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Abstract

This paper introduces a new method to estimate the weakly e,cient set for the Multiobjective Linear
Fractional Programming problem. The main idea is based on the procedure proposed by Tzeng and Hsu (In:
G.H. Tzeng, H.F. Wang, U.P. Wen, L. Yu (Eds.), Multiple Criteria Decision Making, Springer, New York,
1994, pp. 459–470), called CONNISE. However, as we will explain in this paper, the CONNISE method is
not always convergent for problems with more than two objectives. For this reason, we have developed a new
method, called “The Controlled Estimation Method”, based on the same concept as CONNISE regarding the
decision-maker being able to control distances between points from the estimation set he/she wants to Bnd,
while ensuring the method is convergent with problems with more than two objectives. Thus, we propose
an algorithm able to calculate a discrete estimation of the weakly e,cient set that veriBes this property of
the CONNISE method, but further, improves it thanks to its convergence and the fact that it satisBes the
three good properties suggested by Sayin (Math. Programming 87(3) (2000) 543): Coverage, Uniformity, and
Cardinality.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The term Fractional Programming is used to denote a type of optimization problems where
the objective function is a quotient, f(x)=g(x), subject to certain constraints. Linear Fractional
Programming refers to the same kind of optimization problems, but where the numerator and the
denominator are a,ne functions, and the feasible set is a convex polyhedron. Fractional Programming
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has been widely reviewed by many authors (Schaible [1], Stancu-Minasian [2], and [3]), and there
are entire books and chapters devoted to this subject (Craven [4], Stancu-Minasian [5], Horst and
Pardalos [6], and Horst et al. [7]). Stancu-Minasian has also provided over the years an updated
bibliography on the subject (Stancu-Minasian [8–12]).

This paper will focus on the Multiobjective Linear Fractional Programming problem (MOLFP),
i.e., we will be dealing with the following problem:

max
{
’1(x) =

ct1x + �1
dt1x + 
1

; : : : ; ’p(x) =
ctpx + �p
dtpx + 
p

}

s:t Ax6 b;

x¿ 0;

(MOLFP)

where c; d∈Rn; �i; 
i ∈R;A∈Mmxn(R) and b∈Rm. Let X be the feasible set for this problem; that
is, X = {x∈Rn=Ax6 b; x¿ 0}; and fi(x) = ctix + �i, gi(x) = dtix + 
i.
In this problem the deBnitions of e,cient point and weakly e,cient point used in Multiobjective

Programming are extended in a natural way. From now on, we will denote as E the e,cient set of
the problem, and Ew the weakly e,cient set.
The method introduced in this paper is inspired by a procedure suggested by Tzeng and Hsu [14],

CONNISE, which is a combination of the Constraint Method and the NISE Method, Cohon et al.
[15], for solving multiobjective linear programming problems.

The CONNISE method has been specially developed for Multiobjective Linear Fractional Pro-
gramming. The CONNISE method is based on Bnding an estimation of the weakly e,cient frontier
(’(Ew)) containing points from all regions of the set, such that the distances between these points
do not exceed a given quantity previously established by the decision-maker. However, although the
idea is good, our experience of this method for solving problems with more than two objectives
reveals that convergence is not always attained. The next section will be devoted to justifying this
assertion in detail.

Given that the idea of the decision-maker controlling the distance between the points of the
estimation obtained is highly interesting, we decided to develop a method using the same concept,
which calculates a discrete estimation of the weakly e,cient set of the MOLFP problem using the
Constraint Method as a basis, but whose convergence is ensured. Besides controlling the distances,
the method we introduce satisBes the three properties proposed by Sayin [13] for discrete estimations
of the e,cient and weakly e,cient sets of multiobjective problems: Coverage (i.e., the estimation
must have points from all the regions of the set), Uniformity (the estimation should not include
redundant information), and Cardinality (the estimation should have a reasonable number of points).

