
accurate for values of the suction parameter, (vi/ue)(Re1.''
/2), 

less than —2.0. ° This is verified in both Pigs. 1 and 2. How­
ever, for plane stagnation-point flow, Pigs. 1 and 2 show a con­
siderable discrepancy between actual and asymptotic shear for 
values of the suction parameter well below — 2.0. And, of course, 
as the suction parameter approaches zero (small condensation 
rates), the asymptotic expression gives way to the dry-wall value 
of the shear for the particular geometry involved. This suggests 
tha t a simple interpolation formula between the two extremes 
could be used for the entire range. A formula of the form [4] 

r = [ T V + TV]"» 

was selected, following Acrivos, who suggested a similar relation­
ship for correlating mass-transfer conductances. A value of n = 
1.375 was found to give good agreement with the numerical re­
sults for both the flat-plate and stagnation-point flow over the 
entire range of suction parameter. 

The numerical results of Fig. 2 were obtained by solving the 
full conservation equations in boundary-layer form for laminar 
film condensation: the flat-plate results were for pure steam 
condensing on a vertical fiat plate using a full finite-difference 
analogue in the vapor phase (as in, e.g., [7]) and the stagnation-
point results for both steam-air and steam-methanol mixtures 
flowing vertically down upon a horizontal cylinder where the 
vapor-phase solution was determined using a similarity transfor­

mation [5]. In view of the good agreement, it is suggested that 
equation (1) be used for all surface geometries. 
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Thermal Conductivity of Two-Phase Systems 

PRADEEP B. DESHPANDE1 and JAMES R. COUPER2 

Nomenclature 

/ = volume fraction of solid phase, dimensionless 
Kc = thermal conductivity of liquid phase, Btu/hr-ft-deg F 
Kd = thermal conductivity of solid phase, Btu/hr-ft-deg F 
Ke = effective thermal conductivity of two-phase system, 

Btu/hr-ft-deg F 
Pi = one-dimensional porosity, dimensionless 
Pt = two-dimensional porosity, dimensionless 

r, t = parameters of beta distribution 
f, I = maximum likelihood estimates of r and t 

x = random variable defined as the one-dimensional porosity, 
Pi 

Pr = probability 

Introduction 

A REVIEW of the past work on conductance of heterogeneous 
systems reveals that there exist a relatively large number of 
approximate relationships for prediction of the effective thermal 
conductivity of two-phase systems. Most of these relationships 
utilize two parameters, e.g., thermal conductivity of the pure 
phases and the volume fraction of each phase, in describing the 
thermal conductivity of two-phase systems. Recently some 
investigators [1, 2]3 have attempted to relate the thermal con­
ductivity of two-phase systems to additional parameters which 
describe the spatial distribution of the two phases. The object 
of this brief is to present a model, which accounts for the spatial 
distribution of solid particles, for prediction of the effective 
thermal conductivity of solid-liquid two-phase systems. 
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Theoretical Development 

In a theoretical paper Tsao [1] presented a model for predic­
tion of the two-phase thermal conductivity. He considered a 
cubical liquid-solid system of unit dimensions and proposed the 
following equation for prediction- of the effective thermal con­
ductivity: 

1 
— (1) K, = 

f 
Jo 

dP, 

Ke + (Kd - K.)Pt 

where Pi is one-dimensional porosity defined as the fraction of 
the linear space occupied by solids and Pi is two-dimensional 
porosity defined as the fraction of the area occupied by solids. 

To solve equation (1), a relation between P t and Pi. is re­
quired. Based on a stochastic model, Tsao proposed the follow­
ing equation for relating Pi and P%: 

= v k £ e x p ( - i [ ( P l " M ) / ( r ] 2 ) ^ (2) 

where /J, and a are the mean and the standard deviations of Pi 
respectively. 

Tsao suggested the normal distribution, equation (2), as an 
approximation to the point binomial distribution. Since this 
expression involves a density function which does not integrate 
to 1 over its sample space (0 < Pi < 1), Baxley [3] suggested 
the beta distribution, which is the limiting case of the point 
binomial distribution, for relating Pi and P2 . 

V(r + t) 
T(r)Y(t) f 

J Pi 

af-'(1 - xY~ldx (3) 

where r and t are the parameters of the beta distribution. 
Before the beta distribution can be used for prediction of the 

effective thermal conductivity, the parameters r and t must be 
estimated. Leek et al. [4] conducted a study to determine the 
spatial distribution of particles in a solid-liquid two-phase 
system. The solid phase consisted of uranium-impregnated 
Pyrex glass cylinders. A mixture composed of 85 percent 
glycerol and 15 percent benzyl alcohol was used as the liquid 
phase. A special spectrophotometer was used for measuring 
Pi. One-dimensional porosity data on two different-sized glass 

MAY 1972 / 249 Copyright © 1972 by ASMEDownloaded From: https://heattransfer.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357364459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table 1 Thermal conductivity of various two-phase systems Table 2 Statistical analysis of the results 

