Ds,n−1 and Ds,e,

a system of equations for the mean distance to the end state
de(S) is:

de(S1) =

[
n−1∑
s=1

P1,s(D1,s + de(Ss))

]
+ P1,eD1,e (2)

de(S2) =

[
n−1∑
s=1

P2,s(D2,s + de(Ss))

]
+ P2,eD2,e (3)

... (4)

de(Sn−1) =

[
n−1∑
s=1

Pn−1,s(Dn−1,s + de(Ss))

]
+Pn−1,eDn−1,e (5)

de(E) = 0 (6)

For the case where we are interested only in the mean num-
ber of submissions to the end state, each Dx,y = 1, and the
calculation simplifies to the system of dot products:

2We believe that the student’s state transitions will be bet-
ter represented by a higher-order Markov process; however
our current data set is too small to provide appropriate
power for more than a first-order analysis.

de(S1) = ~P1 • de(~S) + 1 (7)

de(S2) = ~P2 • de(~S) + 1 (8)

... (9)

de(Sn−1) = ~Pn−1 • de(~S) + 1 (10)

de(E) = 0 (11)

There are several variations on the algorithm that we would
like to explore, given a larger dataset with more statical
power. In particular, these variations include treating state-
features differently, so that transitions between states that
differ in particular features (e.g., compilability) will be able
to indicate different latent variables of the students, (e.g.,
example concept understanding).

5. APPLYING PDS
The PDS metrics accompanied by the transition graph are
rich sources of information about the paths that participants
pursued in order to arrive at a correct solution. Figure 2
includes a table illustrating the observed model states in the
binary vector, as well as the PDS for each state. In problem
4, S56 is the solution state and S0 the initial starting state.
Before even evaluating the student paths, we can observe
that an additional state, S63, was also a terminal state for a
participant. This participant located a bug in the evaluation
system that has since been corrected.3

By looking at the PDS combined with the Program State
Graph (PSG) we can identify more productive edits by par-
ticipants. For example one participant’s first submission was
observed as S55 (PDS 2.99), and next state was S57 (PDS
4.43). This edit would be less productive as it resulted in a
transition to a state with a greater probabilistic number of
submits required to obtain a correct solution.

With the possibility of including terms in the algorithm for
syntactic but not model changes (i.e. two states that are
identical except for a compilation error would not be counted
as a full step), PDS can be adapted to focus on model state
transitions that indicate misconceptions or other model-based
goals of the data miner.

6. CONCLUSIONS
Within these early results, we have already identified model
states on productive and unproductive PDS paths. Using
the actual PDS values we can determine if a student is mak-
ing a productive edit, engaging in either guessing behavior,
or pursuing a misconception. An edit resulting in an ob-
served state with a higher PDS than the prior submission
indicates a move away from a correct answer.

These values can be invaluable to tutor designers as they
seek to develop feedback and support tools for complex so-
lution domains. Within computer programming tutors, the
PDS could offer implications for more-than-compiler sup-
port, and perhaps even prompt the introduction of a similar
worked example or code comprehension problem highlight-
ing the incorrect features of the model.

3The bug was identified as a part of the think aloud protocol,
however the PDS and Student Program States Graph would
have identified the bug for the tutor designers as well.

Figure 2: Student program states for problem 4. Table columns Fx are binary program features. Table rows Sx are observed
combinations of those features in program submissions. Only observed states (nodes) and transitions (edges) are shown. Node
self-transitions also exist in the model, but are not shown here. The thicknesses of the edges are proportional to the log of
observed transitions in the data. The lengths of the edges are arbitrary and do not relate to the model.

Although tested against data from a computer program-
ming dataset, the authors believe that the PDS metric could
be valuable across many domains with complex solutions
demonstrating multiple skills. Future work is planned to
use the PDS metric on a larger dataset to extract common
paths and evaluate differences between tutoring conditions.

7. ACKNOWLEDGEMENTS
This work was supported through the Program for Inter-
disciplinary Education Research (PIER) at Carnegie Mellon
University, funded through Grant R305B040063 to Carnegie
Mellon University, from the Institute of Education Sciences,
US Department of Education. The opinions expressed are
those of the authors and do not represent the views of the In-
stitute or the US Department of Education. We would also
like to thank Dr. Christy McGuire of Tutor Technologies for
her assistance in preparing this manuscript.

8. REFERENCES

[1] Tiffany Barnes and John C. Stamper. Automatic Hint
Generation for Logic Proof Tutoring Using Historical
Data. Educational Technology & Society, 13(1):3–12,
2010.

[2] Mingyu Feng, Neil T. Heffernan, and Kenneth R.
Koedinger. Predicting State Test Scores Better with In-
telligent Tutoring Systems: Developing Metrics to Mea-
sure Assistance Required. In Proceedings of the 8th In-
ternational Conference on Intelligent Tutoring Systems,
pages 31–40, 2006.

[3] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and
Otto Seppälä. Review of Recent Systems for Automatic
Assessment of Programming Assignments. In Proceed-
ings of the 10th Koli Calling International Conference
on Computing Education Research, pages 86–93, 2010.

[4] Matthew C. Jadud. A First Look at Novice Compilation
Behaviour Using BlueJ. Computer Science Education,
15(1):25–40, 2005.

[5] H. Chad Lane and Kurt VanLehn. Intention-Based
Scoring: An Approach to Measuring Success at Solving
the Composition Problem. In Proceedings of the 36th

SIGCSE technical symposium on Computer science ed-
ucation, pages 373–377, 2005.

[6] Nguyen-Thinh Le and Wolfgang Menzel. Using
Constraint-Based Modelling to Describe the Solution
Space of Ill-defined Problems in Logic Programming. In
Advances in Web Based Learning (ICSL 2007), pages
367–379, 2007.

[7] Antonija Mitrovic. An Intelligent SQL Tutor on the
Web. International Journal of Artificial Intelligence in
Education, 13(2-4):173–197, 2003.

[8] James Spohrer, Elliot Soloway, and Edgar Pope. A
goal/plan analysis of buggy pascal programs. Human
Computer Interaction, 1:463–207, 1985.

[9] Leigh Ann Sudol. Deepening Students’ Understand-
ing of Algorithms: Effects of Problem Context and
Feedback Regarding Algorithmic Abstraction. Carnegie
Mellon Thesis Proposal, 2011.

[10] Salvatore Valenti, Francesca Neri, and Alessandro Cuc-
chiarelli. An Overview of Current Research on Auto-
mated Essay Grading. Journal of Information Technol-
ogy Education, 2:319–330, 2003.

