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Abstract— In this paper, we take a minimax approach
to the problem of computing a worst-case linear mean
squared error (MSE) estimate of X given Y , where
X and Y are jointly distributed random vectors with
parametric uncertainty in their distribution. We consider
two uncertainty models, PA and PB . Model PA repre-
sents X and Y as jointly Gaussian whose covariance
matrix Λ belongs to the convex hull of a set of m
known covariance matrices. Model PB characterizes X
and Y as jointly distributed according to a Gaussian
mixture model with m known zero-mean components,
but unknown component weights. We show: (a) the
linear minimax estimator computed under model PA
is identical to that computed under model PB when the
vertices of the uncertain covariance set in PA are the
same as the component covariances in model PB , and (b)
the problem of computing the linear minimax estimator
under either model reduces to a semidefinite program
(SDP). We also consider the dynamic situation where
x(t) and y(t) evolve according to a discrete-time LTI
state space model driven by white noise, the statistics of
which is modeled by PA and PB as before. We derive
a recursive linear minimax filter for x(t) given y(t).

I. INTRODUCTION

The problem of filtering noisy measurements generated
by linear discrete-time dynamical systems with Gaussian
additive noise has been studied extensively in the litera-
ture beginning with the seminal work of Kalman [4]. A
subset of this work, robust filtering, explicitly accounts for
uncertainty in the system model [1], [2], [3], [7], [9], [10],
often assuming that the underlying noise model is accurate.
However, in practice this assumption may be suspect, which
can lead to poor worst-case filter performance. The work in
[8] considers the problem of designing a linear minimax
filter for a linear Gaussian system with uncertainty in the
covariances of the process and measurement noise, where
the covariance matrices are assumed to live a convex set
and offers heuristics for computing the set of least favorable
covariances.

In this paper we treat uncertainty in the noise model
by allowing the noise covariance matrix to be unknown but
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confined to a convex polyhedral set with known vertices.
For the static case of two jointly Gaussian random vectors,
X and Y , we show that problem of computing a linear
minimax estimate of X given Y under squared-l2 loss can
be reformulated as a semidefinite program (SDP). Moreover,
we connect these results to the alternative static case where
X and Y are modeled as being jointly distributed according
to a Gaussian mixture model with known zero-mean com-
ponents, but unknown component weights.

We also consider the dynamic situation where the
stochastic processes, {x(t)} and {y(t)}, evolve according
to a discrete-time LTI state space model with additive noise
in the state-transition and measurement maps. We extend the
results in the static case to derive a recursive linear minimax
filter for x(t) given y(t).

II. PROBLEM FORMULATION

Consider two jointly distributed random vectors X ∈ Rnx

and Y ∈ Rny . Define Z=̇
[
X∗, Y ∗

]∗. We assume
that distribution of Z belongs to the parametric family of
probability distributions Pθ = {Pθ : θ ∈ Θ}, where Θ is
some convex set.

As the parameter θ ∈ Θ is unknown, we address the
problem of computing a linear minimax estimate of X
given Y with respect to the standard l2 loss function. More
precisely, we consider the optimization problem

J(K◦) = min
K∈K

max
θ∈Θ

Eθ ‖X −KY ‖22 (1)

where expectation is taken with respect to p(x, y; θ) and
K = Rnx×ny . In our exposition, we investigate and
establish connections between two commonly employed
uncertainty models.

A. Uncertainty Model PA

Model PA represents the family of zero-mean Gaussian
distributions N (0,Λ) whose covariance matrices Λ are
constrained to live in the convex hull of a set of m covari-
ance matrices. More, precisely, Λ ∈ Λ=̇Co{Λ1, · · · ,Λm}.
Hence, PA is defined as

PA =̇ {N (0,Λ) : Λ ∈ Λ} (2)

B. Uncertainty Model PB

Model PB represents the the family of Gaussian mixture
models where each component i ∈ {1, · · · ,m} is zero-
mean with covariance Λi. More precisely,

PB =̇

{
m∑
i=1

αiN (0,Λi) :

m∑
i=1

αi = 1, αi ≥ 0

}
(3)
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III. MAIN RESULTS: STATIC CASE

Define the linear minimax estimation problems under un-
certainty models PA and PB respectively as:

JA(K◦A) = min
K∈K

max
Λ∈Λ

EA ‖X −KY ‖22 (4)

JB(K◦B) = min
K∈K

max
α∈A

EB ‖X −KY ‖22 (5)

where A = {a ∈ Rm+ :
∑m
i=1 ai = 1} is a probability

simplex and Λ = Co{Λ1, · · · ,Λm} is a convex polyhedral
set.

