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The mathematical results proved in this paper complement the physical reasoning
and numerical computations given in a companion paper, where it is argued that
the statistical equilibrium model defined by a prior distribution on potential
vorticity fluctuations and microcanonical conditions on total energy and
circulation is natural from the perspective of geophysical applications.
   Large Deviation Principle, Cramer's Theorem, Coarse Graining,´Key words:
Statistical Models of Turbulence, Hamiltonian Systems.
   76F55, 60F10.AMS subject classifications:

1.  Introduction

The problem of developing a statistical equilibrium theory of coherent structures in two-
dimensional turbulence or quasi-geostrophic turbulence has been the focus of numerous
mathematics and physics papers during the past fifty years.  In a landmark paper Onsager [23]
studied a microcanonical ensemble of point vortices and argued that they cluster into a
coherent large-scale vortex in the negative temperature regime corresponding to sufficiently
large kinetic energies.  The quantitative aspects of the point vortex model were elaborated by
Joyce-Montgomery [14], and subsequently these predictions were compared with direct
numerical simulations of the end state of freely decaying turbulence [21].  Another approach
due to Kraichnan [15], called the energy-enstrophy model, was based on spectral truncation of
the underlying fluid dynamics.  This Gaussian model was extensively applied to geophysical
fluid flows [4, 27, 28]; for instance, to the organization of barotropic, quasi-geostrophic flows
over bottom topography [11]. The next major development was the Miller-Robert model [20,
26], which enforced all the invariants of ideal motion and included the previous models as
special or limiting cases.  Recently, this general model has been scrutinized from the
theoretical standpoint [30] and from the perspective of practical applications [6, 18].  These
investigations have clarified the relation between various formulations of the general model
and the simpler models, and they have revealed a formulation that has firm theoretical
justification and rich physical applications. This formulation of the statistical equilibrium
theory of coherent structures is described in our companion paper [10], and a particularly
striking application of this model is given in another paper [31], where it is implemented to
predict the permanent jets and spots in the active weather layer of Jupiter.
 The purpose of the current paper is to prove the theorems that legitimize the theoretical
model developed in [10].  We therefore follow the line of development in that paper, in which
the nonlinear partial differential equation governing the dynamics of the fluid an infinite-�
dimensional Hamiltonian system is used to motivate an equilibrium statistical lattice model,�
both in its microcanonical and canonical formulations.  Our first set of main results pertains to
the continuum limit of this model.  These results are large deviation principles (LDP's) that�
is, exponential-order refinements of the law of large numbers for a spatially coarse-grained�
process which justify the definition of the equilibrium states for the model.  We base our direct
proofs of these LDP's on an elementary large deviation analysis of the coarse-grained process
with respect to the product measure that underlies the lattice model.
 Our second set of main results concerns the relationship between the microcanonical and
canonical equilibrium states; in particular, the equivalence or nonequivalence
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of the microcanonical and canonical ensembles with respect to energy and circulation.  The
most interesting result is that microcanonical equilibria are often not realized as canonical
equilibria.  Significant examples of this remarkable phenomenon are given in [10, 31], where
its impact on hydrodynamic stability is also discussed.
 The outline of the paper is as follows.  In Section 2 we formulate the statistical equilibrium
theory described in [10], and we define the coarse-grained process used in the analysis of the
continuum limit.  We state and prove the basic LDP for this process in Section 3, and then in
Section 4 we present the LDP's for the microcanonical and canonical ensembles, relying on
general theorems established in [9].  Then in Section 5 we turn to the issue of equivalence of
those ensembles at the level of their equilibrium states, giving necessary and sufficient
conditions for equivalence in terms of the concavity of the microcanonical entropy.  In the
concluding Section 6, we point to some of the physical implications of our results.

