
INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY

Nanotechnology 16 (2005) 186–198 doi:10.1088/0957-4484/16/2/003

The oscillatory damped behaviour of
incommensurate double-walled carbon
nanotubes
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Abstract
The mechanical properties of sliding carbon nanotubes have been
investigated by classical molecular dynamics simulations in the canonical
ensemble. In particular we have studied damped oscillations in the
separation between the centres of mass of the inner and outer tubes of
double-walled carbon nanotubes (DWCN). Incommensurate DWCNs
forming (7, 0)@(9, 9) structures were simulated for systems at 298.15 K
with axial lengths from 12.21 to 98.24 nm. The oscillations exhibited
frequencies in the range of gigahertz with the frequency decreasing as the
length of the system increases. The time until oscillations become negligible
exhibited a nearly linear dependence on the length of the system. Two
macroscopic models were developed in order to understand the forces
involved in terms of macroscopic properties like friction and shear. The first
model considered constant restoring forces during the whole event, while in
the second the value of these constant restoring forces depended on the
initial conditions of each oscillation. Both models reproduced the
oscillations quite well, while the second model allows us to predict the
dynamic shear strength in terms of the axial length of the system for tubes
with the same diameters. The calculated dynamic shear strength exhibited
monotonic behaviour with an inverse dependence on the length of the
system. For systems with unequal axial lengths, the restoring force, which
drives the oscillation, is reduced compared to the system with equal lengths,
regardless of whether the outer nanotube is longer or shorter.

M This article contains online multimedia enhancements

1. Introduction

Theoretical research on nanoscale devices has rapidly grown in
recent years [1–4]. It is expected that these devices will enable
the realization of miniature versions of electronic integrated
circuits and mechanical systems [5], which will process
precisely, efficiently and with high productivity, matter, energy
and information [6]. Research has primarily focused on
structures that require precise control over the positioning of

molecular systems in order to be built and perform the activities
for which they were developed [7]. Technologies to manipulate
such systems are in the very early stage of development [8–
10], and include atomic force microscopy (AFM), and high-
resolution transmission (TEM) and scanning (SEM) electron
microscopy techniques, which are used to quantify and
verify the mechanical properties of nanoscale structures.
Multi-walled carbon nanotubes (MWCN) constitute a
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promising class of nano-materials, which has the appropriate
structure and properties to build nanoscale devices [2, 5, 11].

The technology to create carbon nanotubes has been
known for more than a decade [12]; however, the experimental
parameters that influence nanotube formation and control of
the outer diameter, number of shells, internal conformation
and axial length remain under investigation [13–15]. Using
chemical vapour deposition over catalytic nanoparticles of
discrete sizes, Li et al [13] have produced carbon nanotubes
with diameters close to the size of the catalytic nanoparticles.
The nanoparticles employed were made of iron oxide, and
were put in contact with methane and hydrogen at 1173 K.
This resulted in nanotubes with axial lengths in the range
0.01–10 µm, and outer diameters in the range 1–2, and 3–5 nm,
depending on the size of the nanoparticles. Suh and Lee [15]
have prepared uniform arrays of carbon nanotubes supported
on porous anodic alumina through an electrochemical process.
This process uses the anodic alumina as a template where
cobalt is deposited at the bottom of the template, reduced
and put in contact with pyrolized acetylene to form well
ordered nanotubes with highly uniform outer diameters (43.8±
0.8 nm) and lengths, which are confirmed by scanning electron
micrographs. Using thermal chemical vapour deposition at
atmospheric pressure, Siegal et al [14] have growth carbon
nanotubes from a nickel film using a mixture of acetylene and
nitrogen. These nanotubes have a very uniform outer diameter,
which depends exponentially on the temperature employed
during the process. Using a temperature of 903 K, this method
produces nanotubes with an outer diameter of 5 nm, and 350 nm
at 1063 K.

Despite success in controlling the outer diameter, axial
length and ordering of nanotubes supported on a surface,
limited progress has been made in controlling the internal
conformation of each wall in the system, which is the most
important parameter in determining electric and mechanical
phenomena. The internal conformation is characterized by
the chiral indices (n, m). These indices dictate in which
direction the graphite sheet is bent and rolled over to form
the nanotube [16]. Nanotubes can be either of the armchair
(n = m), zigzag (n = 0, or m = 0), or chair (any other n
and m) variety. This internal conformation can be determined
experimentally using scanning tunnelling microscopy for
single-walled carbon nanotubes [17, 18], but for DWCNs
and MWCNs this method cannot be employed. Combining
transmission electron microscopy and electron diffraction
techniques, recently Kociak et al [19] have been able to deduce
the chiral indices of each nanotube in DWCN structures, but
experimental methods that can produce nanotubes with specific
chiral indices have not yet been reported in the literature.

Among the interesting mechanical properties exhibited by
DWCNs, superlubricity (very low friction forces compared
to graphite) between their walls has been predicted
theoretically [20–22]. Using calculations of the corrugation
energy, Damnjanovic et al [20] have predicted that, in
general, the friction between the walls will be extremely low
in MWCNs, and superlubricity is present for the case of
incommensurate systems. This is a consequence of the low
symmetry, or even complete disorder, between the walls in
these systems. For any DWCN (n, m)@(n′, m ′) structure,
typically they will be incommensurate (but not always) if

n/m �= n′/m ′, and commensurate if n/m = n′/m ′ [21]. Using
the same type of calculations, Kolmogorov and Crespi [22]
have estimated that the shear strength will be ∼1 MPa for the
commensurate systems where the corrugation energy scales
with the size of the system and for incommensurate systems
they find that the corrugation energy does not scale with
size and the shear strength is ill defined. For simulation
purposes, the internal conformations of MWCNs can be chosen
in order to produce systems that fall into the commensurate or
incommensurate definitions.

