
Publication/Software Review

An Initial Evaluation of the
NAG f90 Compiler

MICHAEL METCALF

CERN, 1211 Geneva 23, Switzerland
(metcalf@cernvm.cern.ch)

ABSTRACT

A few weeks before the formal publication of the ISO Fortran 90 Standard, NAG
announced the world's first f90 compiler. We have evaluated the compiler by using it to
assess the impact of Fortran 90 on the CERN Program Library.© 1992 John Wiley & Sons, Inc.

1 BACKGROUND

Given the long development time of the Fortran 90
standard and the gloomy predictions about the
availability of compilers, the viability of the lan
guage, and even the difficulty of implementing it
fully, it was with some surprise that we learned of
the announcement of a full f90 compiler by NAG
on June 10, 1991 (see Table 1). This followed the
completion of the standard by WG5 (the ISO tech
nical committee) and X3J3 (the ANSI technical
committee) in the spring, and preceded the formal
publication of the standard by ISO in August [1].

An evaluation of the compiler was carried out
using 250,000 lines of code from the CERN Pro
gram Library. During the evaluation, a few errors
were detected, including:

1. A segmentation fault when raising an inte
ger to a double-precision power (but a cor
rection to the . h file was supplied by return
when the error was reported).

Received F ebruarv 1992
Revised April 199.2
Accepted April 1992

© 1992 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 1, pp. 91-95 (1992)
CCC 1058-9244/92/010091-5$04.00

2. In a construct whereby part of an array is
initialized by DATA statement operating
through an EQUIVALENCE statement, the
array is initialized from the first array ele
ment, even if the EQUIVALENCE state
ment explicitly references an element other
than the first.

3. A problem with an ENTRY point.
4. Some detailed problems with some new f90

features.

All of these were promptly corrected by NAG for
the subsequent release of the compiler (Release
1. 1). Otherwise, the compiler was found to be
quite reliable and, in addition to the conclusions
listed in Table 1, we found that the evaluation was
useful in gaining experience in real-world use of
Fortran 90, even if mainly in a FORTRAN 77 con
text, and we established that it was possible, with
a modest effort, to convert the code of the Library
to run under f90.

As a consequence, CERN decided to purchase
a site-wide license for its unix and VMS platforms.

2 FORTRAN 90

Fortran 90 contains the whole of FORTRAN 77,
which greatly facilitates the change to the new

91

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357364461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

92 METCALF

Table 1. Information on the Fortran 90 Compiler

Fortran 90 compiler. Product
Address NAG Inc., 1400 Opus Place, Suite 200, Downers Grove, IL 60515-5702. Tel: (708) 971

2337 or fax (708) 971 2706.
NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford OX2 8DR, UK. Tel: (0865) 511245

or fax (0865) 310139.
Price
Availability

About $1,000 for a single workstation with significant discounts for site licenses.
Most major unix platforms: HP 9000/400 and 700, Sun SPARC, DEC-Station 5000, IBM

RS/6000.
A PC version under DOS 3.3 and above.
A VMS version is also available.

Trouble-shooting
Test details

NAG provides a "Response Center" for handling problems by phone, fax, or e-mail.
Csing Release 1.0a(129), a complete set of tests was carried out, as reported below.
They were all performed on an HP I Apollo 9000/425 with 12 Mbytes of memory under

Domain OS 10.3, and comparisons are with ftn Rev. 10.85(260) with optimization.
The size of the compiler on the test platform was 1.2 Mbytes.
On the Apollo, the -frnd option (for improved floating-point rounding) is taken by default.

Main conclusions
1. The compiler is, at least for FORTRAN 77 code, reliable.
2. It is simple to use and gives good diagnostics.
3. It runs fast enough for large-scale tests of Fortran 90 to be performed effectively.
4. It can handle large amounts of code in single runs.

Thus, it can be recommended for use by all those wishing to evaluate the impact of Fortran 90 on their existing
codes and to test Fortran 90 features for future use with native compilers. It is an important tool in implementing
the changeover to the new standard.

standard. In addition, it has many other impor
tant new features. These are fully described in [2],
but a brief summary is provided below.

