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Abstract

Local numerical methods for scattered data interpolation often require
a smart subdivision of the domain in geometrical polyhedral structures.
In particular triangulations in the plane (2D) and tetrahedrizations in
the space (3D) are widely used to define interpolation models. In this
paper we give a short survey on the main methods for the scattered data
problem and we recall preliminaries on triangulations and their related
properties. Finally, combining two well-known ideas we present a new
triangle-based interpolation method and show its application to a case
study.
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1 Introduction

Many applications in science and engineering need to construct a multivariate
function Sf for which only some samples are known, i.e, the function values
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zi are given on a finite number of uniform or nonuniform points Pi in Rs.
Here Rs denotes the euclidean space Es, with its affine, metric and topological
structures. This problem, commonly referred to as scattered data interpola-
tion, is a main issue in several application areas whose partial list includes, for
example, medical imaging, learning theory, data mining, numerical solution of
partial differential equations and surface reconstruction in computer graphics
and data visualization [14]. The scattered data interpolation problem can be
formalized as follows [4].

Problem 1.1. Given n data {(Pi, zi)}i=1,...,n, with Pi ∈ Rs, zi ∈ R, find a
function Sf such that

Sf (Pi) = zi i = 1, . . . , n (1)

The notation Sf highlights that the values satisfy zi = f(Pi) for some un-
known function f . One dimensional interpolation (s = 1) is a classical prob-
lem, widely explored and solved. In higher dimensions (s ≥ 2) things become
more difficult. Indeed, in order to achieve a well-posed problem, some a priori
assumptions on the Pi-collocation or on the kind of interpolant Sf have to be
made. In this work, starting from an overview on the mathematical framework
of the problem, we propose a novel triangle-based interpolation method for the
2D case (s = 2). The paper is organized as follows: in Section 2 we discuss
the mathematical background of the problem, by presenting a short list of the
main (global and local) interpolation methods and by recalling preliminaries
on triangulations and their related properties; in Section 3, we present our
method, discuss some of its issues and show its application to a case study;
finally, in Section 4 we draw conclusions.

2 Mathematical preliminaries

Numerical algorithms for solving the scattered data problem are usually classi-
fied in two main categories: global methods, where the value of the interpolant
at a point P depends on all data points, and local methods, where the value
only depends on “nearby” points. Two well-known techniques of the first class
are the Shepard’s Method [5] and the radial basis functions [4],[11],[15]:
• in the Shepard’s Method the function that solves the problem is a weighted

average of the data values at the points Pi. More precisely the interpolant
Sf is expressed as:

Sf (P ) =
n∑
i=1

wi(P )∑n
i=1wi(P )

zi, ∀P ∈ Rs

where the weights wi(P ) = d−µ
i (with µ = 2 or µ = 4) depend on the

distance di = ‖P − Pi‖2;
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• in a radial basis functions (RBF) method the interpolant Sf is a linear
combination of radial basis functions Bi(P ) = φ(‖P − Pi‖2), i.e:

Sf (P ) =
n∑
i=1

ciBi(P ), ∀P ∈ Rs,

where φ : [0,∞[→ R is a suitable function. The coefficients c1, . . . , cn are
obtained by imposing the interpolation conditions (1) and then by solv-
ing the linear system Ac = z, where Aji = Bi(Pj), i, j = 1, . . . , n, c =
[c1, . . . , cn]T and z = [z1, . . . , zn]T . As exhaustively explained in [11] the
well-posedness of such interpolation problem depends on the choice of the
function φ. Some of the most common functions used in computer graph-
ics applications are: the Gaussian, φ(r) = er

2/c2 ; the thin plate spline,
φ(r) = r2log(r); the Hardy’s multiquadratic, φ(r) =

√
r2 + c2, c 6= 0.

The use of global methods is not always the best choice (for very large n) since
they often involve, as for several RBF functions, the solution of a full linear
system of n equations. Alternatively, many local methods have been developed
over the last decades. A short list (not exhaustive of all methods) includes:

• Modified Shepard’s Method [12], an improvement of Shepard’s Method in
which the weights are defined as1:

wi(P ) =

[
(R− di)+

Rdi

]2
(with di = ‖P − Pi‖2, i = 1, . . . , n)

where R is the radius of influence of a node, i.e. Shepard’s weights be-
come zero outside the disk of radius R and center Pi.