System 

Zinc sulf a t e -
lard 

Marble-Vaseline 

Selenium-
polypropylene 
glycol 

Aluminum 
oxide-poly­
propylene 
glycol 

KJ/KC 

0.354 
0.114 

1.72 
0.107 

3.0 
0.081 

22.5 
0.081 

= 3.1 

= 16.1 

= 37 

= 278 

/ 
0.1924 
0.2273 
0.2834 
0.4245 
0.4560 
0.4787 
0.1924 
0.2273 
0.2834 
0.4245 
0.4560 
0.4787 
0.1924 
0.2273 
0.2834 
0.4245 
0.4560 
0.4787 
0.1924 
0.2273 
0.2834 
0.4245 
0.4560 
0.4787 

experi­
mental 
Btu/hr-

ft-°F 

0.1425 [12] 
0.1475 
0.1550 
0.1790 
0.1850 
0.190 
0.1375[12] 
0.1450 
0.1640 
0.250 
0.270 
0.297 
0.1250 [2] 
0.1380 
0.1630 
0.240 
0.260 
0.278 
0.220 [2] 
0.280 
0.375 
0.760 
0.88 
0.970 

Ke 
Desh-
pande 

Btu/hr-
ft-°F 

0.1387 
0.1443 
0.1543 
0.1679 
0.1756 
0.1770 
0.1640 
0.1804 
0.2134 
0.2168 
0.2441 
0.2374 
0.1376 
0.1555 
0.1936 
0.1816 
0.2117 
0.2004 
0.1728 
0.2077 
0.2915 
0.2167 
0.2711 
0.2423 

cylinders (5 mm diameter by 6 mm long and 3 mm diameter by 
4 mm long) were obtained. From the data the estimates f and 
I were determined using the maximum-likelihood method [5]. 

To solve equation (1) for the effective thermal conductivity, 
the two-dimensional porosity P% must be known. There are 
three methods available for determination of P% from equation 
(3). 

Determination of Pi by Integration of Density Function. By express­
ing the term (1 — a;) ' - 1 in binomial series, equation (3) can be 
readily evaluated to yield 

P 2 = 1 -
p / T(r + i) - r(i - i + i) 

r ( l - l)T(?)T(j) -tt, (i+r)i\~ Pi 4 (4) 

In equation (4) the maximum-likelihood estimates f and I have 
been substituted for r and t. 

Determination of P2 by Paulson Method. Paulson [6] has shown 
that if a random variable u is distributed according to the F dis­
tribution, the probability that its value is less than or equal to 
F is given by 

Pr(u < F) : -- [1 + erf («/V2)] 

where 

(1 - l/9l)F1/' - (1 - l /9f) 
[ ( l / 9 i ) P 2 / 3 + i/gp]JA 

(5) 

(6) 

If a random variable s, on the other hand, has the beta dis­
tribution, then the probability that its value is less than or equal 
to Pi can be expressed as 

Pr (S < Pi) = Pr 

= Pr(ii < F) 

1(—)<JL( — Y 
f \ 1 - s) ~ r \ 1 - Pi)_ 

(7) 

where 

f \ 1 - Pj 

Equation (7) is valid since the relation between s and u is s / ( l 
s) = ru/l (Dunn [7]). 

Deshpande 
Tsao [1] 
Baxley [2] 
Jefferson [9] 
Maxwell [10] 
Rayleigh [11] 

Average % 
error 
17.96 
17.79 
26.16 
22.42 
26.26 
26.23 

Error 
variance 

0.495 
0.423 
0.80 
0.88 
0.93 
0.93 

Average 
bias 

- 5 . 5 6 
6.88 

27.17 
18.34 
20.04 
20.08 

The two-dimensional porosity can then be calculated as 

P 2 = 1 _ p r ( s < Pi ) 

= ! - - [ ! + erf (p/y/2)] 
(8) 

The approximation is valid for I > 8 / j and Pi > f/r + t. 
Determination of Pa from Pearson's Tables. Pearson [8] developed 

extensive tables for the determination of the beta probabilities. 
These tables can be used to obtain P2 from Pi. 

Determination of the Effective Thermal Conductivity. After evalu­
ating Pi, equation (1) can be solved numerically for Ke, the 
effective thermal conductivity of two-phase systems. 

Presentation of Results 

All calculations were made on the I B M 7040 computer. The 
two-dimensional porosity P2 was evaluated for the beta-distribu­
tion model by the three methods discussed in this paper. 

Thermal conductivity of 10 two-phase systems was determined 
by equation (1) using data from the large-cylinder model as well 
as the small-cylinder model. As an illustration, the results for 
four of these systems, obtained from the large-cylinder model, 
are presented in Table 1. 

A statistical analysis of the results from the large-cylinder 
model was made. The performance of the beta-distribution 
model was compared with that of the models of Tsao [1], Baxley 
[2], Jefferson [9], Maxwell [10], and Rayleigh [11]. These re­
sults are presented in Table 2. 

Discussion of Results 

The maximum-likelihood estimates f and I were calculated 
for the six large-cylinder samples and four small-cylinder samples 
using the experimental Pi data of Leek et al. [4]. 