2.  Statement of Problem

The continuum dynamics that underlies our statistical equilibrium lattice model can be viewed
as a noncanonical Hamiltonian system with infinitely many degrees of freedom.  Namely, it
can be written in the form
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In this formula  is the streamfunction defined by , where  is a� � �� �� � �� � � " � # "
uniformly elliptic operator on  and  is a given continuous real-valued function on� # � #�� �
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Hence (2.3) is an equation in  alone.  This equation takes the Hamiltonian form (2.1) when�
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Thus  is a quadratic form in  in which interactions between  and  are� � ���� ��� �$

governed by the Green's function . This Hamiltonian formulation of two-dimensional��� � � �$

or quasi-geostrophic flow is discussed in [12, 22, 27, 29].
 The Hamiltonian dynamics (2.1) conserves the total energy  and the total circulation�
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In addition, there is an infinite family of Casimir invariants parametrized by continuous real-
valued functions  and defined as+
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For the particular choice of a channel domain , the linear impulse�
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is also conserved. For simplicity, we shall ignore it throughout this paper since it plays a role
identical to  in the theory.)
 When  and , (2.3) is the vorticity transport" � � � � � 
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� � # �  � 	 	 	 	
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equation, which is an equivalent formulation of the Euler equations governing an incom-
pressible, inviscid flow in two dimensions. When  and   ," � � � . # � � �� � ��	

	 	

(2.3) is referred to as the quasi-geostrophic equations; the Coriolis parameter  and the� /  
Rossby deformation radius , and the effective bottom topography  is. 0 � � 1 � � �� �� �	 	 	

a given real-valued function. With this choice of  and , (2.3) governs the motion of a" #
shallow, rotating layer of a homogeneous, incompressible, inviscid fluid in the limit of small
Rossby number [27].  Throughout the rest of the paper, we refer to , as in this quasi-�
geostrophic case, as the potential vorticity.

2.1  Statistical Model

Since the governing dynamics (2.1) typically results in an intricate mixing of  on a range of�
scales, we consider ensembles of solutions, instead of individual deterministic solutions.  This
statistical mechanics approach is standard for a Hamiltonian system with finitely many degrees
of freedom in canonical form [2, 3, 24].  In order to carry over this methodology to the infinite
dimensional Hamiltonian system (2.1),  it is necessary to formulate an appropriate sequence of



lattice models obtained by discretizing the system.  Next we define these probabilistic lattice
models.
 For each , the flow domain  is uniformly partitioned into  microcells.  We let2 0 +	 � 2

� �2 2 2 denote a uniform lattice of  sites indexed by , where each  corresponds to a+ 3 3 0
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The Casimirs (2.6) can be discretized similarly as functions ., ����3��3 0 ��2 2�
 We shall not attempt to prescribe a lattice dynamics under which the functions ,  and� )2 2

, ,2 2 are exact invariants.  In fact, a lattice dynamics conserving the nonlinear enstrophies  is
not known.  The subtleties associated with the rigorous formulation of this statistical model
are fully discussed elsewhere [10, 30].  Rather than pursue this direction any further here, we
shall simply impose a joint probability distribution  on the lattice potential vorticities
2
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2 2

volume .��
 Let  be a probability distribution on  and let  be the support of .  In order to simplify� � � �
our presentation throughout the paper, we assume that  is compact.  The extension to the�
case of noncompact support can be carried out via appropriate modifications of the techniques
that we use.  We define the phase space  to be ,  denote by  the vector of
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We refer to  as the prior distribution of the lattice potential vorticities.
2

 As is explained in [10],  can be interpreted as a canonical ensemble with respect to
2

lattice enstrophy , in which the distribution  is determined by the function .  Alter-, +2 �
natively, in the perspective adopted in the Miller-Robert model [19, 25],  is determined from�
the continuum initial data by
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While this choice of prior distribution is conserved by the continuum equations, it is not
preserved under passage to a discretized dynamics.  In practice, therefore, it is better to view �



as a free parameter in the model.  For discussions on the choice of the prior distribution in
specific applications, see [10, §6.1] and [31, page 12347].

2.2 Definition of Ensembles

In terms of the prior distribution , we can form two different statistical equilibrium models
2

by using either the microcanonical ensemble or the canonical ensemble with respect to the
invariants  and .  Given , for any Borel subset  of  the microcanonical� ) :  82 2 2� 

ensemble is defined by
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This is the conditional probability distribution obtained by imposing the constraints that �2
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The real parameters  and  correspond to the inverse temperature and the chemical potential.� �

2.3  Continuum Limit

The first set of main results of this paper concerns the continuum limits of the joint probability
distributions (2.11) and (2.12).  In this limit we obtain the continuum description of the
potential vorticity that captures the large-scale behavior of the statistical equilibrium state.
The key ingredient in this analysis is a coarse-graining of the potential vorticity field, defined
by a local averaging of the random microstate  over an intermediate spatial scale.  This�
process is constructed as follows.
 For  such that , the flow domain  is uniformly partitioned into . 0 . � 2 >	 � .
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studied with respect to either the microcanonical ensemble (2.11) or the canonical ensemble
(2.12).   We refer to  as the coarse-grained process.C2�.

