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Abstract. Peer-prediction mechanisms elicit information about unverifiable or subjective
states of the world. Existing mechanisms in the class are designed so participants maximize
their expected payments when reporting honestly. However, these mechanisms do not account
for participants desiring influence over how reports are used. When participants want the
conclusions drawn from reports to reflect their own opinion, the inference procedure must be
subjected to incentive-compatibility constraints to ensure honesty.

In this paper, I develop mechanisms without payments for discerning the true answer to a
binary question, even in the presence of a false consensus. I first characterize all continuous,
neutral, and anonymous mechanisms in this setting that can be implemented in interim-
rationalizable strategies. Using this representation, I optimize across the class of mechanisms
for accuracy in distinguishing the true state. Because the mechanism does not require knowl-
edge of the distribution of agent types and is neutral between both outcomes, it can serve as
a test for bias in the surveyed population.

1 Introduction

Polls are a standard part of modern life: students rate teacher quality, websites such as

Rotten Tomatoes or Metacritic aggregate movie reviews, economists weigh in on the effects

of stimulus, viewers “like” videos on YouTube, customers rate the helpfulness of tech sup-

port in online questionnaires, and so on. While some polls come down to a purely personal

preference, many intend to collect subjective judgments about an objective “ground” truth.

A question like “Did the American Recovery and Reinvestment Act of 2009 increase US

employment by the end of 2010?” is true or false independent of the opinions of economists,

but without an answer handed down from the heavens, discovering the truth of the mat-

ter depends on subjective judgments about counterfactuals, the validity of various models,

and statistical methodology. Unless someone specializes in macroeconomic estimation them-

selves, the consensus of macroeconomists is the obvious place to turn for answers to this

question.

Unfortunately, consensus might fail to reveal the truth if participants are biased. Poll

results alone cannot distinguish between a consensus based on solid evidence and one fueled

by other motives. Response bias or selection bias in the polling process can also skew

results. If a means of discovering the truth in the presence of a false majority was available,

it could defend legitimate consensuses from accusations of bias, overturn illegitimate ones,

and mitigate concerns about selection bias.



The Bayesian truth serum of Prelec (2004) is one possible solution to this problem. In

addition to encouraging honesty in Bayes-Nash equilibrium, the average scores assigned by

the mechanism can identify the true answer even when the majority is wrong (Prelec and

Seung, 2007). The Bayesian truth serum is one of many peer-prediction mechanisms devel-

oped in the last decade for eliciting judgments from strategic agents about questions without

external verification. Existing peer-prediction mechanisms encourage honesty through pay-

ments, assuming participants have no stake in the conclusions drawn from a poll. However,

even if no direct conflict of interest exists, participants often want the final result to reflect

their sincerely held personal opinion. To account for desires for influence, the mechanism

design problem must model the inference procedure used to assess reports.

Adjusting payments for agent preferences over inferences in an existing mechanism like

the Bayesian truth serum is not going to be a simple task though1. In contrast to, say, an

auction design setting where money has a clear connection to allocation preferences, it’s not

obvious how poll results trade off against payments. Agents with the same judgment might

vary wildly in the amount they’d give up for influence. Besides posing modeling difficulties,

adequate payments might be infeasible due to ethical concerns, transactions costs, or budget

constraints.

To address these challenges, I investigate peer-prediction mechanisms for evaluating bi-

nary propositions without payments, assuming agents maximize the expected support given

to their opinion by the mechanism. In order to serve as a test for bias in the population,

a mechanism must be neutral between both positions, without built-in assumptions about

the likelihoods of opinions. For robustness, mechanisms should not depend on a precise

specification of how higher-order beliefs form nor presume agents have common knowledge

of the belief-formation processes, reflecting the detail-free approach advocated by Wilson

(1987). Implementation in dominant strategies or ex-post equilibrium are common means of

avoiding dependence on common belief systems, but these concepts are too strong for this

setting. As suggested by the name “peer-prediction,” participants will submit predictions of

the opinions of others in addition to their own opinion. Complete independence from beliefs

about other participants would render the mechanism trivial. Instead, I consider imple-

mentation in interim rationalizable strategies, so that honest reporting survives successive

elimination of strategies that are never interim best-responses.

I first show that to be implementable in interim-rationalizable strategies, a neutral and

anonymous mechanism with real-valued, continuous output must have a specific form, up

to the choice of two functions. Using this representation, I then optimize over the class

of mechanisms for accuracy in predicting the true state, assuming more agents hold a

particular opinion when it is correct and that, on average, agents predict the opinions

of others more accurately when their own opinion is correct 2. The resulting mechanism

1 Boutilier (2012) provides a partial answer for how to adjust payments for scoring rules, where the true
answer is eventually revealed, to compensate an agent for their own interest.

2 A weaker condition than agents having common knowledge of the true opinion likelihoods and updating
on their own opinion from an arbitrary prior.



dominates majority vote in predictive accuracy, producing more accurate predictions for all

opinion likelihoods without requiring any additional input from the mechanism operator. I

also consider approximately incentive-compatible mechanisms for further improvements in

accuracy.