There have been several theoretical, simulation and
experimental studies of friction forces between surfaces at the
atomic scale [23–25], dealing with the commensurability of the
surfaces. Using molecular dynamics simulations of curved,
non-adhering, dry surfaces, Wenning and Muser [23] found
different behaviour for the friction force Ff in commensurate,
incommensurate and amorphous systems with respect to the
normal load L . For commensurate systems the dependence
was found to be linear in the load, i.e. Ff ≈ L; for
amorphous systems Ff ≈ L0.66; for incommensurate systems
the dependence was not clear, similar to the conclusion
of Kolmogorov and Crespi [22] for nanotube surfaces. If
these incommensurate surfaces are contaminated with small
lubricant molecules, then the dependence between the friction
force and the normal load is well behaved, and Ff ≈ L0.85.
Muser and Robbins [24] have also studied flat commensurate
and incommensurate atomically smooth surfaces; they found
that commensurate surfaces hold together at zero lateral force
and positive normal pressures, while incommensurate surfaces
hold together at zero lateral force only when mobile atoms
are present in the interface between the surfaces or if the
walls are particularly soft. Super-low friction has been
observed experimentally in molybdenum disulphide coatings
at high vacuum conditions, and in the presence of nitrogen
atmospheres [25]. They conclude that the presence of carbon,
water or oxygen increase the value of the shear strength, which
at atmospheric air conditions is 56.0 MPa, while at ultra high
vacuum conditions this decreased to 0.7 MPa. In the case
of DWCNs, generally there is no possibility for molecules or
atoms to be located between the walls that form the system
because the intershell distance is 0.34 nm (same as graphite),
which corresponds to the van der Waals diameter for carbon–
carbon interactions.

The friction force between the outer surfaces of carbon
nanotubes with other material surfaces has been the focus of
several molecular simulation studies [26–28]. For example,
the sliding and rolling of carbon nanotubes on a graphite
surface has been studied by Buldum and Lu [26], who
found that each set of chiral indices of a nanotube have
a unique minimum energy orientation with respect to the
graphite surface. If the nanotube is pushed in any direction
along the graphite surface, the nanotube not only slides
but also spins looking for a new energy minimum. Using
molecular dynamics simulations, Ni and Sinnott [27] studied
the responses of bundles of carbon nanotubes to shear forces
between two sliding hydrogen-terminated diamond forces.
They used an analytic reactive empirical bond-order potential
developed by Brenner [29], coupled to a long-range Lennard-
Jones potential [30], and found that the shear forces are
relatively weak at low compression levels (∼0 GPa) of the
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diamond surfaces. At high compression levels (13.7 GPa), the
nanotubes bend in the radial direction, producing forces three
orders of magnitude higher than the system at low compression
levels. Brenner’s potential [29] was also used by Frankland
et al [28] to study the carbon nanotube–polymer interface
for cases when the nanotube was not linked to the polymer
and when the nanotube formed cross-links involving ∼1% of
the nanotube carbon atoms. For carbon nanotubes with chiral
indices (10, 10) and a length of 5.3 nm, they found that when
the nanotube was not linked, the shear strength is ∼2.75 MPa
independent of where the polymer formed a crystalline or
amorphous matrix; for the case when the nanotube was linked
to the matrix, the shear strength was 30 MPa for an amorphous
matrix, and 110 MPa for the crystalline matrix.

Composite materials of carbon nanotubes and metals [31],
polymers [32, 33] and fullerenes [34] have been the subject
of several molecular simulation and experimental studies.
Using a copper matrix reinforced with carbon nanotubes,
Dong et al [31] found experimentally that the coefficient of
friction decreased with the volume fraction content of carbon
nanotubes in the composite. When the content of carbon
nanotubes changed from 4 to 20%, the friction coefficient
decreased from 0.39 to 0.29. The effect is larger for the matrix
carbon-reinforced/copper, where on changing the nanotubes
volume fraction from 0.04 to 0.20%, the coefficient of friction
decreased from 0.43 to 0.29. Carbon nanotube-reinforced
epoxy thin films have been investigated experimentally by
Xu et al [32], and using molecular mechanics simulations
and micromechanics calculations. They found that strong
interfacial adhesion exists using very low volume fractions
of MWCNs. Similar behaviour was also found by Liao and
Li [33] in their simulations of carbon nanotube–polystyrene
composites. The shear strength of carbon nanotube–fullerene
composites was estimated experimentally by Kuzumaki et al
[34] and, contrary to the behaviour with polymers composites,
this interface showed a shear strength of 0.044 MPa. The
shear sliding observed is probably caused by the weak bonding
between these surfaces.

As shown by Damnjanovic et al [20], carbon nanotubes
in general exhibit extremely low friction forces between their
nested walls. The friction force and shear strength between
these inner walls has been estimated experimentally by two
groups. Yu et al [9] attached a MWCN to two tips through
electric discharges and then proceeded to apply a tensile load
until the outer shell of the MWCN broke. Using atomic
force and scanning electron microscopy, the interaction force
between the walls as a function of the contact length between
the outer and the inner nanotubes was measured. Two systems
were studied, one 2.2 µm in length with outer diameter of
30 nm and the second 7.5 µm in length and outer diameter
of 36 nm. Analysing the forces acting in this system, Yu
et al [9] estimated that the dynamic and static shear strength
were very low and equal; for the smaller system it was
0.30 MPa, while for the larger system it was 0.08 MPa. The
difference between these two values was attributed to different
interlayer spacing between the neighbouring shells and the
degree of commensurability in the studied systems. Cumings
and Zetl [8] performed a similar experiment, where one end of
a MWCN was attached to a surface, while the other end was
opened through a chemical reaction. The inner shell of the

MWCN was attached to a tip through an electrical discharge.
The inner shell was then pulled out, released from the tip
through another discharge, and the nanotube retracted by itself
over a period of less than 1 ns. The exact time could not be
quantified due to the physical limitations. But the experiment
was observed using transmission electron microscopy. Based
on this upper limit for the retraction time and estimating the van
der Waals forces, they estimated that the static shear strength
should be less than 0.66 MPa, while the dynamic shear strength
should be less than 0.43 MPa.

