

Implementing Feature Variability for Models and Code
with Projectional Language Workbenches

 Markus Voelter

Independent/itemis

Oetztaler Strasse 38,
70327 Stuttgart, Germany

voelter@acm.org

Abstract

Product line engineering deals with managing and implementing
the variability among a set of related products. We distinguish
between two kinds of variability: configuration and customiza-
tion. Customization variability can be described using program-
ming language code or creative construction DSLs, whereas
configuration variability is described using configuration based
approaches, such as feature models. Many product lines have both
kinds of variability, and they need to be integrated efficiently.
This paper describes an approach for product line engineering
using projectional language workbenches. These represent code
and models with the same fundamental technology, enabling the
mixing of models and code. They make the tight integration be-
tween several domain-specific languages possible and simple.
Since they can store arbitrary information in models, it is possible
to overlay configuration variability over customization variability
(i.e. apply feature model-based configuration to code and models).
Because of the projectional approach to editing, programs can be
shown with or without the dependencies on feature models, they
can even be rendered (and edited) for a specific variant. This ap-
proach leads to highly integrated and productive tools for product
line development. The paper explains the approach, outlines the
implementation of a prototype tool based on Jetbrains MPS and
illustrates the benefits using a small product line for embedded
systems.

Keywords Product Line Engineering, Feature Modeling, Do-
main-Specific Languages, Language Composition
Classification: D.1.2 Automatic Programming, D.2.11 Software
Architectures, D.2.3 Coding Tools and Techniques (Program
editors), D.2.6 Programming Environments (Programmer work-
bench)

1. Introduction

The technical implementation of product line engineering focuses
on two main issues: a mapping from the problem space to the
solution space as well as the management and implementation of
variability. In both contexts, domain specific languages (DSLs),
i.e. languages that are custom-built to express specific, limited
aspects of a (software) system, can help.

When configuring a product, all variation points defined in the
product line have to be bound to a variant. Variation points can be
bound at different times (for example, when writing the code,
during system initialization, or at runtime). A variation point can
also vary in the degree to which it can be configured. Two funda-
mental kinds of variability can be distinguished: customization
and configuration.

When binding a configuration variation point, one among sev-
eral alternatives is chosen. Feature models [11] are a way to de-
scribe the configuration options for a set of variation points as
well as the constraints between them (such as "feature A cannot be
selected together with feature B"). The number of alternative con-
figurations may be large, but it is bounded, because only a limited
number of valid feature combinations exists.

Customization variability is unbounded. A customization vari-
ation point is bound by writing a (potentially very small) program
in a (perhaps very specific) language. For example, in a frame-
work, a variation point may require the implementation of a class
that implements an interface supplied by the framework, or in a
data management application, a variation point may expect a regu-
lar expression that validates some data. The regular expression
example suggests that it may be a good idea to define a domain-
specific language (DSL) to be used to bind the variation point.
DSLs usually allow the specification of an unlimited number of
programs ("you can always add one more box "), but the nature of
the programs is defined by the DSL.

In this paper I show how projectional language workbenches
(explained in the next section) can be used for product line devel-
opment, representing configuration and customization variability
in the same environmnet. I argue the benefits of using DSLs to
bind customization variability and will briefly show how to define
DSLs and how configuration variability can be overlaid over arbi-
trary languages, general-purpose and domain-specific. I also show

FOSD'10, October 10, 2010 Eindhoven, The Netherlands

Copyright © 2010 ACM 978-1-4503-0208-1/10/10... $10.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357363695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

how we can layer several languages on top of each other to enable
an effective problem space to solution space mapping. An embed-
ded systems product line will be used as the example, and the
tooling will be based on JetBrains MPS [21], an Open Source
projectional language workbench.

Section 2 describes the basics of projectional language work-
benches in general, and MPS specifically work. Section 3 ex-
plains a feature called language annotation that is very useful for
configuration variability. Section 4 shows our proof-of-concept,
section 5 takes a look at future work. Section 6 puts our contribu-
tion in relationship to others', and section 7 contains a brief con-
clusion.