For some samples computational difficulties were encountered 
in the determination of P2 by the direct-integration method and 
the Dunn-Paulson method. Therefore it was decided to resort 
to the tables of the incomplete beta function [8] for evaluating 
P2 . 

For all the 10 two-phase systems, the authors' large-cylinder 
model gave good results when the solid volume fraction / was 
less than 0.3. For higher-volume-fraction solids, the model was 
unsatisfactory (see Table 1). 

One possible reason for this behavior may be the effect of 
particle interaction on the thermal conductivity of two-phase 
systems. These effects may be small in a two-phase system 
with low-volume-fraction solids so that the spatial-distribution 
model is adequate for predicting the effective thermal conduc­
tivity. The particle interaction effects may become significant, 
however, as the solid volume fraction is increased, so tha t the 
two-phase system can no longer be described by the spatial diK-
tribution of the solid particles alone. Consequently, the sta­
tistical model fails for high-volume-fraction solids. I t may also 
be noted tha t the deviation of the model-predicted thermal con­
ductivity from the experimental value becomes more pronounced 
as the ratio KJKC is increased. 

With small cylinders the authors' model fails completely, 
indicating a strong dependence of particle size on the thermal 
conductivity of two-phase systems. 

From Table 2 it can be seen that the authors' model along 

250 / MAY 1972 Transactions of the AS ME Downloaded From: https://heattransfer.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



with Tsao's model gives, for / < 0.30, better results than any 
other model tested. 

Conclusions 
From the results of this study it was concluded tha t : 

1 With large cylinders, the beta-distribution model predicted 
the two-phase thermal conductivity very well for low-volume-
fraction solids (/ < 0.30). The model failed completely for 
/ > 0.30. 

2 The thermal conductivity of suspensions was dependent 
on the size of the suspended particles. 

3 Although theoretically unsound, the predictability of 
Tsao's model (large cylinders, / < 0.30) was as good as tha t of 
the authors' model. His model was also inadequate for high-
volume-fraction solids. 
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On the Freezing of Tissue 

T. E. COOPER1 and G. J . TREZEK^ 

Nomenclature 

cb = blood specific heat 
k, kf = thermal conductivity of unfrozen and frozen phases, 

respectively 
Ka, Ki = modified Bessel functions 

mb = blood mass flow rate 
r, x = position in field 

r0, xa = probe radius or half-thickness 
B, L = location of frozen-unfrozen interface 

&b> Sm = heat generation due to blood flow and metabolism, re­
spectively 

T, Tf = temperatures in unfrozen and frozen phases, respec­
tively 

Tb = systemic arterial blood temperature 
To = tissue temperature far from probe 

Tpc = phase-change temperature 
Ts = probe surface temperature 
d = nondimensional unfrozen-tissue temperature, [(T — 

r . ) / (r . - To)] 
8f = nondimensional frozen-tissue temperature, \{Tt — 

T0)/{TS - To)] 
6pc = nondimensional phase-change temperature, [(Tpc — 

To)/(T. - To)] 
$ = nondimensional probe surface temperature, (—kf/k) 

X l(Tpc - Ts)/(Tpc - To)] 
(3 = blood flow parameter, mhcbro2/k or mbcbxa

2/k 
R, X = nondimensional position, r/n or x/xa 

r*,x* = nondimensional ice-front location, Rfro or L/xo 
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CRYOSURGERY, the technique of surgically destroying tissue by 
use of extreme cold, is a relatively new procedure which ac­
complishes tissue destruction by dropping the temperature of the 
target region below the freezing point. The frozen region, the 
lesion, is created by use of a cryogenic cannula (cryoprobe) which 
may be of various geometrical configurations. This technique 
has been used in a host of surgical applications [ l ] 3 which gen­
erally require the creation of one of two basic types of lesions, 
namely, those formed by an external application of the probe or 
those formed by inserting the probe deep into the tissue. The 
latter type of lesion formation has been used extensively in brain 
surgery as a means of destroying cancerous tumors and also as 
a treatment for Parkinson's disease. 

For the most part, cryosurgery, as presently practiced, is highly 
empirical [2], Our objective is to show how the analytical 
methods of heat transfer can be used to predict the steady-state, 
or maximum, lesion size which may be formed using standard 
cylindrical or spherical cryoprobes. A third probe configura­
tion, the planar case, is included mainly as a reference datum to 
depict geometrical effects. 

Bio-Heat Transfer Equation 
The steady-state energy equation governing the developed 

temperature field in in-vivo tissue takes the form 

fcV2T + Sm + Sb = 0 (1) 

where Sm represents the effect of metabolic heat generation, Sb 

accounts for the addition or removal of heat by the local blood 
flow, and k represents the thermal conductivity of the unfrozen 
tissue. When equation (1) is applied to the frozen tissue the 
terms Sm and »S6 vanish and there results V2Tf = 0. 

The quantity Sm is a function of the oxygen consumption rate 
of the tissue and, in a simplistic manner, the quantity Sb can be re­
lated to the perfusion rate, blood heat capacity, and the difference 
between the local tissue temperature and the blood temperature as 
follows: 

Sb = mbcb(Tb - T) (2) 

3 Numbers in brackets designate References at end of technical 
brief. 
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