1.1 Related Literature

Peer-Prediction Mechanisms Scoring rules (Brier, 1950; Good, 1952) are a well-known

means of eliciting probabilistic beliefs. Scoring rules pay agents conditional on their response

and the eventual realization of the truth so that, in expectation, the agent maximizes

their payment by giving their true belief. Peer-prediction mechanisms eliminate the need

for the truth to be exogenously revealed as with scoring rules. Rather than conditioning

payments on the actual outcome, payments depend on how agents’ answers compare to

one another. Once free of dependence on external verification, the principal can collect

information on a substantially wider scope of questions, such as events in the distance

future, counterfactual events, or vaguely defined and subjective information. Motivated by

the problem of soliciting feedback about product quality online, Miller et al. (2005) develop

a mechanism where agents tell the truth in Nash equilibrium, assuming the principal knows

the common prior of participants. Prelec (2004)’s “Bayesian truth serum” demonstrates

honesty can be generated in equilibrium even when the principal has no knowledge of

the common prior or signal likelihoods, although the result holds only for a sufficiently

large number of participants that depends on the unknown prior. Witkowski and Parkes

(2012) construct a variant of Prelec’s mechanism which is incentive compatible for finite

participants in the case of binary questions.

Information Elicitation With Expert Preferences The principal-agent literature on

elicitation centers around how information transmission is limited by conflicts in preferences.

The classic example is Crawford and Sobel (1982), done in the case of a single expert.

Groups of imperfectly informed experts have been considered by Austen-Smith (1993);

Wolinsky (2002); Battaglini (2004); Gerardi et al. (2009), among others. Of these, Gerardi

et al. (2009) has a setting closest in spirit to this paper. The preferences of experts are

private information, transfers are not present, and the state of the world is never revealed.

The mechanism induces honest reporting by randomly selecting one expert and distorting

the decision in their favor if their reported signal agrees with the majority, approximately

implementing almost any social choice function, in contrast to this work which optimizes

for the most accurate output function.

A series of papers by Glazer and Rubinstein (2001, 2004, 2006) are among the few

to derive statistical-optimal mechanisms in persuasion games, maximizing the probability

the principal will be convinced of the truth. In their models, agents have fixed and known

opinions and claims can be partially verified.

The political economy literature has studied information aggregation in elections and

committees. Austen-Smith and Banks (1996) demonstrate the difficulties that can arise



when voters act strategically and condition their vote on being pivotal. Feddersen and

Pesendorfer (1997) show how strategic behavior becomes insignificant in sufficiently large

electorates. Morgan and Stocken (2008) study information transmission through polling.

They find polls which do not account for strategic behavior are biased and have deception

margins of error. New estimators are constructed to account for strategic behavior.

2 Design Setting

The state ω ∈ {A,B} denotes a binary property about the world, such as whether global

average temperature will increase by more than four degrees over the next century, which

of two potential candidates is most likely to win against the incumbent in an election, or

whether Rocky Marciano would beat Muhammad Ali in a boxing match (as depicted in the

fictional match The Super Fight).

The respondent pool contains n agents. Each individual i has an opinion xi ∈ {a, b}
about the state and a prediction pi ∈ (0, 1) about the percentage of other respondents

who hold opinion a. In a slight abuse of notation, let xi also be an indicator variable that

participant i has opinion a where convenient. Let na =
∑

i xi be the number of participants

stating opinion a, nb = n−na be the number of participants stating opinion b, and x̄ = na/n

be the proportion of respondents with opinion a. Opinions and predictions are private

knowledge.

Opinions are independent conditional on the state, with likelihoods qA = Pr(xi = a |ω =

A) and qB = Pr(xi = a |ω = B). The likelihoods satisfy qA > qB, so opinions are correlated

with the truth. Under this condition, support for a proposition tends to be larger when it’s

true, although those in support could be in the minority on average regardless of the state.

For binary states and opinions, correlation is sufficient to ensure the Bayesian posterior

belief in a state increases from the prior belief after observing the corresponding opinion.

Predictions pi of the opinions of others are independent conditional on opinion xi. Let

Fa and Fb be the distributions of predictions for those with opinions a and b respectively.

Agents’ beliefs about the opinions of others are not required to be consistent with Bayesian

updating on their opinion from an common or random prior. Instead, predictions satisfy a

weaker condition that individuals are more accurate predictors of the opinions of others when

their own opinion is correct. In other words, knowledge of the state conveys greater meta-

knowledge about how many others know the state. The precise sense in which agents have

better conditional meta-knowledge depends on the metric or divergence used to measure

accuracy:

Definition 1 (Meta-knowledge in d). Agents have meta-knowledge in d if the prediction

distributions Fa, Fb and opinion likelihoods qA, qB satisfy

E[d(qA, p) | p ∼ Fa] < E[d(qA, p) | p ∼ Fb]
E[d(qB, p) | p ∼ Fb] < E[d(qB, p) | p ∼ Fa]



The choice of metric only matters when agents significantly depart from Bayesian ratio-

nality. Suppose each agent has fixed conditional predictions pia and pib when agent i holds

opinion a and b, respectively, such that qB ≤ pia < pib ≤ qA. This is immediately implied by

agents being Bayesian and updating on their own opinion. Then the meta-knowledge as-

sumption holds for all metrics since Fa first-order stochastically dominates Fb and each has

support strictly contained in [qB, qA]. The meta-knowledge condition will only be used when

evaluating mechanisms for predictive accuracy, not for guaranteeing incentive-compatibility.