 With respect to each ensemble, our goal is to determine the set of  functions on which"	

C 2 B 1 . B 12�. concentrates in the continuum limit defined by first sending  and then .
More precisely, we seek to find the smallest subsets of ,  and , such that" � �	 <�
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and are referred to as the sets of equilibrium macrostates.  In Section 4, each  of these subsets
is shown to arise by solving a variational principle.  The variational principles are derived
from the LDP's for  with respect to the two ensembles.  In order to prove these twoC2�.

LDP's, we first prove a basic LDP for  with respect to the product measure  definedC2�. 2


in (2.10).  This is done in the next section.

3.  Basic LDP for the Coarse-Grained Process

Before stating the basic LDP for  with respect to , we first discuss the form of the rateC2�. 2


function .   Throughout the paper the term rate function is used to describe  any lowerE
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 We now state the two-parameter LDP for  with respect to .  For any subset  ofC ,2�. 2


" � � E�, � E ,	 � ,  denotes the infimum of  over .
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 We now prove the upper and lower large deviation bounds for  in separate, butC2�.

elementary steps.  The following lemma is needed in both steps; it is an immediate
consequence of Lemmas 2.5 2.8 in [17].�
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The last inequality in this display follows from Jensen's inequality.  We have proved that for
arbitrary J 0 �
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Taking the supremum of  over  yields the desired large deviation lower bound.  � E�J� J 0 � �

 This completes the proof of Theorem 3.1.

4.  LDP's with Respect to the Two Ensembles

In this section we present LDP's for  with respect to the microcanonical and canonicalC2�.

ensembles defined in (2.11) and (2.12).  The theorems follow from a general theory presented
in [9].  The proofs of the LDP's depend in part on properties of various functionals given in
the next subsection.

4.1  Properties of ,  , and � ) � � )2 2

We recall the definitions of the lattice energy  in (2.7), the circulation  in (2.8), and the� )2 2

functionals  and  in (2.4) and (2.5).  The proofs of the LDP's with respect to the two� )
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(2.4) and (2.5) by the -valued process .  The proof of this approxi-" � � C ��� � �	
2�.�

mation for the circulation is immediate since it holds with equality.  For  the proof depends�2

on the fact that the vortex interactions are long-range, being determined by the Green's
function .  For this reason,  is well approximated by a function of the coarse-��� � � � �$

2

grained process . In physical parlance, the turbulence model under consideration is anC2�.



asymptotically exact, local mean-field theory [20].  The next lemma proves the
approximations as well as the boundedness and continuity properties of  and  needed for� )
the LDP's.
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proving (4.2).  Carrying out the multiplication in the summand appearing in the definition of
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The limit (4.1) follows if we prove for  thatH � �� 	� !� '
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The details of the proof are given for ; the cases  are handled similarly. TheH � � H � 	� !� '
verification of (4.3) for  relies on the fact that since  has compact support , thereH � � � �
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The Green's function  is square-integrable on . Hence for the set  with��� � � � ( ($ � � � �
the partition , the function  defined in (4.4) (4.5) is the analogue of ? (? � � J.�A .�A . .$

defined in Lemma 3.3.  By an analogous proof, one shows that
M � � � M B  . " � ( �	 � � .  This limit and the preceding display yield the desired limit

(4.3) in the case .H � �
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It follows that .  The proof of the lemma is complete.��J � B ��J�2
�

4.2  Microcanonical Model

The LDP for  with respect to the microcanonical ensemble is stated in Theorem 4.2.  WeC2�.