Simulations [22, 35–42] and theoretical studies [2, 5, 11]
have predicted interesting mechanical and electromechanical
applications for MWCNs. Applications as rotational
molecular nanobearings have been proposed by Merkle [2],
Tuzun et al [35] and Zhang et al [36]. They found that
the potential energy of the nanobearing is periodic and a
function of the rotational position; if the indices of the walls are
chosen to have short periods for the potential energy, then the
nanobearing will rotate without difficulty. The performance of
these nanobearings will depend on the temperature, velocity,
the size of the system, and the number of vibrational motions
present in the walls [37]. Modifying this system to have
electrical charges in the inner nanotube, Tuzun et al [35]
proposed that these nanobearings could work as rotational
molecular motors when two oscillating laser fields are applied
to the system. From their simulation results, they obtained
stable rotational motion at speeds up to about 1012 Hz.
Forro [5] proposed that by modifying the inner shell to have
charges, an electron current will produce a separation of the
inner shell due to the Faraday cage effect; when the system
is released of electron current, van der Waals interactions
will restore the system to its original position. Taking into
account these two effects, this system is proposed to work as an
electromechanical nanoswitch. Xia and Curtin [38] simulated
the pullout and friction forces of DWCNs attached to a surface
and they found that end effects and defects on the DWCNs
structures dominated these forces.

The last application of DWCN’s that we consider was
proposed by Zheng and co-workers [11, 41], and is the object
of study in this work. They proposed that if both ends of the
outer nanotube are eliminated, and the inner shells are pulled
apart from the outer nanotube to a distance where there is still
some contact area, then the nanotube will retract and will cross
the outer nanotube starting a process of oscillation which will
stop after some period of time. Based on estimations for the
van der Waals interactions between the shells of the nanotubes,
they predicted that the oscillations would show frequencies
on the gigahertz scale. Guo et al [39] and Legoas et al [40]
studied these oscillations at constant energy and found that the
oscillations under these conditions are in the gigahertz range
and that the frictional forces have the same order of magnitude
as in the experiments [8]. In a preliminary account of the
simulations described in this paper [42], we reported molecular
dynamics simulations of oscillations in a variety of DWCNs
at constant temperature. In this paper, we report these and
additional findings in detail (including the development of a
mathematical model to describe the simulation results). The
key methodological difference between our work and that of
Guo et al [39] and Legoas et al [40] is that our simulations
are conducted at constant temperature. Constant energy
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simulations correspond to simulations in a vacuum, where
there is no avenue for heat dissipation to the environment;
constant temperature implies that the nanotubes are in contact
with a heat sink, and we anticipate that in any actual application
of sliding nanotubes as oscillators that the nanotubes will
be attached to a surface which can act as a heat sink. A
realization of oscillatory nanotubes in practice will likely
lie somewhere between the constant energy situation and
the constant temperature one, since the DWCN will need to
be attached to some surface, but depending on the thermal
conductivity of the surface and the attachment area, the heat
flow to the surface is likely not to be fast enough to maintain
the nanotube at constant temperature. Based on our own
explorations involving simulations at constant energy and at
constant temperature, the oscillatory behaviour of DWCNs
in these two situations is qualitatively similar but differs in
quantitative details. Detailed comparisons between these two
situations will be the subject of a future study; in this paper,
we focus on the results from our constant temperature studies.
We proceed as follows, in section 2 we describe the potential
model used and in section 3 give details of the simulations
performed. In section 4 we present the results and conclude in
section 5.

2. Potential model

The potential model employed for the carbon nanotubes
was developed by Guo et al [43]. This model consists of
bond stretching (Morse potential), angle bending, coupled
bond stretching–angle bending, twofold torsions for the
intramolecular interactions, and Lennard-Jones intermolecular
interactions between the carbon atoms that form the nanotubes.
The model was fitted for sp2 carbon centres using experimental
lattice parameters, elastic constants and phonon frequencies for
graphite and has been used to predict the packing structures of
fullerenes C60 and C70. It has also been used to predict the heat
of sublimation for these molecules in excellent agreement with
experimental results [44]. Other studies have used this model
to predict uniaxial-strain behaviour, packing structure, lattice
parameters, vibrational modes and frequencies for bulk and
insulated carbon nanotubes [45], and doped carbon nanotubes
with potassium atoms [46]. This potential model was also used
by Tuzun et al [47] to simulate the flow of fluids inside carbon
nanotubes.

In the Guo et al [43] potential, the intramolecular
interactions are given by the following equations where EINT2,
EINT3,EINT2–3 and EINT4 are the 2-, 3-, coupled 2 and 3-, and
4-body interactions, respectively:

EINT2(ri j) = D2[1 − exp(−α(ri j − re))]
2 (1)

EINT3(θ) = 1
2 D3(cos θ − cos θe)

2 (2)

EINT2−3(θ) = D2−3,1(rA − re)(cos θ − cos θe)

− D2−3,2(rC − re)(cos θ − cos θe)

− D2−3,3(rA − re)(rC − re) (3)

EINT4(φ) = D4[1 − cos(2φ)] (4)

where ri j is the distance between sites i and j , θ is the
angle formed by the contiguous bonds rA and rC and φ is
the dihedral angle. The parameters for equations (1)–(4) are
(where kB is Boltzmann’s constant): D2/kB = 3283.88 K,

α = 2.186 76 Å−1, re = 1.418 Å, D3/kB = 98 706.59 K,
θe = 120.00◦ , D2−3,1/kB = D2−3,2/kB = −36 441.87 K Å−1,
D2−3,3/kB = 34 222.44 K Å−2, and D4/kB = 5354.81 K.

Intermolecular interactions include Lennard-Jones inter-
actions between carbon atoms of different molecules:

ELJ(ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
(5)

where ε/kB = 34.83 K and σ = 3.4 Å.
Carbon nanotubes are large molecules with hundreds of

atoms, each of which can participate in up to three bond-stretch,
nine angle-bend and 26 torsional interactions. However, the
periodicity of the unit cells that form the nanotube helps define
and calculate these interactions in a computationally efficient
manor in a simulation program [48].