A. Equivalence

Theorem 3.1: The estimations problems under uncertainty
models PA and PB are equivalent:

JA(K◦A) = JB(K◦B) and K◦A = K◦B

Proof: Fix K. To establish this result, it suffices to show
that

max
Λ∈Λ

EA ‖X −KY ‖22 = max
α∈A

EB ‖X −KY ‖22

Taking expectation with respect to a distribution in PA,
consider the following

E‖X −KY ‖22 = E [(X −KY )∗(X −KY )]

= Tr
[

I
−K∗

]∗
Λ

[
I
−K∗

]
where E [ZZ∗] = Λ. Define
φ(K,Λ) =̇ Tr

[
I −K

]
Λ
[
I −K

]∗. Maximizing
φ(K,Λ) with respect to Λ, we obtain

max
Λ∈Λ

E‖X −KY ‖22 = max
Λ∈Λ

φ(K,Λ) = max
i∈I

φ(K,Λi)

(6)

where I = {1, · · · ,m}. The equality above follows from
the fact [6] that the maximum of a convex function over a
convex polyhedral set Λ is achieved at some vertex, i.e. for
some Λ ∈ {Λ1, · · · ,Λm}.

We now consider uncertainty model PB . Taking expec-
tation with respect to a fixed distribution in PB :

E‖X −KY ‖22 = φ

(
K,

m∑
i=1

αiΛi

)
=

m∑
i=1

αiφ(K,Λi)

The expression above is linear in α which is confined to a
convex set A. Consequently, we have that E‖X − KY ‖22
achieves its maximum at one of the vertices of the proba-
bility simplex A, yielding

max
α∈A

m∑
i=1

αiφ(K,Λi) = max
i∈I

φ(K,Λi) (7)

which agrees with (6), completing the proof. �

B. Reformulation as a SDP
Thus far, we have shown that JA(K◦A) = JB(K◦B) =
J(K◦) where

J(K◦) = min
K∈K

max
i∈I

φ(K,Λi) (8)

We now show that optimization problem (8) can be refor-
mulated as a SDP. Observe that

max
i∈I

φ(K,Λi) = min
γ
γ : φ(K,Λi) ≤ γ ∀i ∈ I

which yields

J(K◦) = min
K∈K,γ

γ : φ(K,Λi) ≤ γ ∀ i ∈ I (9)

Introducing the matrices W,M � 0 such that

M−1 � Λi and W �
[

I
−K∗

]∗
Λi

[
I
−K∗

]
for all i, problem (9) can be reformulated as the following
SDP:

J(K◦) = min
K,γ,M,W

γ : γ ≥ Tr W

Λ−1
i �M ∀i ∈ I
W � 0

M =

[
M11 M12

M∗12 M22

]
� 0 W I −K

I M11 M12

−K∗ M∗12 M22

 � 0 (10)

IV. MAIN RESULTS: DYNAMIC CASE

Consider

x(t) = Ax(t− 1) + w(t) (11)
y(t) = Cx(t) + v(t) (12)

where x(t) ∈ Rnx , y(t) ∈ Rny . The zero-mean white
stochastic processes, {w(t)} and {v(t)}, model process
and measurement uncertainty, respectively. The distribution
on the initial condition x(0) is assumed to be known.
We assume that the marginal probability distribution on
z(t)=̇[w(t)∗, v(t)∗]∗ is unknown, but constrained to live
in a parametric family, Pθ . We constrain the minimax filter,
x̂(t), to belong to the family of linear observers described
by

x̂(t) = Ax̂(t− 1) +K(t) (y(t)− ŷ(t)) (13)
ŷ(t) = CAx̂(t− 1) (14)

where K(t) ∈ K is the gain on the innovation at time t.
The estimation error, e(t)=̇x(t)− x̂(t), evolves as

e(t) = F (t)e(t− 1) +G(t)z(t) (15)

where

F (t) =̇ (I −K(t)C)A (16)
G(t) =̇

[
(I −K(t)C), −K(t)