2. Projectional Language Workbenches and MPS

The term Language Workbench has been coined by Martin Fow-
ler in 2005 [1]. In this article he characterizes it as a tool with the
following properties:
 Users can freely define languages which are fully integrated

with each other.
 The primary source of information is a persistent abstract

representation.
 A DSL is defined in three main parts: schema, editor(s), and

generator(s).
 Language users manipulate a DSL through a projectional

editor.
 A language workbench can persist incomplete or contradicto-

ry information.
Projectional editing implies that all text, symbols, and graphics

are projected, well-known from graphical modeling tools (UML,
ER, State Charts): the model is stored independent of its concrete
syntax, only the model structure is persisted, often using XML or
a database. For editing purposes this abstract syntax is projected
using graphical shapes. Users perform mouse and keyboard ac-
tions tailored to graphical editing to modify the abstract model
structure directly. While the concrete syntax of the model does not
have to be stored because it is specified as part of language defini-
tion and hence known by the projection engine, graphical model-
ing tools usually also store information about the visual layout.

Projectional editing can also be used for a syntax that is textual
or semi-graphical (mathematical notations, for example). Howev-
er, since the projection looks like text, users expect interaction
patterns and gestures known from "real text" to work (such as
cursor movements, inserting/deleting characters, rearranging text,
selection). A projectional editor has to "simulate" these interaction
patterns to be usable.

The following list shows the benefits of the approach:
 In projectional editing, no grammar or parser is used. Editing

directly changes the program structure (AST). Thus, projec-
tional editors can handle unparseable code. Language com-
position is easily possible, because composed languages
cannot result in ambiguous grammars, a significant issue in
classical parser-based systems.

 Notations are more flexible than ASCII/ANSI/Unicode.
Graphical, semi-graphical and textual notations can be mixed
and combined. For example, a graphical tool for editing state
machines can embed a textual expression language for edit-
ing the guard conditions on transitions.

 Projectional languages by definition need an IDE for editing
(it has to do the projection!), so language definition and ex-
tension always implies IDE definition and extension. The
IDE will provide code completion, error checking and syntax
highlighting for all languages, even when they are combined.

 Because the model is stored independent of its concrete nota-
tion, it is possible to represent the same model in different

ways simply by providing several projections. Different
viewpoints [23] of the overall program can be stored in one
model; editing can be viewpoint or aspect specific. It is also
possible to store out-of-band data, i.e. annotations on the
core model/program. Examples of this include documenta-
tion, pointers to requirements (traceability) [5] or feature de-
pendencies [6] - as we will describe below.

As a side effect, language workbenches deliver on the promise
of removing the distinction between what is traditionally called
programming and what is traditionally called modeling. This dis-
tinction is arbitrary: developers want to express different concerns
of software systems with abstractions and notations suitable to
that particular concern, formally enough for automatic processing
or translation, and with good IDE support. Projectional language
workbenches deliver on this goal in an integrated, consistent and
productive way. They do this by applying the technology known
from modeling tools (projection) to editing any notation.

The Jetbrains Meta Programming System

JetBrains’ Meta Programming System is an open source projec-
tional language workbench [21]. Defining a language starts by
defining the abstract syntax, the editor for the language concepts
is specified in a second step. Lastly the generator is defined. It
outputs text (for a low-level language) or it transforms higher-
level code into code expressed in lower level languages. The
higher-level to lower-level generators are not text generators, they
transform abstract syntax trees.

Editing the tree as opposed to “real text” needs some accusto-
mization. Without specific adaptations, every program element
has to be selected from a drop-down list and "instantiated". How-
ever, MPS provides editor customizations to enable editing that
resembles modern IDEs that use automatically expanding code
templates. In some cases though, the tree shines through: Consid-
er changing a statement like int i = j+k; to int i = (j+k)*2; you
cannot simply move the cursor to the left of j and insert a left
parenthesis. Rather, you have to select the + operator (the root
node of the expression on the right) and use a Surround with Pa-
rens refactoring. Using (as the hotkey for this refactoring creates
an editing experience very similar to "real" text).

Language Definition with MPS

I have described language creation, extension and composition in
MPS in a separate paper [22]. This section shows an example as a
short summary. MPS, like other language workbenches, comes
with a set of DSLs for language definition, a separate DSL for
each language aspect. Language aspects include structure, editor,
type system, generator as well as support for features such as
quick fixes or refactorings.