3. Methodology and simulations details

The algorithm employed to integrate the equations of motion
was the reversible reference system propagator algorithm (r-
RESPA) developed by Tuckerman et al [49] with a Nosé
thermostat [50, 51]. In this algorithm, fast (intramolecular
forces) and slow motions (intermolecular interactions) are
integrated over different timescales. The system is coupled
to a Nosé bath with an appropriated coupling variable
that produces small fluctuations when the temperature of
the bath is readjusted. This algorithm has been tested
for macromolecules (proteins and fullerenes) [52, 53] and
compared to standard Verlet algorithms it has been shown
to speed up the computation time between 4–5, and 20–40
times for systems with, and without, electrostatic interactions,
respectively. The time-steps for slow and fast motion
employed in this work were 2.21 and 0.221 fs, respectively.
The motivation for applying a thermostat, as outlined in the
introduction, is that nano-mechanical systems are generally
studied experimentally attached to large surfaces or other
structures that are thermally equilibrated [8, 9]. These large
surfaces or structures dissipate the kinetic energy produced by
friction forces during a mechanical event involving the nano-
mechanical system thus keeping the whole system thermally
equilibrated [38]. For this reason, the simulated system
was thermostatted but only in the radial direction. This is
simply for convenience, since it does not require us to remove
the translational motion in the axial direction that does not
contribute to the temperature of the system.

In this work, molecular simulations of the oscillatory
behaviour of DWCNs proposed by Zheng and Jiang [11]
were performed using molecular dynamics in the canonical
ensemble. Before the oscillatory phenomena can occur, the
DWCN systems are pulled apart in order to have a small
area of contact; retraction occurs followed by the oscillations.
Simulations were carried out in three steps, initial equilibration
with no external force, followed by a period with external
force applied until separation occurs, and then release of the
external force leading to the oscillatory behaviour. The initial
configurations were equilibrated for a period of 22 ps. After
that, an external force was applied to the inner nanotube,
and a force with the same magnitude but opposite sign was
applied to the outer nanotube. The applied external force was
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Figure 1. Snapshots of the separation induced through an external
force and the damped oscillatory behaviour after the system is
released from the external force. The system plotted corresponds to
the (7, 0)@(9, 9) structure with length of 12.21 nm. The labelled
steps are (a) force applied to the initial equilibrated system, (b)
releasing the system from the external force, (c) first minima of
separation in the first end, (d) first maxima in the second end and (e)
second minima in the first end.
M Multimedia of this figure is available
from stacks.iop.org/Nano/16/186

a function of the simulation time and was built by mixing
step and hyperbolic tangent functions [48]. The advantage
of using this profile is that there are short periods when the
force is incremented followed by periods where the force
remains constant; this allows the system to relax before a new
increment in the magnitude of the force occurs. Before using
this profile of the external force, we used constant increments of
the external force. However, this approach produced very low
separations or complete separation of the two nanotubes, since
the low friction forces in these systems makes it difficult to
control the distance of separation. A sketch of the phenomena
simulated is shown in figure 1, where at step (a) two external
forces with opposite directions are applied to an equilibrated
DWCN. Once the magnitude of the force is high enough,
the system starts to separate and before the system separates
completely the external force is eliminated (b). Due to the
impulse of the external applied force and the low friction forces
between the walls, the nanotube continues separating until it
reaches a separation with some minimal contact area (c). The
magnitude of the contact area is clearly a function of when the
external force is set to zero. Hence, the time (b) where the
external force is eliminated was tested by trial and error until
the separation at time (c) corresponded to a contact area of a
few ångströms. After this event, the inner nanotube retracts
by itself due to the attractive van der Waals interactions and
after reaching a zero separation, the nanotube continues its
movement until it reaches a maximum extension in the opposite
direction (d). It then continues oscillating until finally coming
to rest at the equilibrium position (zero separation) again.

The effect of the magnitude of the initial applied external
force is shown in figure 2 for the (7, 0)@(9, 9) structure and
a length of 98.24 nm. In this figure the separations in the
axial direction between the centres of mass of both nanotubes
are plotted as a function of time. After 50 ps of increments
in the magnitude of the external force, the system starts to
separate and at point (b) (∼125 ps) the system is released of
the external force. Even though the system has a separation
of only ∼32 nm at this point, the system continues separating
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Figure 2. Separation of centres of mass as a function of time for the
(7, 0)@(9, 9) structure with length of 98.24 nm at 298.15 K. The
three curves correspond to the system exposed to longer periods of
external force. Points (a) through (e) correspond to the snapshot in
figure 1.

until it reaches a maximum separation of ∼83 nm at ∼243 ps,
corresponding to a minimal overlap between inner and outer
nanotubes. Points (d) and (e) correspond to the similar events
marked in the sketch of figure 1. The dotted and dashed lines
in the figure correspond to the second and third ‘experiments’
where the magnitude of the external force was smaller. For the
second ‘experiment’ even though the initial separation at point
(b) is ∼24 nm, the system reached a maximum at ∼70 nm,
for the third ‘experiment’ the corresponding separations were
∼11 and ∼50 nm.

4. Results

The procedure described in the last section was applied to
the incommensurate (7, 0)@(9, 9) structure at 298.15 K. Five
systems with axial lengths of 12.21, 24.56, 36.92, 49.27 and
98.24 nm were studied; for these systems, the inner and outer
shell had the same axial lengths. Additionally simulations
were performed keeping the inner length at 12.21 nm and
using axial lengths for the outer nanotube with −30% to +40%
increments with respect to the inner nanotube axial length.