]
(17)
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For a particular θ ∈ Θ, the error covariance matrix,
Pθ(t)=̇Eθ [e(t)e(t)∗], evolves as

Pθ(t) = F (t)Pθ(t− 1)F (t)∗ +G(t)ΛθG(t)∗ (18)

where Λθ=̇Eθ [z(t)z(t)∗]. Iterating (18) backwards to the
initial condition, P0, gives

Pθ(t) = F(1 : t)P0F(1 : t)∗ +G(t)ΛθG(t)∗

+

t−1∑
τ=1

F(τ + 1 : t)G(τ)ΛθG(τ)∗F(τ + 1 : t)∗

where F(s : t)=̇
∏t
τ=s F (τ) for 0 < s ≤ t.

A. Problem Formulation
We are interested in computing a sequence of filter gain
matrices, {K(t)}, that minimize the expected l2 norm of the
estimation error e(t) for the worst-case probability density
in the parametric family Pθ at each time t. More precisely,
we are interested in solving problem (19) at each time t.

Jθ(Kθ(t)
◦) = min

K(t)∈K
max
θ∈Θ

Eθ ‖e(t)‖22 (19)

Continuing with the theme of the paper we consider two
uncertainty models, PA and PB , described in equations (2)
and (3) respectively.

B. Equivalence
We define the linear minimax estimation problems at time
t under uncertainty models PA and PB as

JA(KA(t)◦) = min
K∈K

max
Λ∈Λ

EA ‖e(t)‖22 (20)

JB(KB(t)◦) = min
K∈K

max
α∈A

EB ‖e(t)‖22 (21)

Theorem 4.1: Assuming PA(0) = PB(0) = P0, we have
that estimations problems (20) and (21) are equivalent for
all t > 0:

JA(KA(t)◦) = JB(KB(t)◦) and KA(t)◦ = KB(t)◦

Proof: The result is proven by induction. Fix KA(1) =
KB(1) = K(1). To show that the assertion holds for the
base case (t = 1), it is sufficient to show:

min
Λ∈Λ

Tr PA(1) = min
α∈A

Tr PB(1) (22)

To further simplify, it is easy to show that equality (22)
holds if

min
Λ∈Λ

Tr G(1)ΛG(1)∗ = min
α∈A

Tr G(1)

(
m∑
i=1

αiΛi

)
G(1)∗

Begining with the left hand side, we have that

min
Λ∈Λ

Tr G(1)ΛG(1)∗ = min
i∈I

Tr (G(1)ΛiG(1)∗)

Expanding the right hand side, we have

min
α∈A

Tr G(1)

(
m∑
i=1

αiΛi

)
G(1)∗

= min
α∈A

m∑
i=1

αiTr (G(1)ΛiG(1)∗)

= min
i∈I

Tr (G(1)ΛiG(1)∗)

This completes the base case. Now assume that the assertion
holds for t = 1, · · · , T−1. Fix KA(T ) = KB(T ) = K(T ).
To show that the assertion holds for t = T , it is once again
sufficient to show that

min
Λ∈Λ

Tr PA(T ) = min
α∈A

Tr PB(T ) (23)

which can be further simplified to

min
Λ∈Λ

Tr G(t)ΛG(t)∗

+

t−1∑
τ=1

F(τ + 1 : t)G(τ)ΛG(τ)∗F(τ + 1 : t)∗ =

min
α∈A

Tr G(t)

(
m∑
i=1

αiΛi

)
G(t)∗

+

t−1∑
τ=1

F(τ + 1 : t)G(τ)

(
m∑
i=1

αiΛi

)
G(τ)∗F(τ + 1 : t)∗

Using arguments identical to those in the base case, it is
easy to show that the above identity holds true. �

Using the same line of reasoning in section III-B, it
is routine to show that problems (20) and (21) can be
reformulated as a SDP.

V. CONCLUSIONS

An interesting open question is to consider nonlinear estima-
tors of X given observations of Y . In this case, we believe
that uncertainty models PA and PB are not equivalent. We
intend to explore this problem shortly.

Another important problem that requires exploration is
that of identifying uncertainty models for noise signals.
While we have shown that uncertainty models PA and PB
are equivalent for linear estimation, it is unclear which of
these models best describes the noise signals given sample
paths of observations y(t). Efficient representations of un-
certainty for noise signals in the context of state estimation
remains open.
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