say that a constraint pair  is admissible if  for some�<� � �<� � � ���J��)�J��� �
J 0 " � � E�J� � 1	 	� � � with ,  and we let  denote the largest open subset of  consisting
of admissible constraint pairs.  We call this domain  the admissible set for the�
microcanonical model.  For a fixed constraint pair , the rate function for the LDP�<� � 0� �
is defined for  to beJ 0 " � �	 �
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D�<� ��  is called the microcanonical entropy.
  Theorem 4.2: Let  and consider  with the strong topology.  With res-�<� � 0 " � �� � �	
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   This LDP is a three-parameter analogue, involving the triple limit ,Proof: 2 B 1
. B 1 B  , and , of the two-parameter LDP given in Theorem 3.2 of [9].  The proof of�
that theorem is easily modified to the present three-parameter setting using the basic LDP in
Theorem 3.1 and the properties of , , , and  given in Lemma 4.1.� ) � )2 2 �

 For any admissible choice of  and  we define the set  of microcanonical< � �<��

equilibrium macrostates to be the set of  such that .  It follows fromJ 0 " � � E �J� �  	 <�� �

the definition of  that elements of  are exactly those functions that solve theE<� <�� ��
following constrained minimization problem:

minimize  over all  subject to the constraints E�J � J 0 " � �O O 	 �
�'
6�

��J � � < )�J � �O O and .�

The optimum value in this variational principle determines the microcanonical entropy D
defined in (4.7).
 We point out an important consequence of the large deviation upper bound in Theorem 4.2.
Let  be a Borel subset of  whose closure  satisfies  .  Then, " � � , , L � P
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Since the right-hand side of (4.9) converges to 0 as , macrostates  not lying in 2 B 1 � �<��

have an exponentially small probability of being observed as a coarse-grained state in the
continuum limit. The macrostates in  are therefore the overwhelmingly most probable�<��

among all possible macrostates of the turbulent system.

4.3 Canonical Model

The LDP for  with respect to the canonical ensemble is stated in Theorem 4.3.  For anyC2�.

real values of  and , the rate function for the LDP is defined for  to be� � �J 0 " � �	
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� � �� � � is called the canonical free energy.
   Theorem 4.3: Let  and consider  with the strong topology.  With res-� � � 0 " � �� � � �	 	

pect to ,  satisfies the LDP on , in the double limit  and ,; C " � � 2 B 1 . B 12� � 2�.
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   This LDP is a two-parameter analogue, involving the double limit  andProof: 2 B 1
. B 1 , of the one-parameter LDP given in Theorem 2.4 of [9].  The proof of that theorem
relies on an application of Laplace's principle.  The proof is easily modified to the present



two-parameter setting using the basic LDP in Theorem 3.1 and the properties of , , ,� ) �2 2

and  given in Lemma 4.1.  As is shown in Theorem 1.3.4 of [8], the boundedness properties)
of  and  given in Lemma 4.1  allow Laplace's principle to be applied in this setting.  � ) �#� �

 For a particular choice of  and  we define the set  of canonical equilibrium macro-� � �� ��

states to be the set of  such that .  That is, the elements of  areJ 0 " � � E �J� �  	
� �� �� � � �

exactly those functions that solve the following unconstrained minimization problem:

minimize  over all E�J � � ��J � � )�J � J 0 " � �
 �'
�	�O O O O� � �	

The optimum value in this variational principle determines the canonical free energy � � �� � �
defined in (4.11).  Comparing this minimization problem with the corresponding constrained
minimization problem (4.8) arising in the microcanonical ensemble, we see that the
parameters  and  in the former are Lagrange multipliers dual to the two constraints in the� �
latter.
 As in the microcanonical case (see (4.9) and the associated discussion), the large deviation
upper bound in Theorem 4.3 implies that the macrostates in  are overwhelmingly the most�� ��

probable among all possible macrostates of the turbulent system.

5.  Equivalence of Ensembles

In this section we classify the possible relationships between the sets of equilibrium
macrostates  and .  We begin by establishing that each of these equilibrium sets is� �<�

�
�

� �

nonempty.  Then we turn to our second set of main results, which concern the equivalence or
lack of equivalence between the microcanonical and canonical ensembles.  In many statistical
mechanical models it is common for the microcanonical and canonical ensembles to be
equivalent, in the sense that there is a one-to-one correspondence between their equilibrium
macrostates.  However, in models of  coherent structures in turbulence there can be
microcanonical equilibria that are not realized as canonical equilibria.  As is shown in our
companion paper [10], and in a real physical application in [31], nonequivalence occurs often
in the turbulence models and produces some of the most interesting coherent mean flows.