4.1. The incommensurate system (7, 0)@(9, 9)

The incommensurate system with (7, 0)@(9, 9) structure was
simulated for the inner and outer nanotubes of equal axial
lengths at 298.15 K. For this structure, the carbons in the
outer shell are located in a cylinder with diameter of 1.22 nm
(defined as the distance between the centres of carbon atoms
on opposite sides of a cross section of the nanotube) and the
intershell separation between the inner and outer cylinders
is 0.34 nm. Five systems were simulated with axial lengths
of 12.21, 24.56, 36.92, 49.27 and 98.24 nm. These systems
contained between 2600 and 21 000 carbon atoms. Results of
the separation between the centres of mass as a function of
time are shown in figure 3; this plot shows the simulation
results starting from the point where the system reached
the first minimum or point (c) in figure 2. This facilitates
comparison between the different simulations. Simulations
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Figure 3. Separation of the centres of mass as a function of time for the (7, 0)@(9, 9) structure with lengths from 12.21 to 98.24 nm at
298.15 K. The initial separation corresponds to a contact length of 0.3 nm.
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Figure 4. Frequency of the damped oscillations as a function of
time for the (7, 0)@(9, 9) structure with axial lengths from 12.21 to
98.24 nm at 298.15 K.

were performed for 3 ns and over this period of time only
the smallest system ceased oscillations almost completely (at
∼2.5 ns). For the largest system only 0.85 ns were simulated
because of limitations on computational resources available to
simulate a 21 000-carbon-atom system. In this shorter time
period, corresponding to almost two complete oscillations,
the 98.24 nm system exhibited the same qualitative behaviour
as the smaller systems. The first oscillation in all systems
seemed to have different dynamics than the later oscillations,
because the relation between the minimum and maximum
separations in that oscillation has a significantly larger ratio
than subsequent oscillations.

The frequency of each oscillation was calculated for all
systems and the profile of these frequencies of oscillation are
plotted in figure 4 as a function of time. All systems showed
frequencies of the order of gigahertz, consistent with prior
theoretical work [11, 41]. Frequencies of this magnitude
have also been reported for other nanoscale systems, such
as the oscillatory attraction–repulsion of two nanoparticles
of long hydrocarbon molecules in vacuum [54]. In general
terms, the average value of the frequency in each profile
decreases with the axial length of the system. For the smallest

nanotube, frequencies started at ∼19 GHz, and increased
almost linearly for ∼1.65 ns to a value of ∼63 GHz with
a slope of ∼27 GHz ps−1. After this point, the frequencies
remained almost constant for the remainder of the simulation.
After the damped oscillations essentially ceased (∼2.5 ns), the
natural modes in the axial vibration of both nanotubes make
small oscillations with high frequencies having an average
value ∼75 GHz but with large fluctuations (∼8 GHz). Hence,
the system has come to equilibrium and these oscillations
are thermal in nature. For the system with axial lengths of
24.56, 36.92 and 49.27 nm, there is also a period of time
where the simulations increased linearly with slopes of 9.68,
6.43 and 2.91 GHz ps−1, respectively. From these profiles
it is obvious that, during the course of the simulations, the
systems with axial lengths of 24.56 nm and up did not reach an
equilibrated configuration where the oscillations are thermal
in nature. We were only able to run the largest system for a
period corresponding to two oscillations, so the dependence
of frequencies on time cannot be extracted over such a short
trajectory. In order to perform a more rigorous comparison
between the frequencies and the axial length of the system,
the initial frequency is plotted against the axial length in
figure 5. The open circles represent the simulation results for
the frequency f and the red curve represents the best fitting
using a function proportional to the inverse of the axial length:

f (GHz) = 197.903 (GHz nm)

length (nm)
. (6)

This dependence on nanotube length is in agreement with
theoretical predictions of Zheng and Jiang [11], where they
estimated that the frequency of these oscillations as

f = β

4

√
c1�

Lc�
(7)

with β = √
1 − δ/(1 − δ/2), where δ = |Lo − Lc|/2� is the

relative length mismatch, � is the initial extension, Lo and Lc

are the length of the inner and outer shells, respectively, c1

is a variable that depends on the number of shells and their
intershell separation, and � is an average value for the van der
Waals interactions that depends only on the number of shells
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Figure 5. Frequency of the initial oscillation as a function of the
axial length of the nanotubes for the (7, 0)@(9, 9) structure. The
curve is the best-fitted curve to the inverse of the length.

in the core. For our simulations, the inner and outer shells had
the same length (β = 1), and the frequency will depend only
on the initial axial separation and the inner shell lengths, which
for our case had almost the same value (� ≈ Lc), therefore
the frequency will be proportional to the inverse of the axial
length, as found in the simulation results.

4.2. Mechanical model with constant effective forces

In order to understand the forces that contribute significantly
to this damped oscillatory behaviour, a mechanical model was
developed. In figure 6 two oscillations for the nanotube with
axial length of 24.56 nm are shown in the top of the figure
from 0.05 to 0.28 ns. The velocities of these separations
were calculated as the numerical derivatives and are also
shown in figure 6. The axial and normal forces acting on
the inner nanotube were computed during the simulation and
are plotted in the bottom of figure 6. The velocities show
small fluctuations close to the zero separations, reflecting the
behaviour of the axial force, which abruptly changes in sign
at those points. From the velocity profiles we can conclude
that the slopes are constant, therefore the acceleration should
be constant and will depend only on the sign of the separation,
hence a constant effective force should describe this behaviour.
Examining the profiles of the axial force, we can see that
the inner nanotube feels almost constant axial forces when
the inner nanotube is entering or leaving the outer nanotube
and changes sign when the nanotube is passing through zero
separation. The normal forces acting over the inner nanotube
are high compared to the axial forces (∼5:1), but the actual
forces that dictate how the system behaves will be a fraction
of these forces.

If we divide one oscillation into four regions as shown
by the black curve in figure 7, then we can see that we have
equivalent regions when the inner nanotube is entering the
outer nanotube from one or the other end, and when the inner
nanotube is leaving. In region I of figure 7, when the inner
nanotube is entering from one end we assume that the tube
experiences a constant force FI that opposes the motion (see
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Figure 6. Two oscillations of the separation of the centres of mass
for the system with length of 24.56 nm. Velocities are the numerical
derivative of the separation fA and fN are the axial and normal
forces, respectively, acting over the inner nanotube during the
simulation.