Mechanisms will collect opinions and predictions from participants and output a “test

statistic” S(x, p) ∈ R. Let S be defined so that S > 0 indicates evidence in favor of A

and S < 0 evidence in favor of B. The principal’s objective is to find a test statistic which

maximizes the ex-ante chance of favoring the correct state in the output of the induced

mechanism. If the principal knew the true opinion likelihoods qA and qB, the optimal decision

rule takes the form of a likelihood ratio test, as expressed by the Neyman-Pearson Lemma.

In this case, the predictions are ancillary and yield no additional information about the

state. However, without conditioning on the likelihoods, the meta-knowledge assumption

can be used to identify the state by comparing the empirical distribution of opinions to the

predictions.

Test statistics under consideration will be neutral and anonymous so the mechanism

doesn’t presume participants are biased in a particular direction:

Definition 2 (Neutrality). A test statistic S(x, p) is neutral between states if relabeling

states A and B only changes the sign of S, i.e. S(x, p) = −S(1− x, 1− p) for all x and p.

Definition 3 (Anonymity). A test statistic S(x, p) is anonymous if relabeling agents does

not change S, i.e. S(x, p) = S(σ(x), σ(p)) for all permutations σ.

Agent’s preferences are linear in S, signed in favor of their own opinion, so agents with

opinion a want S to be as high as possible in expectation, while agents who hold opinion

b want S is be as low as possible. This correlated private-value model allows flexibility

in interpreting opinions as signals or preferences. An expert might desire to be persuasive

because she sincerely thinks her opinion is correct or because that decision would benefit

her personally. Whatever the precise motive, opinions are held tightly enough that the

agents do not revise them upon learning the opinions of others in the pool. This seems like

a plausible description of many expert judgments, where exposure to the views of others

could have played a large initial role in shaping the agent’s opinion, but additional exposure

has negligible effect after a basic level of familiarity.

If two reports give the same expected utility for an agent, it will sometimes be convenient

to break ties in ensure strict preference rather than indifference. In particular, I assume

agents are partially honest :

Definition 4 (Partially Honest Preferences). Agents are partially honesty if they pre-

fer reports with their true opinion xi when they would otherwise be indifferent.



This condition seems natural to this setting, with agents wanting to endorse their own

opinion, although this is a second-order concern to influence the mechanism output. Lexico-

graphic preferences for honesty can substantially ease implementation requirements (Dutta

and Sen, 2012; Holden et al., 2013), but will primarily allow constraints to bind exactly

here, rather than carry around an additional small incentive for strict preference, and will

only apply to a small number of types.

3 Rationalizably-Implementable Test Statistics

Mechanism design problems entail finding a procedure for collecting messages from agents

and aggregating the reports into the desired outcome for each type profile, while respecting

the incentives of each participant. A general mechanism M = (M, g) consists of a space of

message profiles M and an outcome function g : M → A, where A is the set of possible

outcomes. A mechanism implements S when the outcome of the induced game under some

solution concept matches S. Peer-prediction mechanisms have a message space where agents

report an opinion and a probability distribution over the opinions of others.

The Bayesian truth serum (BTS) is a leading example of a peer-prediction mechanism,

with truth-telling as a Bayes-Nash equilibrium for sufficiently large groups of payment

maximizers. With two answers, the average difference in payments to each agent is

SBTS(x, p) = ln

(
x̂−i
p̄−i

)
− ln

(
1− x̂−i
1− p−i

)
+

n∑
i=1

(
xi
na
− 1− xi

nb

)(
x̄−i ln

(
pi
x̂−i

)
+ (1− x̄−i) ln

(
1− pi

1− x̂−i

))
s.t. x̂−i =

(
1 +

∑
j 6=i

xj

)
/n, p̄−i =

(∏
j 6=i

pj

) 1
n−1

,

1− p−i =
(∏
j 6=i

1− pj
) 1

n−1

which can distinguish the true answer asymptotically, even with in the presence of false

consensus (Prelec and Seung, 2007). However, if an agent cares about this quantity directly,

honesty is no longer optimal. Notice how an agent can make SBTS arbitrarily low by report-

ing xi = a and pi close to 1 or arbitrarily low by reporting xi = b and pi close to zero. If

payments are involved, these strategies would require the agent to make an arbitrarily large

payment to the mechanism, partially offsetting the desire for influence. Without payments,

BTS becomes highly manipulable.

Additionally, BTS depends on agents sharing a common prior. While common priors are

often singled-out as unrealistic, a possibly more concerning feature is that agents receive

a single signal with agreed-upon conditional likelihoods. Realistically, each expert has seen

evidence of various levels of strength that he may or not have updated on properly. While

I assume agents hold probabilistic beliefs used to calculate expected utilities, the model



should remain agnostic about why agents hold the beliefs they do and whether those are

justified. Accommodating non-Bayesian agents points to implementation in rationalizable

strategies, allowing agent to hold any conjectures about the types and strategic choices of

others.

The robust mechanism design literature also suggests rationalizability as a relevant so-

lution concept. Even if we were confident players have common knowledge of each other’s

priors, small violations of this assumption have the potential to cause large changes in

mechanism outcomes. Oury and Tercieux (2012) identify implementation in Nash equilib-

rium on some type space and for type spaces “close” to the original as nearly coinciding

with implementation in rationalizable strategies.