The rest of the paper is as follows.
The next section will be devoted to a brief description of the CONNISE method and the reasons

for asserting that this method is not convergent, which is the main motivation for developing a
new method. The Controlled Estimation Method is introduced in Section 3, with a description of its
theoretical framework as well as a proof of its convergence and the fact that it satisBes the required
property of control of the distances between the estimation points, and the properties suggested by
Sayin. Then, we introduce the algorithm step by step in Section 4, and illustrate it with an example.
Finally, Section 5 presents the conclusions derived from our work.
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2. The CONNISE method

We begin this section by brieNy reviewing the CONNISE method, proposed by Tzeng and Hsu
[14], for the MOLFP problem. Following the description of the procedure used in this method, we
demonstrate the lack of convergence. To this end, a linear fractional problem with three objectives
is used as an example. As we will see, the problem lies in the fact that setting the bounds between
certain values in the Constraint Method does not necessarily mean that the functions evaluated in
the optimum solution will also be between those values.

In the CONNISE method, after calculating the Euclidean distance between the ideal and the
anti-ideal vector of the problem, the decision-maker is asked to give the percentage of this distance
he/she is willing to set as the maximum distance between the points obtained by the method (always
in the objective space). The value resulting from applying the chosen percentage to the distance
between the ideal and the anti-ideal is denoted by c∗. From this point onwards, the iterative process
of the method is laid out. Each step aims at solving a constraint problem, and so the function chosen
as the one to be optimized is maintained throughout the whole process. This method is based on
choosing the bounds in the constraint problems which are diOerent for each iteration.

In the Brst iteration, bounds are set between the ideal value (denoted as D∗) and the anti-ideal
value (D ) previously obtained (the mean point of this value is usually taken). Given that the result-
ing solution to the constraint problem—in the objective space—is denoted by Dk = {’k1; ’k2; : : : ; ’kp},
then the CONNISE method divided the objective space into 2p subspaces, each of them with diOer-
ent extreme values (called “ideal” and “anti-ideal” values of the subspace), where D∗

1 = D∗; D1 =
Dk ;D∗

2p =Dk; D2p =D , and the remaining subspaces bounded by diOerent component-wise combi-
nations between these three vectors.

For each subspace established in the previous step (except for the Brst and the last one, since
they will not give weakly e,cient points), the “maximum error possible” (ci) is calculated as the
normalized distance between the ideal and anti-ideal solutions of this ith subspace. This distance ci
will be compared to the maximum distance allowed, c∗.
The iterative process is thus established. Taking into account that we are in the ith subspace, a

new constraint problem is solved by taking the bounds between the extreme values of this subspace,
that is, between D∗

i and Di . With the solution obtained, the subspace is again split into 2p − 2
subspaces, and the distances, ci, are measured again, and so on. The algorithm ends when all the
maximum errors obtained in the diOerent subspaces that have been generated are lower than the
allowed maximum distance c∗. It is necessary to obtain a list of solutions Dk such that ci ¡ c∗ for
each i in all the subspaces created.

Thus, this method assumes that the errors calculated, ci, get smaller and thus there will come a
time when all the errors will be smaller than the one chosen by the decision-maker, c∗. For the errors
to grow smaller (and since the errors are calculated from the distance between the extreme values
of the subspace) the solution point in the given subspace should lie between the corresponding ideal
and anti-ideal of such a subspace. However, this does not always have to be the case.

Let us assume that we are not in the Brst iteration of the problem, and we are in a given subspace
“s” such that the associated error is cs¿ c∗, which means that we must stay in this subspace. Then,
a constraint problem is solved where the bounds are taken from between the vectors D∗

s and Ds and
we obtain the corresponding solution Dks . The fact that the bounds were taken from between the ideal
and the anti-ideal values of the subspace (since this is not the Brst iteration and that these values have
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been created in an artiBcial way without representing any actual ideal or anti-ideal value) it does
not necessarily mean that the solution Dks is found among the vectors D∗

s and Ds component-wise.
In other words, Dks can be such that dist(Dks ; D

∗
s )¿dist(Ds ; D∗

s ) or dist(Dks ; Ds )¿dist(Ds ; D∗
s ),

and in such a case, the error associated with the subspaces arising from the current s will not be
strictly smaller than cs; on the contrary, it will be greater. Therefore, the method will never stop
iterating in this subspace.