150 175 200 225 250

time (ps)

-12.5

-10.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

se
pa

ra
tio

n 
(n

m
)

I

II III

IV

FI

-FII
-FI

FII

Figure 7. Division of the oscillation in four sections with different
constant effective forces. Black circles represent the fittings to the
mechanical model.

figure 6). We can solve the differential equation,

FI = mn
d2z

dt2
(8)

with boundary conditions:

dz

dt
(t = 0) = 0

z(0) = z0

(9)
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Figure 8. Values of the constant effective forces FI (open squares)
and FII (filled squares) for the (7, 0)@(9, 9) structure with length of
24.56 nm (top). Contributions FVDW (open squares) and FFR (filled
squares) to the constant effective forces (bottom).

to produce:

z = z0 +
FI

2mn
t2 (10)

where mn is the mass of the inner nanotube, z is the separation
of the inner nanotube centre of mass from the outer nanotube
centre of mass and z0 is the initial separation. For region III, the
same equation applies but the effective force has an opposite
sign. For region II, a similar procedure yields:

z = v0t − FII

2mn
t2 (11)

where v0 is the initial velocity at z = 0 in region II. The
profile in figure 7 was fitted to these expressions, and is shown
with black circles. Each oscillation of the system with axial
length of 24.56 nm was fitted using equations (10) and (11)
and the equivalent equations for regions III and IV. Results of
the absolute fitted values for the effective forces (FI and FII)
are shown in the top of figure 8. For this system, the effective
forces have almost the same value and remain constant from
the second or third oscillation to ∼2.5 ns. In this case the
mechanical model proposed using a constant value for these
effective forces will be valid for the same period of time. If
we divide these forces into a contribution due to the van der
Waals attractions and a force that opposes the movement of the
nanotube (‘friction force’), which will have an opposite sign
to the direction of the velocity of the inner nanotube, then we
can express FI and FII as:

I: FI = FVDW − FFR, dz/dt > 0, z < 0
II: FII = −FVDW − FFR, dz/dt > 0, z > 0
III: FIII = −FVDW + FFR = −FI, dz/dt < 0, z > 0
IV: FIV = FVDW + FFR = −FII, dz/dt < 0, z < 0.

(12)
Using equations (12) to fit every region of each oscillation,
we calculated FVDW and FFR as a function of the simulation
time. The results are plotted in the bottom of figure 8. From
these plots we can see that the so-called ‘friction force’ is very
low compared to the van der Waals attractions and that there
are other contributions that make the effective forces decrease

at the beginning and after 2.5 ns when the amplitude of the
oscillations decreases considerably.

Using an averaged value of FVDW and FFR from the
bottom of figure 8 in the period of 0.2–2.5 ns as an initial
estimation, then these values were optimized to reproduce the
points corresponding to a zero separation for the system with
an axial length of 24.56 nm. This procedure produced values
of 1.05 and 0.024 nN for the FVDW and FFR, respectively.
These parameters are highly coupled and changes of either
one by as little as 1% can modify the behaviour. With these
parameters, the damped oscillations were reproduced for the
studied systems using equations (10) and (11). The results of
these predictions from the mechanical model for the separation
between the centres of mass for the systems with axial lengths
of 12.21 and 49.27 nm are shown in figure 9 by the red
lines. For the nanotube with an axial length of 12.21 nm, the
mechanical model reproduces the profile of the simulations up
to ∼0.8 ns well, and is observed to oscillate with the same
amplitude. For the system with 24.56 nm (not shown), the
model predictions reproduce the behaviour up to ∼1.75 ns;
for the systems with 36.92 (not shown) and 49.27 nm the
predictions agree well up to ∼2.6 ns, however the model
misses two oscillations at ∼1.5 and ∼2.0 ns for the system with
36.92 nm, and one oscillation at ∼2.2 ns for the system with
49.27 nm. The regions of mismatch between the simulations
and the model for the 36.92 and 49.27 nm systems suggest that
the frequency of motion predicted by the model is slightly off
from the measured value. This is not surprising with such a
simple model.

4.3. Mechanical model with constant effective forces
depending on the initial conditions

In the early stages of the damped oscillation, deformations in
the cylinder of both the inner and outer nanotubes are observed.
The reader can observe these deformations in the visualization
provided for the system with an axial length of 12.21 nm in
the multimedia file available at stacks.iop.org/Nano/16/186.
These deformations make it more difficult for the inner
nanotube to enter into the outer nanotube and therefore these
forces have an opposite sign to the van der Waals interactions
and will reduce the absolute value of the effective force.
On the other hand, when the nanotube is close to a zero
separation, both ends of the inner nanotube are close to their
corresponding ends in the outer nanotube and the magnitude
of the effective force does not change from positive to negative
instantaneously, but over a short period of time (corresponding
approximately to the time required for the inner nanotube to
move a distance of the order of one carbon diameter). For
this reason after 2.5 ns when the oscillations almost cease,
the magnitude of the effective force in figure 8 also starts to
decrease. We were not able to produce a profile with the
real instantaneous force as a function of the separation that
produces a better description of the damped oscillations than
the constant effective forces model. Given the shortcomings
of the first model a second model was identified. In the second
mechanical model described in this section, we use constant
effective forces along each region (I, II, III, IV) as in the
previous model, but the value of the constant effective forces
depends on the initial separation for regions I and III, and on
the initial velocity for regions II and IV.
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Figure 9. Damped oscillations from simulations (black curve) and predictions (red curve) of the mechanical model with constant effective
forces for the (7, 0)@(9, 9) structure with axial lengths of 12.21 and 49.27 nm at 298.15 K.
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Figure 10. Effective forces (regions I, III) as a function of the initial
reduced separation for the (7, 0)@(9, 9) structure with axial lengths
from 12.21 to 98.24 nm. Symbols are the same as figure 4. The
continuous curve represents the plotting of equation (13) with
optimized parameters to reproduce the behaviour of the 24.56 nm
system.