Defining a new language starts by defining the language struc-
ture (aka meta model). This is very much like object oriented
programming as language elements are represented as concepts
that have properties, children and references to other concepts.
The second step is the editor for the language concepts. An editor
defines how the syntax for the concepts should look like - it con-
stitutes the projection rules. Figure 1 is an example.

Figure 1. Defining an editor for a local variable declara-
tion statement (as in int i = 2*2;)

Next is the definition of the type system. For example, the type
property of a LocalVariableDeclaration must be compatible with
the type of its init expression.

At this point, the definition of the language and the basic edi-
tor, as well as the type system are finished. However, to use the
new LocalVariableDeclaration statement, the user has to bring up
the code completion menu in the editor, select the concept Local-
VariableDeclaration and use tab or the mouse to fill in the vari-
ous properties (type, name, init). A couple of editor
customizations are necessary to make sure users can "just type"
the declaration. I refer to [22] for details on how this works.

Language Modularization and Extension

I referred above to the ability to modularize and compose lan-
guages as a way of breaking down monolithic languages into ma-
nageable modules that can be combined as needed. I also already
alluded to the relationship between object oriented programming
and language definition in MPS. This analogy also holds for lan-
guage extension and specialization. Concepts can extend other
concepts, and subconcepts can be used polymorphically. Lan-
guages can extend other languages, too, and the sublanguage can
contain subconcepts of concepts in the base language or can over-
ride the translation rules (generators) of concepts defined in the
base language. Concept interfaces are also available. Using the
Adapter pattern [29], unrelated concepts can be made to fit to-
gether. To use a B in places where an A (or subtypes) is expected,
an adapter BAdapter that extends A and contains or references a B
is necessary. As shown in [22], this approach supports embedding
of completely unrelated languages.

Languages also define translation rules to lower-level languag-
es or to text. MPS includes an incremental translation engine that
reduces program code as long as translation rules are available for
the program elements. At the end, text generators output regular
program text that can be fed into a compiler.

The language modularization and composition features are ex-
tremely useful for handling customization variability, because
DSLs that describe a specific aspect of the overall system can be
easily integrated with the languages used to implement the rest of
the system.

3. Language Annotations

With MPS it is possible to add additional data to program ele-
ments that has not been "planned for" when designing the original
language. It is possible for language X to contribute properties to
elements of language Y without invasively changing language Y.
This is a little bit like introductions in aspect oriented program-
ming [2]. It is an extremely interesting feature for adding feature
dependencies, i.e. as a way of implement configuration variability.
Section 4 shows how this feature is used in the context of embed-
ded systems development.

Defining an annotation for feature dependencies

As figure 2 shows, an annotation declares which elements it tar-
gets (A in the example). As a consequence, this element (and all
its subtypes) appears to possess the additional child r declared by
the annotation. The child can be used like any other child of A.
The annotation can reside in a different language than the target
elements, supporting external, a-posteriori non-invasive extension
of languages.

concept A

child x: X

child y: Y

annotation Q

wrap r: R
+

targets A

=

concept A

child x: X

child y: Y

child r: R

concept R

...

Figure 2. Annotations can add properties to concepts
without invasive modification

It is, however, not enough to add the additional property to the
program elements. It also has to be rendered in the editor, so the
editor needs to be adapted as well. For example, if a program
element has a feature dependency annotation, the actual feature
expression must be shown near the element. Figure 3 shows an
example of three variables that are annotated with a dependency
to the sonar feature.

Figure 3. Feature dependencies annotated to variable dec-
larations

This is a placeholder cell which, at runtime, is replaced with the
editor of the node to which the annotation has been added. So, in
essence, it means that the editor of the annotation element R
wraps around and embeds the editor to which the annotation has
been added.

concept A

child x: X

child y: Y

annotation Q

wrap r: R
+

targets A

=

concept A

child x: X

child y: Y

child r: R

A’s editor
concept R

...

R’s editor

[- … annotatedNode … -]

A’s editor

R’s editor

[- … … -]

Figure 4. The editor of the annotation "wraps around" the
editor of the annotated element

Figure 4 shows how editor annotation works in principle. In
the definition of the editor for the element that is "added" to the
target, you can use a special editor cell type (annotatedNode).