Let us demonstrate this by way of an example. We will use the example Kornbluth and Steuer
used [16] to illustrate their method to locate all the vertices of the weakly e,cient set of the MOLFP
problem. The problem is the following:

Example 1. Let the problem be

max
{

−x1 + x2;
x1 − 4

−x2 + 3
;
−x1 + 4
x2 + 1

}

s:t −x1 + 4x26 0;

x1 − 0:5x26 4;

xi¿ 0; i = 1; 2:

(1)

We apply the CONNISE algorithm to it. The calculation of the ideal and anti-ideal vectors for
this problem yields the following results:
D∗ = (0; 0:307692; 4); D = (−3:42857;−1:333333;−0:266667).
In order to apply the Constraint Method, the second objective function is chosen to be optimized.

Once the decision-maker has provided a percentage regarding the distance between these values as
the maximum distance between the points that will be obtained, the problem to solve is as follows
in the Brst iteration:

max
x1 − 4

−x2 + 3

s:t −x1 + 4x26 0;

x1 − 0:5x26 4;

−x1 + x2¿− 1:714285;

−x1 + 4
x2 + 1

¿ 1:86667;

xi¿ 0; i = 1; 2:

The solution to this constraint problem, for the objective space, is the following:
D1 = (−1:714285;−0:749709; 1:86667)
So, when establishing the splitting subspaces of the objective space, we have as extreme values

as in Table 1:
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Table 1
Values of the ideal and anti-ideal solutions in the subspaces created

Subspace Ideal solution Anti-ideal solution

1 D∗
1 = (0; 0:307692; 4) D1 = (−1:714285;−0:749709; 1:86667)

2 D∗
2 = (−1:714285; 0:307692; 4) D2 = (−3:42857;−0:749709; 1:86667)

3 D∗
3 = (0;−0:749709; 4) D3 = (−1:714285;−1:33333; 1:86667)

4 D∗
4 = (0; 0:307692; 1:86667) D4 = (−1:714285;−0:749709;−0:26667)

: : : : : : : : :

In order to Bnd the counterexample, let us assume that we are iterating in the fourth subspace;
that is, we are in a subspace of the objective space where the extreme values are the following:
D∗

4 = (0; 0:307692; 1:86667),
D4 = (−1:71429;−0:749709;−0:266667).
Using again the Constraint Method by setting as bounds the mean points between these ideal and

anti-ideal values for the remaining objective functions, we obtain the following problem:

max
x1 − 4

−x2 + 3

s:t −x1 + 4x26 0;

x1 − 0:5x26 4;

−x1 + x2¿− 0:857145;

−x1 + 4
x2 + 1

¿ 0:8;

xi¿ 0; i = 1; 2:

and the result is
Dk4 = (−0:857145;−1:04762; 3:14286).
Note that the components of this point are not among the ideal and anti-ideal components of such

a subspace:
D∗

4 = (0; 0:307692; 1:86667),
D4 = (−1:71429;−0:749709;−0:266667).
Thus, for the second objective function, the solution Dk4 takes a value smaller than the corre-

sponding anti-ideal, and for the third function, it is greater than the ideal of that subspace. This
means that the errors resulting from possible subspaces obtained from these three solutions will not
be increasingly smaller, and so the iteration will never end via this subspace. In other words, the
CONNISE method will not be convergent for this problem.

Although initially we thought that the solution to the problem would lie in choosing other bounds
between the ideal and the anti-ideal vectors (and not always the mean values), further analysis of the
results obtained revealed that this was not the case. Even with a more rational selection of bounds,
there always comes a moment when the errors arising from a given subspace do not decrease, and
therefore, the algorithm is not convergent.
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3. The controlled estimation method

We now introduce the method suggested in this paper. As outlined earlier, our objective was to
obtain a method with the same good property of distance control as the CONNISE method, but to
eliminate its disadvantage and ensure convergence. However, given that we are dealing with a discrete
estimation of the weakly e,cient set of a multiobjective problem, we have created a method that
satisBes the three properties which according to Sayin [13], any estimation should satisfy: Coverage,
Uniformity, and Cardinality.