In order to build a second mechanical model which takes
into account the deformation forces for longer separations
and a better description of the effective forces close to zero
separation, the oscillations of all systems were fitted to
equations (10) and (11). The fitted values for the effective
forces for regions I and III for all systems studied are plotted
in figure 10 as a function of the initial reduced separations
zr . The separations were reduced by the axial length of each
system. The initial reduced separations, plotted in figure 10,
are the separations at the beginning of regions I and III, or in
other words, they are the maximum and minimum separations
reached in those regions, respectively. Only the smallest
system has a different behaviour for initial reduced separations
up to 0.15. The points for the rest of the systems seem to lie on
the same master profile. In this master profile at the beginning
there is a linear increment of the absolute effective force with
the initial reduced separation up to a separation of ∼0.05. At
this point the effective forces have a maximum, and from this
point to separations close to 1.0, the effective forces decrease
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Figure 11. Effective forces (II, IV) as a function of the initial
velocity for the (7, 0)@(9, 9) structure with axial lengths from 12.21
to 98.24 nm. Symbols are the same as figure 4. The continuous
curve represents the plotting of equation (14) with optimized
parameters to reproduce the behaviour of the 24.56 nm system.

with the reduced separation. From reduced separations of ∼0.3
and up, the force shows some dispersion but follows the general
tendency to decrease with the reduced separation. For regions
II and IV, the fitted values to equation (11) for the absolute
effective forces are plotted in figure 11 as a function of the
initial velocity. Here it is clear that the smallest system behaves
differently from the rest of the systems. These profiles show the
same tendency as those for regions I and III, i.e. an initial linear
increase at low initial velocities, reaching a maximum from
which the absolute effective forces decrease with the initial
velocity.

Using only effective forces data that correspond to the
systems with axial lengths from 24.56 to 98.24 nm, two
functions were fitted, one depending on the initial reduced
separation (regions I and III), and one for the forces depending
on the initial velocity (regions II and IV). Those functions are:

FI = A0 tanh

(
zr

A1

)
− A2(zr)

A3 (13)
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Figure 12. Damped oscillations from simulations (black curve) and predictions (red curve) of the mechanical model with effective forces
dependent of the initial conditions. The (7, 0)@(9, 9) structures has axial lengths of 24.56 and 36.92 nm at 298.15 K.

FII = B0 tanh

(
v0

B1

)
− B2(v0)

B3 . (14)

These functions were first fitted to the mentioned points and
then optimized to reproduce the zeros of the separation profile
for the system with axial length of 24.56 nm. The optimized
parameters were: A0 = 1.014 281 nN, A1 = 0.037 059,
A2 = 0.743 32 nN, A3 = 1.4107, B0 = 1.6358 nN, B1 =
0.217 01 nm ps−1, B2 = 0.878 21 nN nm−0.515 00 ps0.515 00

and B3 = 0.515 00. The optimized functions are shown
as black curves in figures 10 and 11 for regions I, III and
II, IV, respectively. The functions fit the values for initial
reduced separations up to 0.25 and ∼0.30 nm ps−1 for the
initial velocities very well.

Calculating the absolute effective forces using func-
tions (13) and (14), we can reproduce the whole simulation
process as shown in figure 12 for the systems with axial lengths
of 24.56 and 36.92 nm. The predicted behaviour of the me-
chanical model dependent on the initial conditions is shown by
the red curves and the simulation results by the black curves.
The best agreement between the damped oscillations of the
simulations and the predicted oscillations by the mechanical
model are for times up to 1 ns in the system with axial length of
24.56 nm, while for times after 2.25 ns the best predicted be-
haviour is for the system with axial length of 36.92 nm. For the
system with axial length of 24.56 nm, the poor results obtained
using this model are probably due to the small disagreement
between the optimized curve and the fitted values of FII for
initial velocities between 0.3 and 0.6 in figure 11.

Using the maximum for the effective force in figure 10 as
the dynamic strength force, which is the same for nanotubes
with axial length of 24.56 nm and up, we can predict the
dynamic strength for these systems. Defining the interfacial
area as 2π RLc, where R is the average of the inner and
outer nanotubes radii, then we can calculate the dynamic
strength; results of these calculations are shown in figure 13
as a continuous curve for systems with axial lengths from 350
to 7000 nm. Experimental estimations for these strengths are
shown in black circles for the system of Cumings and Zetl [8]
with 330 nm of axial length (the actual length of the system was
not reported, the only length reported was the extrusion length,
which is assumed to be close to the axial length of the system)
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Figure 13. Dynamic strength as a function of the axial length for
the (7, 0)@(9, 9) structure at 298.15 K. Black circles represent
experimental values at 330 nm [8], 2200 and 7000 nm [9].

but the diameter was not reported. The results of Yu et al
[9] are also shown at 2200 nm and 7000 nm for system with
outer diameters of 30 and 36 nm, respectively. The predicted
dynamic strength is proportional to the inverse of the axial
length, and the agreement with the largest experimental system
is particularly good (absolute difference of ∼0.04 MPa). The
predicted curve is only for incommensurate nanotubes with
an outer diameter of 1.22 nm. For systems with larger outer
diameters, there are likely to be four main effects: the increase
in the van der Waals interactions due to the larger number
of carbon atoms forming the unit cell will increase the shear
strength; the larger area will decrease the strength; for wider
systems the deformations will be larger and will decrease the
dynamic strength. Finally, the fourth effect will be the chiral
indices of each nanotube. How this affects the system is ill-
defined [22, 23].

Using this mechanical model, the time needed to reduce
the oscillations to amplitude of less than 4 nm was calculated
for systems with axial length up to 1000 nm and the results are
reported as black circles in the top right plot of figure 14. The
value of 4 nm was chosen because for a system of 1000 nm
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Figure 14. Predicted frequency profiles as a function of time for the
(7, 0)@(9, 9) structure with axial lengths from 245.6 to 982.4 nm at
298.15 K. Required time to decrease the amplitude of the oscillations
to 4 nm as function of the length (inside plot). The continuous curve
represents the fitted function to a power of the axial length.

the normal axial modes of vibration will produce vibrations of
this magnitude. The continuous curve represents the best fit to
a power function, and is given by:

time (ns) = (0.024 176 ns nm−1.2)(length (nm))1.2. (15)

Predictions of the profiles for the frequencies as function of
the time were produced for four structures between 245 and
982 nm, and the results are shown in figure 14. The profiles
were stopped when the amplitude of the oscillations were less
than 4 nm. Even though all systems reached frequencies of
oscillation above 1 GHz at the beginning of the process, only
the 245.6 nm system exhibits gigahertz frequencies. As in
the previous simulations of shorter systems, the frequencies
decrease with the axial length.