5.1 Existence of Equilibrium States

We continue to assume that the support  of  is compact.  It follows from this assumption� �
that the  grows faster than quadratically as ; the straightforward proof is leftE�J� M J M B 1
to the reader.  Consequently, for any  the sets 4 � 1 Q � �J 0 " � ��E�J� I 4�4

	 �
are precompact with respect to the weak topology of ; this follows from the fact that" � �	 �
each  is a subset of a closed ball in .   Moreover,  is lower semicontinous withQ " � � E�J�4

	 �
respect to the weak topology on .  This property is an immediate consequence of the" � �	 �
relationship

E�J� � E�J �� �*
��
. 0

sup
	

.

where  is the piecewise constant approximating function defined in Lemma 3.3.  Indeed,J.
since each function  is weakly lower semicontinuous, the weak lower semi-J K E�J �.
continuity of  follows. Thus the sets  are closed with respect to the weak topology.E�J� Q4

This property, in combination with the weak precompactness of these sets, implies that the sets
Q4  are compact with respect to the weak topology. Concerning the proof of (5.1), Jensen's
inequality guarantees that , while Lemma 3.3 and the strong lowerE�J � I E�J�.



semicontinuity of  proved right after its definition in (3.1) yield lim inf ;E E�J � / E�J�.B 1 .

(5.1) is thus proved.
 The existence of microcanonical and canonical equilibrium states now follows immediately
from the direct methods of the calculus of variations.  In the microcanonical case, for any
admissible  a minimizing sequence exists that converges weakly to a minimizer�<� � 0� �
J 0 E�<��, by virtue of the properties of the objective functional  just derived and the
continuity, with respect to the weak topology, of the constraint functionals  and  (Lemma� )
4.1 .  In the canonical case, since  grows superquadratically as  while �F�� E M J M B 1 �
grows quadratically and  linearly, it follows that for any  a minimizing) � � � 0� � �	

sequence exists that converges weakly to a minimizer .  The details of this routineJ 0 �� ��

analysis are omitted.
 Typically, the solutions of the variational problems (4.8) and (4.12) for the microcanonical
and canonical ensembles, respectively, are expected to be unique.  Indeed, numerical solutions
of these problems, such as those carried out in [10], demonstrate that apart from degeneracies
and bifurcations the equilibrium sets  and  are singleton sets.  In the next subsection,� �<�

�
�

� �

without any special assumptions concerning uniqueness of equilibrium solutions for either
model, we give complete and general results about the correspondence between these sets.  In
addition, the results given in the next subsection require no continuity or smoothness
assumptions of the equilibrium solutions with respect to the model parameters  or�<� ��
� � �� � .

5.2  Dual Thermodynamic Functions

In the analysis to follow, we show how the properties of the thermodynamic functions for the
microcanonical and canonical ensembles determine the correspondence, or lack of
correspondence, between equilibria for these two ensembles.  For the microcanonical
ensemble the thermodynamic function is the microcanonical entropy  defined in theD�<� ��
constrained variational principle (4.7), the solutions of which constitute the equilibrium set
� � � �<��.  For the canonical ensemble the thermodynamic function is the free energy � � �
defined in the unconstrained variational principle (4.11), the solutions of which constitute the
equilibrium set .�� ��

 The basis for the equivalence of ensembles is the conjugacy between  and ; that is,  isD � �
the Legendre-Fenchel transform of  [13, 32].  This basic property is easily verified asD
follows:
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J
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Consequently,  is a concave function of , which runs over .  By contrast,  itself is� � � �� � � D	

not necessarily concave. The concave hull of  is furnished by the conjugate function of ,D �
namely, , which satisfies the inequality�R RR� D

D�<� � I � < � � � � �� � D �<� �
 �*
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 The relationship between microcanonical equilibria and canonical equilibria depends
crucially on the concavity properties of the microcanonical entropy .  To this end, weD
introduce the subset  on which the concave hull  coincides with ; that is,� �S D DRR

�<� � 0 D �<� � � D�<� �� � � � � if and only if .  Equivalently,  consists of those pointsRR

�<� � 0 � � � 0� � � � � for which there exists some  such that	

D�< � � I D�<� � � �< �<�� � � � �*
'�$ $ $ $� � � � � �

for all .  This condition means that  has a supporting plane, with normal�< � � 0 D$ $ 	� �
determined by , at the point .  Such points  are precisely those points of� � � �<� � �<� �� � � �
� � � at which  has a nonempty superdifferential; this set consists of all  for which (5.4)D � � �
holds [13, 32]. As we will see in the next subsection, the concavity set  plays a pivotal role in�
the criteria for equivalence of ensembles.