Since players are making predictions of the opinions of others, strategies should be

rationalizable at the interim stage of the mechanism, when players know their own type, but

not the types of other players. Players can have any conjectures about the types and actions

of other consistent with their own pi, including correlated conjectures. Interim (correlated)

rationalizability characterizes what is possible under common certainty of rationality in

incomplete information settings. For a detailed development of this solution concept, see

Dekel et al. (2007). I will rely on the following definitions:

Definition 5 (Interim Rationalizability). Given a mechanism M = (M, g), strategy

mi is interim rationalizable for agent i of type (xi, pi) if mi survives the iterated deletion of

strictly interim dominated strategies, where beliefs about the types and strategy choices of

other agents can be correlated. Let the set of all interim rationalizable strategies for player

i of type (xi, pi) be BMi (xi, pi).

Definition 6 (Interim Rationalizable Implementation). Mechanism M = (M, g)

implements S in interim rationalizable strategies if every profile of interim rationalizable

strategies m for type profile (x, p) satisfies g(m) = S(x, p).

As shown in the following theorem, all neutral, anonymous, and continuous test statistics

S implementable in interim rationalizable strategies for given n have a specific functional

form, up to functions κ and ξ on the unit interval. In this characterization, the base score

κ represents the support for A based solely on the proportion of agents endorsing it. The

base score is adjusted by differences of prediction scores for each agent, signed according

to their opinion. The base score will need to have sufficient slope so reports with a false

opinion are interim dominated for each agent. Conditioning on each player always wanting

to honestly reveal their true opinions, agents will want to give their true prediction as long

as their marginal influence is a proper scoring rule for the proportion of a endorsements. The

function ξ weights prediction scores, controlling the magnitudes of rewards and punishments

for prediction accuracy in each region of the unit interval.

With this representation, the entire class of rationalizably-implementable mechanisms

can be optimized over with minimal constraints. The differences in κ should be just large

enough to offset players’ incentives to misreport, so attention can be restricted to the case

when the differences equal f . I will refer to test statistics of this form as net score statistics.



Theorem 1. A continuous, neutral, and anonymous test statistic S for n participants is

implementable in interim rationalizable strategies only if S can be represented as

S(x, p) = κ(x̄) +
∑
i:xi=a

∫ pi

0
(x̄−a − t)ξ(t) dt−

∑
i:xi=b

∫ 1−pi

0
(1− x̄−b − t)ξ(t) dt (1)

s.t. x̄ = na/n, x̄−a = (na − 1)/(n− 1), x̄−b = na/(n− 1).

for Lebesgue-measurable ξ : [0, 1]→ R+ and κ : [0, 1]→ R such that

1. κ is negatively symmetric around 1/2, i.e. κ(1/2 + ε) = −κ(1/2− ε) for all ε and

2. there exists z1, z2 ∈ [0, 1] such that ∀m ∈ {0, . . . , dn/2− 1e},

κ

(
m+ 1

n

)
− κ

(m
n

)
≥ f

(m
n

)
where

f
(m
n

)
= max

{
−
∫ z1

0

(
m

n− 1
− t
)
ξ(t) dt

−
∫ 1

0

(
m

n− 1
− t
)
ξ(t) dt−

∫ z2

0

(
n− 1−m
n− 1

− t
)
ξ(t) dt

}
.

This representation is sufficient for full implementation if the bound in condition (2) holds

with strict inequality or agents are partially honest.

4 Approximately Incentive-Compatible Test Statistics

While rationalizable implementation dictates summing the prediction scores of each partici-

pant, identifying the state according to the meta-knowledge assumption suggests comparing

the average prediction quality of each side. Consider the following modification of the net

score statistic, which I will refer to as average score statistics:

S(x, p) = κ(x̄) +
1

na

∑
i:xi=a

∫ pi

0
(x̄−a − t)ξ(t) dt−

1

nb

∑
i:xi=b

∫ 1−pi

0
(1− x̄−b − t)ξ(t) dt (2)

Rather than taking the total difference of prediction scores, the scores inside each group

are averaged together, allowing more direct comparison of the predictive accuracy of each

group according to the metaknowledge assumption. Because the effect of an agent’s predic-

tion is larger when fewer people agree with her, giving an honest prediction is no longer a

best response when others are honest about their opinions. However, honesty can be ap-

proximately rationalizable as the number of agents increases, given conditions stated in the

following theorem.

The theorem yields a class of nearly unconstrained, approximately incentive-compatible

mechanisms that can now be optimized for accuracy over functions ξ, with potential gains



over the optimal net score statistic due to the slight relaxation of incentive constraints. More

general forms of κ than stated are sufficient for an average score statistic to be approximately

incentive-compatible, but these turn out to be unnecessary in the later optimization. This

does not exhaust the class of approximately optimal alternatives, but provides a basic

robustness check.