1. Array operations
2. Pointers
3. Improved facilities for numerical compu-

tation
4. Parametrization of the intrinsic data types
5. User-defined data types [3]
6. Encapsulation via modules
7. A new source form
8. New control structures-CASE and DO
9. Internal and recursive procedures

10. Optional and keyword arguments
11. Dynamic storage allocation
12. Many new intrinsic procedures

3 THE NAG COMPILER

The compiler uses C as an intermediate language,
and thus relies on the native C compiler to pro
duce assembler and then object code. There is an
obvious optimization penalty involved here, and
one object of the evaluation was to determine its
magnitude. The compiler performs six passes:

1. Lexical and syntactic analysis, building the
symbol table and an abstract syntax tree

2. Semantic analysis, annotating the parse tree
and filling in the symbol table

3. Code generation by parse tree transforma
tion

4. Output of C source code from the flattened
parse tree

5. Compilation using the native C compiler
6. Linking using ld and the f90 run-time li

braries supplied by NAG

Each pass is distinct from the others in order
"to improve maintainability and to allow the re
use of components." This is an important state
ment by NAG: it opens up the possibility of hard
ware vendors attaching the front-end to a native
back-end, and marketing the resulting product as
a native compiler. It would be a significant simpli
fication for the providers of libraries and fits in
well with the unix concept of portability. Also, it
would overcome the fact that, by its very nature,
the NAG compiler can never be as highly opti
mized as a native one and, therefore, is not by
itself suitable for large-scale production.

The compiler performs extensive checking. On
the first pass it makes a complete check of the

syntax, and issues warnings and error messages as
problems are detected. The second pass starts
only if no errors are detected on the first. Here the
semantics are checked, and the compiler is partic
ularly good, but not perfect, at detecting such
things as variables that are used but not defined,
inconsistent use of actual arguments, and
breaches of the typing rules. It sometimes takes a
while to get through this pass successfully, but the
reward is then a program with fewer errors than is
usual with some compilers, and if interface blocks
are also made available, then this is even more the
case. The compiler performs a level of error
checking often only achievable by the use of addi
tional tools.

All diagnostics are issued with respect to the
Fortran file line numbers, even if issued during the
C pass. This is possible as the original names and
line numbers are passed on to the C step (using
the #line directive to ccp). This makes the use of a
debugger possible. To test the principle, I intro
duced a deliberate error at line 22 of the follow
ing code, changing a .LT. to .GT., leading to the
extraction of the square root of a negative
number.

22 IF (D. GT. 0.) THEN
23 COMP = CMPLX (-BI (2. *A),

SQRT(-D) I (2. *A))

27 ELSE
28 SQRTD = SQRT (D)
29 REALl = (-B + SQRTD) I (2. *A)
30 REAL2 = (-B- SQRTD) I (2. *A)

32 ENDIF

I abandoned an attempt to use dbx after it had
crashed OS on a first attempt then, after it had
identified successfully a floating point exception
at line 29 with ftn, finally gave a segmentation
fault running the f90 test. Turning to dde instead,
this too identified the exception at line 29 for ftn.
With f90, it identified an exception in the square
root function, and by invoking the trace option it
told me the sqrt in question had been called at line
28.

For information, the C code of the snippet
above looks thus:

#line 22 ''debug.f • •

if (d_>O.) {

#line 23 ''debug. f • •

tmp3. im = sqrt_r ((tmp2 = -d_, &tmp2)) I (2. *a_);

EVALUATION OF NAG f90 COMPUTER 93

#line23 ''debug.f''

tmp3. re = -b_l (2. *a_);

line 23 ' 'debug. f ' '

comp_ = tmp3;

#line 27 ''debug. f''

} else {

#line 28 ''debug. f''

sqrtd_ = sqrt_r (&d_) ;

#line 29 ''debug. f''

reall_ = (-b_ + sqrtd_) I (2. *a_);

#line 30 ''debug. f''
real2 = (-b_- sqrtd_) I (2.*a_);

The compiler is invoked simply by typing
f90 name for a file in the new free source form, or
f90 name. f for an existing fixed form program.
This is followed by the usual a.out command for
execution. Thus, its use is simple and straightfor
ward. Various options, in particular -0 for optimi
zation and -c to skip linking, are available.

4 THE EVALUATION

The evaluation was carried out using 250,000
lines of existing code from the CERN Program Li
brary. Some of the more informative points are
given here.

During the course of testing, it was established
that a limited number of changes to the code were
necessary. They mostly concerned features that
one might describe as being on the edge or beyond
the old standard. With one exception they were
trivial to implement and are fully described by
Metcalf [4 J. The most significant changes were to
nonstandard length specifications (e.g., COM
PLEX*16), to Hollerith constants in DATA state
ments, and to replace some nonstandard double
precisiOn complex intrinsic functions (e.g.,
DCMPLX).

4.1 KERNNUM

KERNNUM is a set of 210 subprograms, totalling
11,124 lines of code. It forms the kernel of the
mathematical part of the Library. A test program
of a further 10,400 lines exercises all the entries
over legal and illegal data sets. The test was rather
straightforward in that only three lines of code had
to be added: one type declaration of an EXTER
NAL name, and two SAVE statements. The com
pilation time of KERNNUM was 295 seconds, a

94 METCALF

factor 1.14 longer with f90 than with ftn. The exe
cution time of the test was 148 seconds, a factor
1.31 longer.