Besides fulBlling these three properties, the proposed method gives the decision-maker the possi-
bility of choosing whether the estimation is established in relation to the set Ew, or in relation to
its image ’(Ew).
Let us now view the procedure followed by the controlled estimation method.
We begin by calculating the pay-oO matrix of the problem in order to obtain the ideal and the

anti-ideal points for each objective function, x∗i , and their respective values in the objectives space,
’∗
i . We also calculate the anti-ideal values ’i ; i = 1; : : : ; p, and then we calculate the distance

between the ideal and the anti-ideal points in Rp (using the norm L∞), that is,

E= max
i=1;:::;p

|’∗
i − ’i |:

In this way, E is a bound for the maximum distance that can be between two points of the weakly
e,cient frontier.

If the decision-maker was interested in estimating the weakly e,cient set Ew—in the decision
space instead of in the objective space—we will also need to make a previous estimation of the
maximum distance possible between two points of this set. To achieve this, let us maximize and
minimize the ideal points of each objective function component-wise. That is, if x∗i =(x∗1i ; x∗2i; : : : ; x∗ni),
let us build the points x max= (maxi=1; :::;p x∗1i ;maxi=1; :::;p x∗2i; : : : ;maxi=1; :::;p x∗ni) and x min in a similar
way by minimizing component-wise. Thus, the distance L∞ between this two points of Rn, denoted
by D, is considered to be the reference of the maximum error that can be between two points of
the estimation of the weakly e,cient set. In other words, it is D= ‖x max − x min‖∞.

As with the CONNISE method, we then ask the decision-maker to provide a percentage of this
maximum error, which in both cases will be the maximum distance between the solution points.
Then, we use the Parametric Constraint Method to obtain a Brst estimation of the set sought. This
method is a parametric version of the Constraint Method, where we progressively take one objective
function from all the ones available, and the bounds for the rest of them are taken by varying
between the corresponding ideal and anti-ideal in a uniform way. This version of the Constraint
Method permits us to estimate the set Ew, in such a way that no region from the set is uncovered.
We brieNy explain this.

The idea is to take a number of divisions of the anti-ideal–ideal interval (m) of the problem, where
the bounds ki will be calculated. Each objective function is consecutively chosen as the function to
be optimized and all possible bound vectors k = (ki); i = 1; : : : ; p; i �= j, fulBlling the relationship

ki = ’i + (si=m) · (’∗
i − ’i ); with si ∈ {0; 1; 2; 3; : : : ; m}

are generated for each function.
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We know that the Constraint Method produces Pareto weak optimum solutions without the need
to fulBll any other condition. Thus, if the feasible set is convex and all the objective functions are
quasi-concave or concave, then the reciprocal case is true. Such a result was proved by Ruiz-Canales
and RuB(an-Lizana [17]. In the Linear Fractional case, these conditions are veriBed and thus we can
be sure that by using the Constraint Method we obtain weakly e,cient solutions; and also all the
weakly e:cient solutions can be obtained by solving a constraint problem. Therefore, the great
advantage of using the parametric version of the Constraint Method is the fact that, thanks to this
result, the solution set generated contains points from all the regions of ’(Ew) since the objective
function has been varying among the one available, and the bounds used when applying the Constraint
Method have also been changing. The disadvantage of the Parametric Constraint Method is that it
provides the decision-maker with a large amount of useless information, because many of the points
obtained are either the same or very close to others already obtained, and so the same information
is repeated over and over again. The Controlled Estimation Method will solve this problem.

In the Controlled Estimation Method, the percentage the decision-maker has initially established
is used—after being divided by 100—to decide the number of interval divisions used to apply the
Parametric Constraint Method. If d is the percentage established by the decision-maker, the integer
part of 1=d is the number of interval divisions that are used when applying the Parametric Constraint
Method. After applying the Parametric Constraint Method as stated, we obtain a series of solution
points (all of them weakly e,cient, since they are the solutions to a constraint problem). If we are
interested in the estimation of ’(Ew), we will use their images.
As stated, we can be sure that the solution set generated so far contains points from all regions

of Ew, or ’(Ew). In other words, the Coverage of the Brst estimation is ensured. Obviously, the
coverage level is given by the number of interval divisions used, since the greater the number, the
more constraint problems are solved, and as a consequence the coverage of this Brst estimation is
greater. Next we deal with the Cardinality and Uniformity of the estimation.