Theorem 2. In the n-player revelation game induced by an average score statistic, if agents

are partially honest and believe opinions are independent conditional on the state, ξ is non-

negative and Lebesgue-measurable, and κ has the form

κ
(na
n

)
= sign

(n
2
− na

) dn/2−1/2e∑
m=min{na,nb}+1

1

m

∫ 1

0

(
m− 1

n− 1
− t
)
ξ(t) dt

+ sign
(n

2
− na

) 1(n odd)

n+ 1

∫ 1

0

(
1

2
− t
)
ξ(t) dt

(3)

then the direct mechanism has the following properties:

1. All interim rationalizable reports contain an agent’s true opinion xi.

2. Honest predictions pi differ from some rationalizable prediction p∗i by O
(
n−1

)
. If there is

a unique rationalizable prediction, it is not equal to the honest prediction, understating

the proportion of agents with the same opinion.

3. All profiles of interim rationalizable reports produce the same outcome, which differs

from the honest outcome by O
(
n−1

)
.

5 Simulation Setting

Using the classifications developed in the previous sections, I now consider which test statis-

tics maximize the probability of correctly identifying the true state. Since analytical solu-

tions to this objective are not immediately forthcoming, I evaluate potential test statis-

tics numerically. Two benchmark test statistics are the proportion of a endorsers and the

likelihood ratio of the distribution of opinions assuming the true likelihoods were known.

Performance of a test statistic under this objective can described by the net percentage

of correct classifications made relative to majority vote, normalized by the net percentage

of correct decisions the likelihood ratio makes over majority vote. This criterion forms a

quality index from 0 to 100 of the percentage of false consensuses identified, where 0 is

equivalent to majority vote and 100 is optimal if the likelihoods were known.

In these simulations, each state is equally likely. Opinion likelihoods are drawn uniformly

from the unit square, subject to qA > qB. Based on this specification, majority opinion fails

to match the state at least 25% of the time, occurring when ω = A and qA < 0.5 or when

ω = B and qB > 0.5.



Agent predictions are modeled as normally distributed on a log-odds scale:

ln

(
pi

1− pi

)
∼ Normal(µxi , σ

2) s.t. (4)

µ = α ln

(
qA

1− qA

)
+ (1− α) ln

(
qB

1− qB

)
µa = µ+ ε, µb = µ− ε, α, ε ∼ Unif[0, 1]

To satisfy the metaknowledge assumption that agents are more accurate in expectation

when their opinion matches the state, the centers of the distributions are determined by

two uniform variates α and ε, which respectively have a rough interpretation as the prior

belief that ω = A and the amount of evidence participants consider their own opinion to be.

Note that α and ε are constant across agents in a given simulation. Across simulations, I

set σ2 = 1, which produces dispersed distributions, without bunching around 0 and 1 when

transformed into probabilities, as occurs when the variance grows larger. Figure 1 shows

typical prediction distributions.
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Fig. 1: Simulated prediction distributions for agents with opinions a and b when
qA = 0.8, qB = 0.4, σ2 = 1, α = 0.5, and ε = 0.5



6 Optimization over piecewise linear ξ(t)

Numerical optimization in this setting entails a search over all non-negative functions on

[0, 1] as well as z1 and z2 for Net Score Statistics. I approach this problem by restricting

ξ(t) to be piecewise linear and continuous, with segments at regular intervals. Candidate

functions with h− 1 segments are represented as vectors of length h+ 1, stating the value

of the function at 0, 1/h, 2/h, . . . , (h − 1)/h, 1. Rescaling ξ(t) by a positive constant does

not change the objective function, so without loss of generality, the vectors are constrained

to [0, 1]h.

The optimization is done through controlled random search with local mutation (Kaelo

and Ali, 2006; Price, 1983). This global optimization procedure operates like a combination

of evolutionary optimization and the Nelder-Mead method. At each step, the worst point

from a pool of candidates is compared against a trial point, being replaced when there

is improvement. The trial point is generated as the reflection of a simplex formed by the

best candidate and h other randomly selected points from the pool. In the local mutation

variant, if the trial point fails to improve on the worst candidate of the pool, a second trial

point is generated by including the first trial point in a new simplex and reflecting it about

the best candidate. This procedure reliably outperformed other considered algorithms such

as stochastic hill-climbing, simulated annealing, and Nelder-Mead.

Figures 2 and 3 depict piecewise-linear ξ(t) optimized for n = 25 participants for varying

h, along with the associated quality index, for net score statistics and average score statistics.

The non-monotonicity in quality as h increases is slightly concerning, likely due to the

constraint of equidistant knots and the increased difficulty of searching a higher-dimensional

space. Both classes can correctly identify about one-third of false majorities, with very

modest improvements going from exact to approximate incentive compatibility.

7 Test Statistics from Interval Scoring Rules

Although optimization over piecewise linear functions provides a rough picture of the op-

timal ξ(t), the resulting test statistics are somewhat complicated. An easily integrable ξ(t)

would yield a simpler test statistic, hopefully without much cost to efficiency. The results

of the previous section suggest ξ(t) = 1(k1 < t < k2) for some k ∈ [0, 1]2 for an average

score statistic. Since ξ represents a weighting of predictions, use of this ξ says predictions

are increasingly relevant when p > k1, although all predictions p > k2 are treated equally.