5.3  Correspondence between Equilibrium Sets

The following theorem ensures that for constraint pairs in  the microcanonical equilibria are�
contained in a corresponding canonical equilibrium set, while for constraint pairs in  the� �T
microcanonical equilibria are not contained in any canonical equilibrium set.
 Theorem 5.1:
   If  belongs to , then  for some .�+� �<� � 0 S � � �� � � � � � �<�
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  If  does not belong to , then  for all .�#� �<� � 0 L � P � � �� � � � � � �<�
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     If  belongs to , then there exists  such that (5.4)  holdsProof: �+� �<� � � � � 0� � � � �	

for all . Thus for all �< � � 0 �< � �$ $ 	 $ $� � �
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By (5.2) and (4.11) this inequality implies that
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To show the claimed set containment, take any  and note that ,J 0 ��J � � <� ��<��

)�J � � E�J � � �D�<� �� �� �, and .  Substituting these expressions into the preceding
display yields
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Since  consists of the minimizers of , it follows that .  This� � � �� � � �� �E � � � ) J 0�

completes the proof of .�+�
  By (5.2) the hypothesis implies that for all  �#� � � � 0� � �	
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Then any  satisfiesJ 0� �<��

 E�J � � ��J � � )�J �� �D�<� � � < �� � �� � � � ��

   min: � � � � �E�J� � ��J� � )�J��

J

� � � � �



Thus  does not minimize  and hence does not belong to .  Since J E � � � ) � � �� � � � � �� ��

is arbitrary, this completes the proof of . �#� �

 According to this theorem, whenever , there are microcanonical equilibria that are� �U
not realized by any canonical equilibria.  On the other hand, all canonical equilibria are
contained in some microcanonical equilibrium set, and  is exhausted by the constraint pairs�
realized by all canonical equilibria.  These further results are given in the next theorem.
 Theorem 5.2:
  The concavity set  consists of all constraint pairs realized by the canonical�+� �

equilibria; that is,
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�#� Each canonical equilibrium set  consists of all microcanonical equilibria�� ��

whose constraint pairs are realized by ; that is, for any � � �� �� � � �
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    The containment of  in the union is immediate from Theorem 5.1 .  ToProof: �+� �+��
show the opposite containment we argue by contradiction, supposing that for some  and� � �� �
some .  Then by (5.3) we find thatJ 0 � �<� � � ���J ��)�J �� 0 T� � �� � � �� ��

D�<� � � < � � � � � � � E�J � I D�<� �
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We thus obtain the desired contradiction.  This completes the proof of part (a).
  The containment of  in the union is straightforward.  Let  and set�#� J 0�� �� � � �� �

< � ��J � � )�J � E�J � � < � I E�J� � ��J� � )�J�� � � and . Then  for� � �� � �
all .  For those  that satisfy the constraints , , we therefore find thatJ J ��J� � < )�J� � �
E�J � I E�J� J 0� �.  Hence .�<��

 The opposite containment is also straightforward.  If  and  for< � ��J � � )�J �O O�
some , then for any  we have .  Since , weJ 0 J 0 E�J � I E�J � J 0O O O� �� � �� � � �

�
� �

<�

obtain

  min
J

�E�J� � ��J� � )�J�� E�J � � < �� O� � � ��

 ./ E�J � � ��J � � )�J �� � �� �

Hence .  This completes the proof of part .J 0 �#�� �� �� �

 Theorems 5.1 and 5.2 allow us to classify the microcanonical constraint parameters �<� ��
according to whether or not equivalence of ensembles holds for those parameters.  In fact, the
admissible set  can be decomposed into three disjoint sets, where�
 (1)  there is a one-to-one correspondence between microcanonical and canonical

equilibria,
(2)  there is a many-to-one correspondence from microcanonical equilibria to canonical

equilibria, and
(3)  there is no correspondence.