In order to solve this issue, we will Blter the points obtained in the previous step and the
decision-maker can choose whether the Bltering will be done in the objective space or in the decision
space. To this end, let us consider a Bltering range �= �d, where �∈ (0; 1) (usually �= 0:8).
Let us assume Brst that the decision-maker is interested in the objective space. Given the Bltering

range, �, we measure the distances of the values for each objective function in the points obtained,
and these distances are compared to �=|’∗

i −’i |. If, for every i=1; : : : ; p, this distance is less than
the value compared to, one of the two points being compared is eliminated from the point list. This
is done with all the points in the list, that is, with all the points that were obtained by applying the
Parametric Constraint Method.

Assuming that the decision-maker was interested in the decision space, the distance between the
points would be measured and compared, component-wise, with �=|x maxj − x minj| for j=1; : : : ; n.

Once the Bltering is concluded, we can be sure that we are left only with those points that—either
in the objective space or in the decision space—have a distance between each other, at least in one
component, that is less than or equal to �=|’∗

i −’i | or �=|x maxj−x minj|, respectively. In this way,
Uniformity is ensured in the sense that the estimation does not include any redundancy. Cardinality
is also be ensured since both properties are closely related, i.e., if the estimation does not contain
redundancies, the number of points included has been necessarily reduced.

However, when creating the Controlled Estimation Method we also aimed at guaranteeing the
decision-maker that the points obtained estimate either Ew, or ’(Ew), with a maximum error equal



1828 R. Caballero, M. Hern�andez / Computers & Operations Research 31 (2004) 1821–1832

to a percentage d of the maximum distance, D or E. To achieve this, the following step is to calculate
the distances between the points obtained after Bltering, and so we hold those whose distances to
their closest point is higher than the permitted value dD or dE. These are called “loose points”. If
such points do not exist, the method ends by displaying the points obtained after the Bltering and
ensuring that we have a non-redundant estimation of the set sought and that the distances between
points are controlled by the decision-maker.

On the other hand, if we obtain loose points, the algorithm has to carry on iterating. For each
loose point found, we consider its closest point in the estimation, take the values of the objective
functions in these two points, and use them as the new ideal and anti-ideal vectors to once again
apply the Parametric Constraint Method, where the number of interval divisions increases by the
unit, and the bounds vary, in this case, within the values of the functions in the loose point and
its closest point. In this way, we are sure to obtain a set of new weakly e,cient points whose
images are found in the region of the Ew set less covered initially. We will probably Bnd weakly
e,cient points from other regions of the set—this is well-illustrated in the example given in the next
section—since changing the bounds within certain values in order to apply the Constraint Method
does not mean that all the resulting points will necessarily be found among these values. However,
in contrast to the CONNISE method, this fact is no hindrance in the Controlled Estimation Method,
since a new Bltering is carried out taking into account both the new points as well as those obtained
in the previous step.

So, as we have just said, in order not to give the decision-maker recurrent information, the next
step is to again Blter the new points obtained while also including those obtained in the previous
step. However, to make sure that not too many points are discarded and a loop is not created, the
Bltering range is increasingly reduced. Every time an iteration is carried out during the Bltering, we
take as new � the value resulting from multiplying �—recall that � was smaller than the unit—by
the earlier �. In this way, as the Bltering range decreases, the possibility of falling into a loop is
eliminated.

Once this is done for all the loose points in the Brst round, we are left with a much more reBned
estimation of the set, whether, Ew or ’(Ew), where the uniformity is now given by the new smallest
� that has been considered. This process will have to be repeated until, for all the points obtained,
the distances to their closest point in the estimation are smaller than the value established by the
decision-maker (dD or dE). In other words, the algorithm ends when we do not Bnd any other loose
point among the points we have in the estimation. In this way, the control of distance between the
points in the estimation is ensured.

Next, we will show the convergence of the Controlled Estimation Method, before presenting a
step-by-step procedure of the method in the next section.