This yields

S(x, p) = sign(n/2− na)

1(n odd)

n+ 1
R
(n

2
, k2

)
+

dn/2−1/2e∑
j=min{na,nb}+1

1

j
R

(
m− 1

n− 1
, k2

)
+

1

na

∑
i:xi=a

R

(
na − 1

n− 1
, pi

)
− 1

nb

∑
i:xi=b

R

(
nb − 1

n− 1
, 1− pi

)



●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h = 5

28
●

● ● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h = 6

28

●

● ●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h = 7

29
●

● ● ●

● ●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

h = 8

22

Fig. 2: Piecewise-linear ξ(t) for net score statistics produced by numerical opti-
mization over 1000 steps, evaluated at 104 simulations with for 25 participants,
with the resulting quality index shown in the upper left.
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Fig. 3: Piecewise-linear ξ(t) for average score statistics produced by numerical
optimization over 1000 steps, evaluated at 104 simulations with for 25 partici-
pants, with the resulting quality index shown in the upper left.



based on individual prediction scores

R(p, q) = 1(p > k1)

∫ min{p,k2}

k1

q − t dt

= 1(k1 < p < k2)

(
q(p− k1)−

p2 − k21
2

)
+ 1(k2 ≤ p)

(
q(k2 − k1)−

k22 − k21
2

)
.

For k1 w 0.7 and k2 w 0.83, these rules actually outperform the linear spline rules found

in the previous section, identifying approximately 35% of false majorities. Figure 4 shows

the proportion of correct decisions made by a an interval test statistic when k1 = 0.7 and

k2 = 0.83 compared to the likelihood ratio and the Bayesian truth serum. The Bayesian

truth serum clearly performs better than the interval test statistic, although the Bayesian

truth serum is not guaranteed to solicit honest opinions in this setting, even when transfers

can be made.

Figure 5 shows the performance the interval test statistic, the net score statistic, and

the Bayesian truth serum at varying levels of bias. In all shown cases, those endorsing A

are most likely in the majority even in the B state, so a false consensus exists about 50%

of the time. This show the difference between the interval score statistic and the Bayesian

truth serum occurs primarily at high levels of bias. With a large proportion of a supporters,

the base score of the interval test statistic dominates the difference in prediction scores,

reducing it down to majority vote. However, as long as the degree of bias is moderate, the

interval test statistic is comparable in predictive power to the Bayesian truth serum.

8 Conclusion

While these numerical results are not definite, they are suggestive of what is possible with

such weak assumptions. Test statistics based on indicator scoring rules improve on majority

vote, particularly at low levels of bias, without presuming knowledge of the likelihoods or

participant bias. Participants are not required to be probabilistically sophisticated, much

less share a common prior.

Future directions include comparing this paper with experimental and analytical re-

sults. Possible extensions include generalizing from binary to finite states or allowing agent

preferences to have varying intensity.

9 Computational Details

This document was typeset in LATEXvia the knitr package (Xie, 2012) in R 2.15.2 on Win-

dows 7. The nloptr package (Johnson, 2012) implemented the controlled random search

algorithm used in Section 6.
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Fig. 4: Proportion of correct decisions made by a interval test statistic when k =
(0.7, 0.83) vs maximum likelihood and the Bayesian truth serum across 104

simulations for each pool size.

Appendix

Proof (). Necessity of Proposition 1. This characterization follows from interim incentive
compatibility, which is itself necessary by well-known arguments underlying the revelation
principle. Here, since agents’ utilities are simply S signed in favor of their opinion, the
relevant version of incentive compatibility is∑

x−i,p−i

π(x−i, p−i)S((a, x−i), (pi, p−i)) ≥
∑

x−i,p−i

π(x−i, p−i)S((x′i, x−i), (p
′
i, p−i))

≥
∑

x−i,p−i

π(x−i, p−i)S((b, x−i), (pi, p−i))
(5)

for all x′i, pi, p
′
i, and beliefs π such that

Eπ[x̄−i] =
∑

x−i,p−i

π(x−i, p−i)
#(xj = a | j ∈ −i)

n− 1
= pi

to be consistent with prediction pi.

To establish incentive compatibility, suppose mechanism M = (M, g) implements S in
interim-rationalizable strategies. Let BM(xi, pi) be the interim-rationalizable strategies for
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Fig. 5: Proportion of correct decisions for an interval test statistic with k =
(0.7, 0.83), the optimal net score statistic with a linear-spline ξ for h = 5, and
the Bayesian truth serum across in simulations for fixed qB and qA = qB + 0.1.

type (xi, pi). Given any mi ∈ BM(a, pi) and m′i ∈ BM(x′i, p
′
i), we must have∑

x−i,p−i

π(x−i, p−i)S((a, x−i), (pi, p−i)) =
∑

x−i,p−i

π(x−i, p−i)
∑
m−i

φ(m−i |x−i, p−i) g(mi,m−i)

≥
∑

x−i,p−i

π(x−i, p−i)
∑
m−i

φ(m−i |x−i, p−i) g(m′i,m−i)

=
∑

x−i,p−i

π(x−i, p−i)S((x′i, x−i), (p
′
i, p−i))

for mi to be a best response when agent i is type (a, pi) with beliefs π and φ such that

Eπ[x̄−i] = pi and

φ(m−i |x−i, p−i) > 0 =⇒ m−i ∈
∏
j∈−i

BM(xj , pj).

This follows similarly for types (x′i, p
′
i) and (b, pi), yielding line (5).