Returning to the example for feature dependencies, figure 5 is
the definition of the annotation. It contributes a child named fea-
tureDependencyAnnotation of type FeatureClause to BaseCon-
cept and its subtypes (all language element extend BaseConcept,
at least indirectly. It is like java.lang.Object).

Figure 5. Definition of an Annotation that adds
FeatureClause instances to instances of any subtype of
BaseConcept

In terms of the editor, this means that the editor of Feature-
Clause has to "wrap around" the editor of whichever other ele-
ment it is contributed to. Figure 6 shows the definition of the edi-
tor for FeatureClause: it first includes the feature expression
(such as car && !pedestrian) and then delegates to the node to
which it has been annotated using the attributedNode element.

Figure 6. Definition of the annotation's editor. Note the
delegation to the editor of the annotated node

Evaluating the feature expression during projection

With the facilities described above it is possible to annotate arbi-
trary program elements with feature clauses. These contain a boo-
lean expression over a set of features. Because the language that is
used to define the feature expression is formally defined, it is
possible to evaluate the expression in the IDE and show the pro-
gram in a variant-specific way. This is done by not projecting
those elements whose feature clause evaluates to false considering
the current feature selection. The projection rules in the editor
definition contain the respective if statements. Conditional projec-
tion is supported by the cells with a leading question mark (see
figure 6). These are conditional cells, i.e. they are only shown in
the editor at runtime if their associated condition is true. For the
feature-aware code editor, the feature annotations themselves (i.e.
the {car && !pedestrian}) are only shown if a global configura-
tion flag Show Feature Annotations is true. So the condition in
the conditional cell directly before the {expression} in the editor
definition in figure 6 contains the following expression shown in
figure 7:

Figure 7. Expression that makes sure the feature clause is
only shown if the configuration allows it

Figure 8. Expression that makes sure the whole annotated
element is only shown if the configuration allows it

Also, in the projection mode that shows a program variant, we
want to make sure that the program element (e.g. a procedure, or
an if statement) to which a feature expression is annotated is not
shown, if the feature expression is false. This is achieved by the
outer conditional cell in figure 6 that surrounds the expression
and the attributed node. The condition is shown in figure 8.

4. The Proof of Concept

Together with Bernhard Merkle, the author is currently working
on a modular language for embedded development based on C
(MEL - Modular Embedded Language). It is described in detail in
another paper [3]. Among other things it contains support for
product line variability as described in the previous section. This
section is a brief overview of the language.

Embedded Software Development Language

Embedded systems are becoming more and more software inten-
sive. Consequently, software development plays an increasingly
important part in embedded system development, and the software
becomes bigger and more complex. Traditional embedded system
development approaches use a variety of tools for various aspects
of the system, making tool integration a major headache. Some of
the specific problems of embedded software development include
the limited capability for meaningful abstraction in C, some of C's
"dangerous" features (leading to various coding conventions such
as Misra-C [4]), the proprietary and closed nature of modeling
tools, the integration of models and code, traceability to require-
ments [5], long build times as well as the consistent implementa-
tion of product line variability [6].

To address these issues, we propose a modular modeling and
programming language and IDE that supports higher-level ab-
stractions and system-specific extensions based on a projectional
language workbench and to use code generation to C as a way of
integrating with existing compilers and platforms. The proposed
language uses C as its core and adds several useful extensions,
including a module system with visibility rules, physical quanti-
ties (as opposed to just ints and floats), first-class state machines,
dataflow ports, mathematical notations, memory mapping and bit
fields, as well as first-class support for various inter-process
communication approaches (shared memory, message passing,
bus communication).

As a proof of concept, we are currently building a first cut of
this modular embedded language (MEL) based on JetBrains MPS.
We use Lego Mindstorms [7] as the target platform together with
the OSEK [30, 8] operating system. C and OSEK are widely used
in automotive systems, so the technologies used in the prototype
are relevant in real systems. The current baseline showcase is a
simple line follower robot. It uses a single light sensor to follow a
thick black line. It keeps track of the curving line by changing the
speed of motors that drive the two wheels. The current state of the
prototype contains language modules for components, tasks, state
machines, bit-level data structures, physical quantities, documen-
tation annotations, basically all of C as well as support for product
line variability and requirements traces.