Our method can ensure convergence mainly because, in the Linear Fractional Multiobjective prob-
lem, all the weakly e:cient points can be obtained through the constraint method. As shown, the
Controlled Estimation Method makes use of a parametric version of the Constraint Method combin-
ing all the objective functions available and taking the bounds in a uniform way with an increasingly
Bner sweep of the bounds in the regions which have not been so well covered by previous iterations.
The application of the Parametric Constraint Method in an iterative and increasingly more reBned
way—and given that all the points of the estimated set have to be necessarily obtained by solving a
constraint problem—guarantees that we obtain new weakly e,cient points close to the loose points
during the pre-Bltering estimations.
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This fact, together with the gradual reduction of the Bltering range—i.e., the same points will not
always be discarded and so there is no danger of falling into a loop—means that at some stage
there will be no more loose points. As a consequence, the convergence of the Controlled Estimation
Method is proved.

However, the more the iterations needed to avoid loose points, the worse the uniformity of the
estimation will be, since the Bltering range has been reduced.

4. The algorithm

We will now present and develop the proposed algorithm in detail assuming that the decision-maker
is interested in points from the objective space. The algorithm would be analogous for the decision
space.

Algorithm.

Step 1. Calculate E=maxi=1; :::;p |’∗
i −’i |. Ask the decision-maker for the percentage d wanted.

Let �= d=100.
Let the solution lists be, S = ∅, A= ∅. (S: Points of current estimation, A: Loose points.)
Step 2. Let m = E(1=d). Iterate using the Parametric Constraint Method with this number of

interval divisions.
The solutions obtained will be added to the list S.
Step 3. Let �= ��, with �∈ (0; 1). Let us assume that S = {x1; : : : ; xN}.
For each xj from S, take xk of S for every k = 1; : : : ; N ; k �= j.
If |’i(xj) − ’i(xk)|¡�=|’∗

i − ’i | for every i = 1; : : : ; p, then eliminate point xk from the list S.
Let N = N − 1.
Carry out this procedure until there are no more points to compare in S.
Step 4. Given that S = {x1; : : : ; xN}, for each xj; j = 1; : : : ; N Bnd the closest point xk ; k =

1; : : : ; N ; k �= j (in the objective space) with the distance d∞, to xj. Let us assume that the closest
point is xK .

If ‖’(xj) − ’(xK)‖∞¿ dE, then xj is a loose point. Introduce xj in the list A.
Repeat this step for every xj of S. Go to Step 5.
Step 5. If A= ∅, END. The solution points are those included in the list S.
If A �= ∅, go to Step 6.
Step 6. Let m= m+ 1.
Assuming that A= {x1; : : : ; xM}, for each xj of A, take the point xk of S closer to xj, calculated

in Step 4.
Take ’(xj) and ’(xk), and make an iteration using the Parametric Constraint Method where the

bounds are taken from these values, and with the number of interval divisions m. Add the solutions
obtained to the list S.

Once this step is carried out for every point of A, go to Step 7.
Step 7. Make A= ∅ and go back to Step 3.
Let us conclude the development of the method suggested by illustrating its use with a speciBc

problem.
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Fig. 1. Problem set Ew and the points obtained in the estimation.

Example 2. Let us apply the Controlled Estimation Method to problem (1) used to demonstrate that
the CONNISE method did not converge

max
{

−x1 + x2;
x1 − 4

−x2 + 3
;
−x1 + 4
x2 + 1

}

s:t −x1 + 4x26 0;

x1 − 0:5x26 4;

xi¿ 0; i = 1; 2:

(2)

Let us assume that we are interested in estimating the set Ew (in this way, we have the possibility
to depict the estimation graphically). The distance between the ideal and the anti-ideal vectors of
this problem is calculated, D = 4:57143, then we assume the decision-maker wants a 25% error
on this distance. This means that the Brst number of interval divisions to be applied is 4. After
applying the Parametric Constraint Method with this number of interval divisions, we obtain 49
weakly e,cient points covering the whole set, but not all of them are diOerent from each other.
A Bltering process is applied to these points with a range of �=0:8 × 0:25=0:2(� = 0:8). After
this procedure, 8 points are left (x1; : : : ; x8 in Fig. 1) distributed throughout the set Ew, and with no
redundancy in the information provided.