Suppose agent i believes p−i is fixed conditional on x−i, reducing beliefs over the types
of others to π(x−i). Incentive compatibility implies∑

x−i

π(x−i)S((a, x−i), (pi, p−i)) ≥
∑
x−i

π(x−i)S((a, x−i), (p
′
i, p−i))



for all pi, p
′
i, p−i, and π such that Eπ[x̄−i] = pi, so that agent i does not want to misreport

her prediction pi. Notice that this condition says S is a proper scoring rule for the mean
of x−i from the perspective of agent i, holding xi = a fixed. By the Schervish (1989) and
Lambert (2011) representations of continuous scoring rules, S must be representable from
the perspective of agent i as

S((a, x−i), p) = κi(x, p−i) +

∫ pi

0
(x̄−i − t)ξi(t, p−i) dt

for some Lebesgue-measurable ξ : [0, 1] × [0, 1](n−1) → R+. This representation prescribes
the specific way that pi and the proportion x̄−i must interact, up to a weighting by ξ. For
S to be neutral between A and B, we must have

S((b, x−i), p) = κi(x, p−i)−
∫ 1−pi

0
(1− x̄−i − t)ξi(t, 1− p−i) dt

so S(x, p) = −S(1− y, 1− q). With this form for each agent , it follows by anonymity that

S(x, p) = κ(x̄) +
∑
i:xi=a

∫ pi

0
(x̄−i − t)ξ(t) dt−

∑
i:xi=b

∫ 1−pi

0
(1− x̄−i − t)ξ(t) dt,

since x̄ contains all information preserved under permutations of x and ξ can’t depend on
the identity of the agent. Although ξi could have depended on the predictions of other agents
to be a proper scoring rule for agent i, those predictions can only appear in their respective
integrals to be proper for the remaining agents. The negative-symmetry of κ around 1/2
then follows from neutrality.

Incentive compatibility also implies3 S is higher in expectation when agent i reports her
true type (a, pi) than when reporting (b, p′i), i.e.

n−1∑
na=0

π(na)

(
κ

(
na + 1

n

)
+

∫ pi

0

(
na

n− 1
− t
)
ξ(t) dt

+
∑

j: xj=a

∫ pj

0

(
na

n− 1
− t
)
ξ(t) dt−

∑
j: xj=b

∫ 1−pj

0

(
n− 2− na

n− 1
− t
)
ξ(t) dt

)

≥
n−1∑
na=0

π(na)

(
κ
(na

n

)
−
∫ 1−p′

0

(
n− 1− na

n− 1
− t
)
ξ(t) dt

+
∑

j: xj=a

∫ pj

0

(
na − 1

n− 1
− t
)
ξ(t) dt−

∑
j: xj=b

∫ 1−pj

0

(
n− 1− na

n− 1
− t
)
ξi(t) dt

) (6)

⇐⇒
n−1∑
na=0

π(na)

κ(na + 1

n

)
− κ

(na

n

)
+

∑
j: xj=a

∫ pj

0

1

n− 1
ξ(t) dt+

∑
j: xj=b

∫ 1−pj

0

1

n− 1
ξ(t) dt


≥ −

∫ pi

0

(pi − t) ξ(t) dt−
∫ 1−p′

0

(1− pi − t) ξ(t) dt (7)

3 Again in the special case of a degenerate distribution on p−i conditional on x−i.



for all pi, p
′
i, pj(x−i), and beliefs π4 such that Eπ[na/(n− 1)] = pi. Taking pj = 0 if xj = a

and pj = 1 if xj = b implies

n−1∑
na=0

π(na)

(
κ

(
na + 1

n

)
− κ

(na

n

))
≥ −

∫ pi

0

(pi − t) ξ(t) dt−
∫ 1−p′

0

(1− pi − t) ξ(t) dt,

i.e. the expectation of κ’s first differences in na must be greater than a function of the mean
of the distribution. This is equivalent to the differences at any given na being bounded away
from the right-hand side by some convex function. Since the right-hand side is quasi-convex
in p′ (non-increasing at p′ < pi and non-decreasing at p′ > pi), the inequality is satisfied for
all p′ if and only if it holds for p′ ∈ {0, 1}.

Following a similar argument for agents with opinion b yields the differences in κ being
bounded away by a convex function from two more quantities (for p′′ = 0 and p′′ = 1) at each
pi. Since the four quantities are concave in na, each can be bounded above by a supporting
line at points in [0, 1]. The constraints for agents of different opinion types are mirrored
around 1/2, so it suffices to choose two supporting points z1 and z2. The pointwise maximum
of the lines f is then a convex function bounding each relevant quantity, completing the
proof of necessity.

Proof (). Sufficiency of Proposition 1. The sufficiency of this representation follows
from iterated deletion of interim dominated strategies in the direct mechanism. Consider an
agent of type (a, pi) who conjectures the average proportion of reported opinions is p̂i. By
the conditions on κ, a report of (a, p̂i) weakly dominates all reports (b, p′). A comparison
of lines (6) and (7) above shows the agent will strictly prefer (a, p̂i) to (b, p′) as long as the
agent thinks there is some chance that pj and 1−pj (when xj = a and xj = b, respectively)
are outside a neighborhood of zero where ξ(t) is uniformly zero. Otherwise, a strict bound
on the differences in κ or partial honesty is necessary to guarantee strict dominance of
all (b, p′). An analogous argument for agents of type (b, pi) rules out all (a, p′). Since each
agent strictly prefers submitting their true opinion, it follows that each agent weakly prefers
submitting their true prediction of the opinions of other agents since S is a proper scoring
rule for each agent. Weak dominance on this step is sufficient because indifference occurs
only when S is constant, with ξ uniformly zero in some interval containing those reports.