• linear triangular (tetrahedral in 3D) interpolation method; given a trian-
gulation T (see below for details), the restriction of the interpolant Sf to
a triangle P1P2P3 is defined as a linear combination of the values at its
vertexes P1, P2, P3, i.e.:

Sf |P1P2P3(P ) = λ1(P )z1 + λ2(P )z2 + λ3(P )z3, ∀P ∈ P1P2P3, (2)

where λi=λi(P ), for i = 1, 2, 3, are the barycentric coordinates of P with
respect to Pi. It holds that

∑3
i=1λi=1 and λ1, λ2, λ3∈ [0, 1], ∀P ∈P1P2P3;

• cubic triangular interpolation methods, as the Clough-Tocher method ;
here, in order to obtain C1-continuity of the interpolant in the convex
hull (see below for details) of data, Bézier patches are used in three
sub-triangles of each triangle of the given triangulation. See [1, 7] for a
detailed explanation;

1xn
+ denotes the truncated power function with exponent n, i.e.: xn

+ =

{
xn if x > 0

0 if x ≤ 0.
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• the triangle-based blending technique; in this case, the restriction of the
interpolant Sf , to a triangle P1P2P3, is defined as in [1, 7]

Sf |P1P2P3(P ) = w1f1(P ) + w2f2(P ) + w3f3(P ), ∀P ∈ P1P2P3, (3)

where fi(P ) is the value at P of the quadratic polynomial which interpo-
lates at Pi and its five nearest neighbors, and wi = dki /(d

k
1 +dk2 +dk3) with

di distance of P from the triangle edge opposite to Pi. The distances
di are scaled so that di = 1 at the vertex Pi and the exponent k = 3
is chosen in order to obtain C1- and C2-continuity of the interpolation
model on edges.

Notice that several local methods, as the last three presented, need a triangu-
lation of the set of points. A complete triangle-based interpolation algorithm
for the scattered interpolation problem requires to compute the interpolant
function at P and also the following preliminary steps.

(i) Meshing (and re-meshing). Given the set of points X = {Pi}i=1,...,n

compute a triangulation of X (if possible, compute an optimal triangu-
lation, such as the Delaunay triangulation). There exist several different
algorithms for constructing (or adding a new point to) a triangulation:
for an overview, we refer to [2, 9, 13].

(ii) Localization. Given a point P in the convex-hull of X, find in which
triangle (or edge) P is located. Basic algorithms are mentioned in [8].

In the next section we propose a novel triangle-based method for scattered
interpolation, assuming that procedures for steps (i) and (ii) are given. First
let us provide a rigorous definition of a triangulation and its main properties.

Definition 2.1. Let be X ⊆ Rs, the convex hull of X, denoted by ch(X),
is the smallest convex set that contains X. If X = {Pi}i=0,...,k (k ≤ s) is a set
of affinely independent points, the k-simplex of vertexes P0, . . . , Pk, denoted
by ∆k(P0, . . . , Pk), is the convex hull of X. Let be h < k ≤ s, a h-simplex
obtained from a k-simplex ∆k by deleting k−h vertexes is called a face of ∆k.

In more detail, each point P of a simplex ∆k(P0, . . . , Pk) can be expressed
uniquely as a linear combination of its vertexes P0, . . . , Pk:

P =
k∑
i=0

λiPi where λ0, . . . , λk ≥ 0 and
k∑
i=0

λi = 1.

The coefficients λi are called barycentric coordinates of P with respect to Pi.
If P belongs to a face of ∆k, obtained by deleting a vertex Pj, then λj = 0. In
particular, if P is a vertex Pi, then λi = 1 and λj = 0 (j 6= i). Moreover, if
P is an interior point of ∆k, the barycentric coordinates can be expressed as
a ratio of volumes of simplexes:

λi =
vol
(
∆k(P0, . . . , Pi−1, P, Pi+1, . . . , Pk)

)
vol
(
∆k(P0, . . . , Pk)

) (i = 0, . . . , k).
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Here, we are interested in k-simplexes with k ≤ 2. In particular, note that:
a 0-simplex ∆0(Pi)≡ Pi is a point; a 1-simplex ∆1(Pi, Pj)≡ PiPj is the seg-
ment joining Pi and Pj; a 2-simplex ∆2(Pi, Pj, Pk)≡PiPjPk is a triangle with
vertexes Pi, Pj, Pk. Some finite collections of 0-, 1-, 2-simplexes are called
triangulations.

Definition 2.2. Let be X = {Pi}i=1,...,n ⊂ R2. A triangulation T of the
convex hull of X is a subdivision of ch(X) into simplexes such that: if a sim-
plex ∆h is in T, then each face of ∆h is in T; if two simplexes are in T their
intersection is either empty or is a common face in T.

A measure of the density of a triangulation T is the mesh µ(T), defined as the
maximum diameter of the simplexes of T. It can be easily proved that the
diameter of a simplex ∆k is the maximum distance between its vertexes. Gen-
erally, given X, there are several admissible triangulations of ch(X). Although
all possible triangulations are equivalent from a geometric point of view, usu-
ally, for numerical purposes, it is advisable to avoid, as far as possible, triangles
with elongated or skinny shape. This can be done by taking the Delaunay tri-
angulation DT: this triangulation is optimal in the sense that maximizes the
minimum internal angle among all its triangles; moreover such triangulation
has the property that circles circumscribing any of its triangles do not contain
other points of X. It can be proved that DT is unique if no four points of X
are co-circular. In Figure 1 we show two different triangulations of a set X of
25 Halton points [4] in the square [0, 1]2.

Figure 1: Left: a triangulation of X. Right: the Delaunay triangulation of X.