When checking the distance between these points, we see that point x8=(0; 0) is a loose point, since
the distance to its closest point in the decision space, x7 = (1:23077; 0), is 1:23077, which is greater
than the distance chosen by the decision-maker (in this case, 0:25× 4:57143=1:142857). Therefore,
setting the bounds by moving among the values the objective functions take between points x7 and
x8, the Parametric Constraint Method is applied again, but the new number of interval divisions is
now 5, and then we Blter the points obtained using a new Bltering range, �= 0:8 × 0:2 = 0:16.
After this step, two new points are obtained for the estimation—x9 and x10 in Fig. 1—but, when

calculating the distances of these two points plus those previously obtained, x8 = (0; 0) is again a
loose point, since the closest point to it in this new estimation is still x7 = (1:23077; 0).
Thus, we have to repeat the process, although now the points obtained after applying the Parametric

Constraint Method are Bltered with a range of �=0:8× 0:16= 0:128. Then, the estimation increases
in two new points, x11 = (2:46154; 0) and x12 = (0:61539; 0), the latter being located between x8 and
x7, and thus when checking for loose points no more are found and so the algorithm ends.

The Bnal estimation of the set Ew; {x1; x2; : : : ; x12} has the required properties: a reasonable number
of elements to be oOered to the decision-maker; it has no redundancies, and it also covers the totality
of the set Ew ensuring that in the estimation the maximum distance from a point to its closest one
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is smaller than or the same as the distance requested by the decision-maker. The points obtained are
shown in Fig. 1.

If another error percentage had been chosen, the results would have been analogous. As expected,
the smaller the error allowed, the greater are the number of points per estimation. For instance, in
our example, using a 10% error on the distance between the ideal and anti-ideal vectors, we make
a Brst estimation resulting in 30 points with two loose points and subsequently, carry out a second
iteration that yield 37 points. These 37 points are distributed throughout the weakly e,cient set, and
none of them are a loose point. The Bltering range, which to a certain degree measures uniformity,
has been reduced in this instance to a value of �= 0:064. On the other hand, if the decision-maker
allows a 50% error over the maximum distance, our example would not yield any loose points in the
Brst iteration, and the Bnal iteration would yield only 4 points, presenting a Bltering range of �=0:4.
Therefore, we think it is important to be able to chose a greater or smaller percentage according to
how Bne or coarse is the estimation required.

The Controlled Estimation Method has been implemented in a software package for Windows,
called PFLMO, together with other solution search methods for the MOLFP problem. The PFLMO
software is one of the few applications including all the main methodologies available for solving
MOLFP problems.

We have tested our method with this software in order to test its e,ciency and its compliance with
the properties proposed by Sayin [13]. The testing has been carried out by solving a large number
of test problems randomly generated and with diOerent dimensions. The results were positive in all
cases.

5. Conclusions

We have developed a new method to solve Multiobjective Linear Fractional problems which uses
generative techniques and is called the Controlled Estimation Method. As demonstrated in this work,
this new method is able to establish a discrete estimation of the problem’s weakly e,cient set
such that the distances between the values of the objective functions are less than the value set
by the decision-maker. This concept is behind the creation of the new method. We think that it is
important to oOer the decision-maker the possibility to obtain an estimation of the e,cient set with
some control over the errors between the estimation points, although this should be done without
including redundant information.

The method we have just described oOers an estimation of the chosen set, Ew or ’(Ew), that is
given by those points included in the list S once the algorithm concludes. The points of this set are
all weakly e,cient points of the multiobjective linear fractional problem, and the estimation of the
set (or its image), is such that the following properties are veriBed:

• It contains points from all the regions in the set (Coverage).
• It is uniform in the sense of not oOering recurrent information. The points in this estimation have

a distance between each other, component-wise, of at least �, which has been normalized by using
the maximum distance of the set (Uniformity).

• Thanks to this uniformity, the estimation has a good degree of cardinality in the sense that the
decision-maker is not given a large number of points of the set (Cardinality).
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• Finally, the errors between the estimation points do not exceed the maximum established by the
decision-maker by a percentage of the maximum distance between two points of the set (the
CONNISE method tried to fulBll this property).

The method has been illustrated by using an example that clearly shows these properties.
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