Proof (). Proof of Proposition 2. Since the mechanism is neutral between A and B, all
properties can be analyzed from the perspective of an agent with opinion xi = a without
loss of generality.

1. All interim rationalizable reports contain an agent’s true opinion xi.
Setting up the incentive-compatibility constraint similarly to the necessity proof of The-
orem 1 yields

κ

(
m+ 1

n

)
− κ

(m
n

)
= max

{
− 1

m+ 1

∫ 1

0

(
m− 1

n− 1
− t
)
ξ(t) dt

− 1

n−m

∫ 1

0

(
n−m− 1

n− 1
− t
)
ξ(t) dt

}
4 Without loss of generality, treated as a distribution on na =

∑
j∈−i xj rather than on x−i directly.

Although agents can hold asymmetric beliefs about their peers, this information is irrelevant since the
mechanism is anonymous.



as a sufficient condition for reports with false opinions to be weakly dominated. The
κ given on line 3 simply adds up these successive differences, with adjustments to be
negatively symmetric. Partial honesty guarantees reports with false opinions are strictly
interim dominated and hence not rationalizable.

2. Honest predictions pi differ from some rationalizable prediction p∗i by O
(
n−1

)
. If there is

a unique rationalizable prediction, it is not equal to the honest prediction, understating
the proportion of agents with the same opinion.
Since agents always report their true opinion, rationalizable reports potentially differ
only in the prediction. Conditioning on everyone reporting their opinion honestly, an
agent with xi = a chooses his reported prediction to maximize

E

[
1

na

∫ p

0

(
na − 1

n− 1
− t
)
ξ(t) dt

∣∣∣∣∣ na − 1 ∼ Bin(n− 1, pi)

]
,

the only term of the outcome the agent’s prediction affects.
Although possibly non-differentiable due to discontinuities in ξ, the expression is quasi-
concave and continuous in p on a compact domain, and hence has a well-defined, con-
nected set of maximizers. Continuity is straightforward. To establish quasi-concavity,
note that the expression’s sub- and super-derivatives are bounded by the limit points
of the derivative where it exists by continuity. Applying Leibniz’s rule to the expression
where valid yields

1

n− 1

(
1− E

[
n−1a

])
ξ(p)− p E

[
n−1a

]
ξ(p),

which is non-negative below and non-positive above the quantity

p∗i =
1

n− 1

(
E
[
n−1a

]−1 − 1
)
,

so the expression is monotonic to the left and right of p∗i , and hence quasi-concave.
When ξ is positive in a neighborhood of p∗i , this is the unique maximum. Otherwise, the
set of maximizers is the largest connected subset of the closure of ξ−1(0) that contains
p∗i , since p∗i is a maximizer, but the expression is flat over this region.
The above argument establishes p∗i as an interim rationalizable prediction, depending
on the inverse moment of agent’s expectation of na. By Jensen’s inequality,

p∗i =
1

n− 1

(
E
[
n−1a

]−1 − 1
)
<

1

n− 1
(E[na]− 1) =

1

n− 1
(pi(n− 1) + 1− 1) = pi,

so the agent understates the proportion of others he expects to share the a opinion. In
fact, p∗i can be computed exactly as

p∗i =
pi

1− (1− pi)n
n

n− 1
− 1

n− 1

using the fact (Garcia and Palacios, 2001) that

E

[
1

1 +X

∣∣∣∣∣ X ∼ Bin(n, p)

]
=

1− (1− p)n+1

p(n+ 1)
.



Then, the distance between honesty and some rationalizable prediction is bounded above
by

pi − p∗i = pi

(
1− 1

1− (1− pi)n
n

n− 1

)
+

1

n− 1
> 0,

which converges to zero at rate O
(
n−1

)
.

3. All profiles of interim rationalizable reports produce the same outcome, which converges
to the honest outcome at rate O

(
n−1

)
.

Two distinct reports are interim rationalizable only if the predictions are both in some
neighborhood where ξ is zero. Then both reports give the same ex-post utility since the
integral affected by the agent’s prediction is unchanging.
Agents’ utilities are simply the final outcome signed in their favor and agent’s predictions
don’t interact, so the overall outcome is identical for all profiles of interim rationalizable
reports.
Since each agent’s honest prediction becomes arbitrarily close to a rationalizable predic-
tion and the outcome is a continuous combination of the predictions, the rationalizable
outcome also converges to the honest outcome as n increases. The total discrepancy
between the rationalizable and honest outcomes is

1

na

∑
i:xi=a

∫ pi

p∗i

(
na − 1

n− 1
− t
)
ξ(t) dt− 1

nb

∑
i:xi=b

∫ 1−p∗i

1−pi

(
nb − 1

n− 1
− t
)
ξ(t) dt.

For asymptotically constant na/n, each integral term is of orderO
(
n−1

)
, so the difference

of the averages is also O
(
n−1

)
.
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