A module containing interface blocks to the
whole of KERNNUM was generated automatically
(using an option in a source code conversion pro
gram) and, after fixing one error, was success
fully compiled and tested. Compiling a module
with a name kernnum produces a file called
kernnum.mod, and if the compiler encounters a
USE statement as in

use kernnum
call ranf (x) ! ranf is a function

it searches automatically in that file and, in this
case, detects that the function reference is incor
rect.

4.2 KERNGEN

KERNGEN contains 248 subprograms totalling
8,392lines. It forms the general purpose kernel of
the Library-basic mathematical routines, bit,
byte, and character handling, and various utili
ties. It is exercised using a test program of 4,450
lines. Both the Library and the test program were
replete with Hollerith constants in DATA state
ments, and these were all replaced as described
[4], no mean task. In addition, the test program
required interface blocks for eight generic entries
(library utilities that handle different data types
through a single entry), and the corresponding
ENTRY points had to be added to the Library.
A small number of other changes were made:
a few occurrences of ll\TEGER*2, and some
INTEGER/CHARACTER equivalences.

The code took 131 seconds to compile and 0.8
seconds to execute; the execution time is 60%
longer than under ftn.

4.3 GENLIB

This is a library of 413 subprograms running to
31,342 lines of mainly mathematical code. A sig
nificant part of it is exercised by a 4,000-line test
program. Apart from a small number of conver
sions as already described, the main change was
to replace the nonstandard intrinsic functions
DCMPLX, DI~AG, and DREAL by accessing
Fortran 90 features, as described [4]. The Library
compiled in 952 seconds (1.05 times longer than

with ftn, but in less than half the real time), and
the test ran for 42 seconds, a factor 1.53 longer
than with ftn.

4.4 JETSET

One of the physics codes used in the evaluation
was JETSET (T. Sjostrand, University of Lund).
This is an event generator extensively used in sim
ulations. It is a stand-alone program of 10,000
lines written in pure FORTRAN 77, but contain
ing many complicated expressions. It was in
tended to make a comparison with ftn, but this
proved impossible. Compiled under ftn, with or
without optimization, JETSET produced very
wrong results. It was impressive that f90 was more
successful. In spite of a rather long compile time
(390 seconds, 2.7 times longer than ftn), JETSET
worked correctly. No changes to the code were re
quired.

A subsequent run on a Sun, without optimiza
tion, gave a run time of 120 seconds, 20% slower
than under the native Sun compiler.

4.5 GEANT

The simulation program GEANT [5] is the most
widely used in high-energy physics, and its con
version was regarded as the final ''challenge'' to
demonstrate that the compiler worked and that
the move to a new standard was practical. After
changing a small number of inconsistent actual
arguments in subroutine calls, making a few other
minor changes, and implementing parts of the
HBOOK histogramming package [6], and of the
ZEBRA package (this provides dynamic structur
ing and portable II 0 facilities) [7], a program test
example executed correctly. The average time per
event (without the -frnd option) was 23 seconds,
an increase of 25% compared with ftn.

4.6 New Fortran 90 Features

It was not within the scope of the initial evaluation
to test f90 on a wide range of Fortran 90 features.
Nevertheless, where FORTRAJ\' 77 code had to be
modified, this was often done with a new con
struct. In addition, a 1,500-line source code con
version program using only "modern" features,
that is, none of those such as CO~MON depre
cated by .\1etcalf and Reid [2], worked correctly.
However, it was a factor four slower than an

equivalent program running under ftn; NAG plans
to improve the optimization of character handling
in Release 2.

ACKNOWLEDGMENTS

I thank Miguel Marquina for providing me with the
library code and its test programs, Malcolm Cohen
(NAG) for his excellent support whilst performing
the evaluation, and Rene Brun, Federico Car
minati, and David Williams for their support and
interest in this project.

EVALUATION OF NAG f90 COMPUTER 95

REFERENCES

[1] ISO/IEC 1539: 1991, ISO, Geneva, Switzerland.
[2] M. Metcalf and J. Reid, Fortran 90 Explained, Ox

ford and New York: Oxford University Press, 1990.
[3] M. Metcalf, "A derived-data type for data analy

sis," Comput. Phys., vol. 5, no. 6, November/De
cember, 1991.

[4] M. Metcalf, CERN/CN/91/11, 1991.
[5] R. Brun, F. Carminati et al., GEANT User's Guide,

CERN Program Library, W999, 1992 (in prepara
tion).

[6] R. Brun and M. Goossens, HBOOK Long Writeup,
CERN Program Library, Y250, 1991.

[7] R. Brun and J. Zoll, ZEBRA User's Guide, CERN
Program Library, Q100, 1987.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