4.4. The incommensurate system (7, 0)@(9, 9) with unequal
axial lengths

The effect of different axial lengths was studied using an inner
nanotube with axial length of 12.21 nm and seven different
systems where the axial length of the outer nanotube changed
from −30% to +40% of the length of the inner tube. Results
for the damped oscillation profiles are shown in figure 15.
The first case depicted in figure 15 shows that by reducing
the length of the outer nanotube by 10%, we obtain initially
faster equilibrations, however the nanotube does not finish the
damped oscillations because the centre of mass of the inner
nanotube is moving between both ends of the outer nanotube.
This phenomenon is clearer for the cases where the outer
nanotube is 20 and 30% shorter respectively. Using larger
outer nanotubes we can also obtain very fast equilibrations
as in the case where the outer nanotube is 10% larger and
after ∼0.5 ns the damped oscillations have almost completely
ceased, but the oscillations never exceed an amplitude of 2 nm.
If the axial length of the outer nanotube is increased by 20%
then it takes ∼1 ns for the well-defined damped oscillations to
finish, while for the systems with 30% and 40% larger outer
nanotubes, it takes ∼0.75 ns to finish. Beyond these times,
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Figure 15. Separation of the centres of mass as a function of time
for the (7, 0)@(9, 9) structure with inner nanotube axial length of
12.21 nm and outer nanotube axial length from −30% to +40% of
the inner axial length at 298.15 K.
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Figure 16. Frequency of the damped oscillations as a function of
time for the (7, 0)@(9, 9) structure with inner nanotube axial length
of 12.21 nm and outer nanotube axial length from −30% to +40% of
the inner axial length at 298.15 K.

we observe erratic behaviour, which probably reflects large
thermal fluctuations.

The frequencies of oscillation were calculated for all cases
and appear in the top of figure 16 for the systems with shorter
outer nanotubes and in the bottom of the figure for the systems
with larger outer nanotubes. The case where both lengths
are the same is used as a reference case and it is plotted
in both figures for comparison. Compared to the reference
case, shorter outer nanotubes have bigger frequencies at the
beginning of the motion, but then reaches a maximum and
starts to decrease. The rate of decrease is faster for the shortest
outer nanotube. For the case where the outer nanotube is 10%
larger in axial length than the inner nanotube, the frequencies
are higher than the reference case, but for the other cases they
are generally lower and the well-defined damped oscillations
last for less than 1 ns.

The absolute effective forces were calculated for all cases
and are shown in figure 17. In general we can see a movement
of the force profiles to the right reflecting the differences
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Figure 17. Effective forces (regions I, III) as a function of the initial
separation (top) for the (7, 0)@(9, 9) structure, 298.15 K and (from
left to right) even axial lengths, 10%, 20% and 30% shorter outer
nanotube. Effective forces (regions I, III) as a function of the initial
separation (bottom) for the (7, 0)@(9, 9) structure, 298.15 K and
(from left to right) even axial lengths, 10%, 20%, 30% and 40%
longer outer nanotube.

between the axial lengths of the inner and outer nanotubes.
There is also a decrease in the magnitude of the absolute axial
forces no matter if the outer nanotube is shorter or larger;
the maximum absolute attractive force is reached when both
nanotubes has the same axial length. The case with a 10%
larger outer system is very interesting, because the maximum
absolute effective force FI decreases by ∼25%, but for the next
system (+20% larger) this force increases again by ∼17% and
from there continues to decrease regularly.

5. Conclusions

DWCNs are nano mechanical systems that have potential
applications as nanodevices to control nanofluids and as
nanobearings and nanomotors. This study focused on the
dynamics of the forces that are important in these systems.
The damped oscillatory behaviour of the motion between the
centres of mass of DWCNs was studied.

The incommensurate (7, 0)@(9, 9) structure was studied
for axial lengths between 12.21 and 98.24 nm. A time of
∼2.5 ns was needed to cease the oscillation in the smaller
system. The frequencies of oscillation obtained from these
simulations have gigahertz magnitudes. The initial frequency
of oscillation is inversely proportional to the axial length
of the system in agreement with theoretical predictions.
Two mechanical models were developed to understand and
reproduce these damped oscillations. The first model only
takes into account constant van der Waals interactions and a
constant force related to the definition of the friction force.
This model is only valid for approximately half of the simulated
time, when these forces are constant. The second mechanical
model takes into account the deformation forces that are
important at long separations. The effective forces used by this
model depend on the maximum and minimum separations and
the velocities when the nanotube cross the zero separations in
each oscillation. This model is valid for the whole oscillatory
process and reproduced the simulated damped behaviour well.

The profile of these effective forces showed a maximum
at ∼5% of separation. Using this maximum force as the
dynamic force strength, the dynamic strength was calculated
and found to be inversely proportional to the length of the
system. An absolute difference of 0.04 MPa with the estimated
experimental result for this property was found. Predictions
were produced for the time required to decrease the amplitude
of the oscillations to less than 4 nm and for the profiles of the
frequencies of oscillation.

The incommensurate (7, 0)@(9, 9) structure was also
studied with unequal axial lengths between the inner and outer
nanotubes. The axial length of the inner nanotube was kept
constant, while the length of the outer nanotube was varied
from −30% to +40% of the inner axial length. These systems
equilibrated faster, but after equilibration the behaviour is
somewhat erratic and requires further investigation. A
maximum absolute effective force is reached only for the
nanotubes with the same axial length, however the system
where the outer nanotube is 10% larger equilibrates much more
rapidly (∼0.5 ns).

In a future paper we will discuss the effects of temperature,
commensurability, interlayer separation, interlayer filling,
non-axial external forces and resonance on the frequencies of
oscillation, dynamic shear strength and effective forces.
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