3 A novel triangle-based method

Let be X = {Pi}i=1,...,n ⊂ R2 a set of points and let be T a given point set
triangulation of X (a triangulation of ch(X)). All the triangle-based methods
shown in the previous section define the interpolant in each triangle and they
offer regularity conditions by matching their values on edges. Here, we are
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interested to obtain the same regularity result by using a technique similar to
Shepard’s method. Unlike Shepard’s our idea is that the closeness of a point
P to the vertexes Pi is measured in terms of barycentric coordinates and not
by distances. Let us define the method.

Definition 3.1. [The Method]
Let be X = {Pi}i=1,...,n ⊂ R2 and T a triangulation of ch(X). Let m ≥ 0 be an
integer and let ω : [0, 1]→ R be a weight function with the properties:

(i) ω(λ) ≥ 0, ∀λ ∈ [0, 1]; (ii) ω is strictly increasing on [0, 1];

(iii) ω ∈ Cm([0, 1]) and ω(j)(0) = 0, for j = 0, . . . ,m.
The restriction of the interpolant Sf , to a triangle PiPjPk of T, is defined as:

Sf |PiPjPk
(P ) =

ω(λi)zi + ω(λj)zj + ω(λk)zk
ω(λi) + ω(λj) + ω(λk)

, ∀P ∈ PiPjPk, (4)

where λi, λj, λk are the barycentric coordinates of P with respect to Pi, Pj, Pk.

Condition (i) on the weight function entails not negativity of the weights
ω(λi) in (4). Condition (ii) guarantees that a weight ω(λi) increases as P
approaches the vertex Pi. Finally, condition (iii) ensures that the interpolant
is in Cm

(
ch(X)

)
. The proof of the continuity (m = 0) is immediate: for in-

stance, if two triangles P1P2P3 and P1P2P4 share a common edge, P1P2, then
the barycentric coordinates λ1 and λ2 of a point P ∈ P1P2 are the same in
both triangles, while λ3 and λ4 are zero; then ω(λ3) = ω(λ4) = 0 and the
values Sf |P1P2P3(P ) and Sf |P1P2P4(P ) coincide. The proof for the case m > 0
may be obtained observing that the partial derivatives of the interpolant Sf
are proportional to the derivatives of ω. Then the matching of the interpolant
derivatives on edges is due to condition (iii).

Notice that a suitable choice of the weight function makes our model very
similar to the triangle-based blending technique (ω(λ) = λ3) or to the linear
triangular method in (2) (it can be considered a special case of our method
with ω(λ) = λ). In spite of its general formulation, the proposed method
preserves the ability of the linear triangular method of well approximating
Lipschitz continuous functions, as proved below.

Theorem 3.2. Let be X = {Pi}i=1,...,n ⊂ R2, T a triangulation of ch(X)
with mesh µ(T) and f : ch(X)→ R a Lipschitz continuous function with Lip-
schitz constant L > 0. Let the interpolant Sf be as in Definition 3.1, with
zi = f(Pi), then it holds that:

|Sf (P )− f(P )| ≤ L · µ(T), ∀P ∈ ch(X).

Proof. Without loss of generality, let us assume that P1P2P3 is a triangle
of T and P ∈ P1P2P3. The statement is proved by these straight inequalities:
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|Sf (P )−f(P )|=

∣∣∣∣∣
3∑
i=1

ω(λi)∑3
i=1 ω(λi)

f(Pi)− f(P )

∣∣∣∣∣≤
3∑
i=1

ω(λi)∑3
i=1 ω(λi)

|f(Pi)− f(P )|

≤
3∑
i=1

ω(λi)∑3
i=1 ω(λi)

L · ‖Pi − P‖2 ≤
3∑
i=1

ω(λi)∑3
i=1 ω(λi)

L · µ(T) = L · µ(T).

The choice of the weight function offers the possibility of tailoring the method
by adapting it to specific problems. Examples of weight functions are:

(i) ω(λ) = λα with α ∈ R+; (ii) ω(λ) = log(1 + kλα) with k, α ∈ R+;

(iii) ω(λ) = λαe−αλ with α ∈ R+.
In Figure 2 it is shown the behaviour of three different functions Sf which
interpolate the Egg-Holder function [16] in 25 Halton points in the square
[0, 1]2. In this test we used ω(λ) = λ (left, the linear triangular method),
ω(λ) = log(1 + 1000λ3) (center) and ω(λ) = λ3e−3λ (right).
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Figure 2: Left: ω(λ) = λ. Center: ω(λ) = log(1 + 1000λ3). Right:
ω(λ) = λ3e−3λ.

4 Conclusions

In this work we have dealt with the scattered data interpolation problem.
Firstly we have introduced the mathematical background of the problem, by
presenting a short list of the main (global and local) interpolation methods
and by recalling preliminaries on triangulations and their related properties.
Then we have presented a novel interpolation method similar to the Shepard’s
method: the main idea is to use the barycentric coordinates as a measure of
the closeness between the points. Finally, by means a case study we have
shown that out method is capable of maintaining regularity properties despite
it is piecewise defined.
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