In order to simplify the precise statement of this classification, let us assume that the micro-
canonical entropy  is differentiable on its domain .  Then, for each microcanonicalD�<� �� �
parameter  there is a corresponding canonical parameter  determined�<� � 0 � � �� � � �
locally by the familiar thermodynamic relations



� �� � 
�D �D
�< �,   

�

Under this assumption, we have the following classification, which is a consequence of
Theorems 5.1 and 5.2.
   If  belongs to  and there is a unique point of��� �<� �Full equivalence. � �

contact between  and its supporting plane at , then  coincides withD �<� �� �<��

<� �� .
�	� �<� �  If  belongs to  but there is more than one point ofPartial equivalence. � �

contact between  and its supporting plane at , then  is a strict subsetD �<� �� �<��

of .  Moreover,  contains all those  for which  is also a point� � � �� � � �
�

� �
< � $ $$ $

�< � �
of contact.

�!� �<� �   If  does not belonging to , then  is disjoint fromNonequivalence. � � �<��

� �� �
�

�
<�.  In fact,  is disjoint from all canonical equilibrium sets.

 For a complete discussion of results of this kind, we refer the reader to our paper [9], where
we state and prove the corresponding results in a much more general setting and without the
simplifying assumption that  is differentiable.D

6.  Concluding Discussion

The theorems given in this paper support the theory developed in our companion paper [10],
where we argue in favor of a statistical equilibrium model for geostrophic turbulence that is
defined by a prior distribution on potential vorticity and microcanonical constraints on energy
and circulation. The first set of main results in the present paper furnishes an especially simple
methodology for deriving the equilibrium equations and associated LDP's for that model.  The
second set of main results shows that the microcanonical ensemble has richer families of
equilibrium solutions than the corresponding canonical ensemble, which omits those
microcanonical equilibrium macrostates corresponding to parameters  not lying in the�<� ��
concavity set of the microcanonical entropy.  The computations included in [10] for coherent
flows in a channel with zonal topography demonstrate that these omitted states constitute a
substantial portion of the parameter range of the physical model. As this discussion shows, the
equivalence-of-ensemble issue is a fundamental one in the context of these local mean-field
theories of coherent structure whenever the phenomenon of self-organization into coherent
states is modeled.
 In recent work [31], the statistical theory presented in [10] and analyzed in the present
paper is applied to the active weather layer of the atmosphere of Jupiter.  When appropriately
fit to a -layer quasi-geostrophic model, the theory correctly produces large-scale� � �
	
features that agree qualitatively and quantitatively with features observed by the Voyager and
Galileo missions.  For instance, for the channel domain in the southern hemisphere containing
the Great Red Spot and White Ovals [31, Figure 2], the theory produces both the alternating
east-west zonal shear flow and two anticyclonic vortices embedded in it.  In particular, the size
and position of the  vortices closely match the size and position of the GRS and White Ovals,
while the zonally-averaged velocity profile is extremely close to the profile deduced by
Limaye [16].  Similarly, for a northern hemisphere channel that contains no permanent
vortices, the theory correctly predicts a zonal shear flow with no embedded vortices.  This
agreement between theory and observation demonstrates the practical utility of the model
analyzed in the preceding sections of the present paper.
 In Section 5.1 of [10], the nonlinear stability of the equilibrium states for the model is
shown by applying a Lyapunov argument.  The required Lyapunov functional is constructed
from the rate function  for the coarse-grained process  and the constraint functionals E C �2�.

and .  In the canonical case, this construction is identical with a well-known method due to)
Arnold [1], now called the energy-Casimir method [12].  On the other hand, in the



microcanonical case when nonequivalence prevails, this method breaks down and hence it is
necessary to give a more refined stability analysis.  The required refinement, which makes use
of the concept of the augmented Lagrangian from constrained optimization theory, is
presented in [10].  For example,  the Jovian flows realized in [31] fall in this regime. Thus the
variational principles derived from the large deviation analysis in Section 4 and examined in
Section 5 also have important implications for hydrodynamic stability criteria.
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