Configuration Variability - Feature Annotations

Lego is a good way of showing product line variability because it
is easy to clip on variant specific hardware. The following two
optional hardware elements are available:
 a bumper at the front of the robot that stops it if the bumper

is pressed. Essentially, this is a collision sensor.
 a sonar sensor, that temporarily stops the robot if something

steps into its way. This is a collision prevention system.

In Figure 9, configuration A shows the robot in its basic setup
(bumper = false and sonar = false), B shows the configuration
with the bumper and C shows bumper and sonar.

Figure 9. Three different variants of the robot

Feature dependencies are a way to implement configuration
variability in programs. Handling configuration variability re-
quires two ingredients. First, a set of variation points (aka features
in the feature modeling approach [11]) and the constraints among
them have to be defined. Second, program elements have to be
annotated with expressions over these features. These expressions
determine whether a piece of program is in a variant or not.

In a real-life system, feature management happens in an exter-
nal tool (such as pure::variants [12]). In the proof-of-concept, just
like with the requirements, features are managed in a simple list.
Features can be selected (see figure 9) to determine whether they
are in the system or not (which will become relevant later).

The second ingredient are feature annotations, i.e. annotations
on program elements that contain an expression that determines
which features it depends on, and how. As described above, pro-
grams can be projected in a way that shows the feature annota-
tions directly on the element it is attached to (Figure 10).
Although the figure contains only dependencies on single fea-
tures, we can use boolean expressions in the feature annotation
such as {bumper && sonar && !debugOutput}. This is actually a
small sublanguage for boolean expressions (again with code com-
pletion into the feature model, error checking etc.).

Figure 9. The dummy feature model for the line follower
robot (also contains true/false switches to define a variant)

As can be seen from Figure 10, feature dependency expres-
sions can be annotated to any program element. Annotated ele-
ments have a grey background and the feature annotation
expression is given on the left of the element. Alternatively it
would also be possible to assign a specific color to each feature
and then use the respective color as the background for the ele-
ments annotated with this feature (as done by CIDE [19]).

By flipping a switch in the overall projection settings it is
possible to show the program in a variant-specific way. For exam-
ple, if we switch off the debugOutput and the bumper feature, the
code in Figure 11 will result.

Figure 10. A piece of the overall linefollower program
projected with feature annotations

Note that these projections still contain the grey highlight for
parts that are feature dependent. This can be turned off, too. Also,
the feature dependency expressions can be shown in this view if
requested. It is important to point out that this is not a read-only
projection! Rather, the program can still be edited while shown in
the variant-specific way.

As mentioned above, for compilation the program is generated
into plain C and then compiled with the existing legacy compiler
infrastructure. When generating C, the current feature configura-
tion is taken into account. A simple transformation script is run as
part of the incremental reduction process that removes all program
elements whose feature clause evaluates to false, making sure they
are not part of the resulting C text.

Static Validation of Feature Dependencies

Making parts of models or code optional runs the risk of produc-
ing structurally or semantically broken programs after "cutting
away" all the stuff that is not configured to be in a certain variant.
Detecting semantic errors in turing-complete programs is imposs-
ible in general, of course. But static correctness can be verified.

Figure 11. A part of the program with debugOutput and
bumper switched off (pls compare with Figure 10)

Consider that in MPS (and in projectional editors in general)
every element is a node with a unique identity. Relationships be-
tween elements are expressed with actual references to these
unique identities. A structurally broken program is one where a
referencing element is in the code for a given variant, but the ref-
erence target is not. Static validation of feature dependencies re-
quires showing that for any (valid) feature combination, no such
"dangling pointer" will result. The following is a simple approach
to verify this:
 Calculate all combinations of all features (i.e. all variants)
 For each referencing element R, collect all feature combina-

tions CR for which this element will be in the variant code
 For each reference target element T of R, collect all combina-

tions CT for which this element will be in the variant code
 If CR is not a subset of CT, an error has been detected

This algorithm has been implemented in the prototype and it
works well in principle. The fact that all references can be fol-
lowed easily, and the fact that feature dependencies are expressed
as expressions based on a formal expression language makes im-
plementing this algorithm simple - and it does work for small sets
of configuration features. But of course the set of possible feature
combinations grows exponentially over the number of features, so
for real-world sized systems it will not work. The following steps
could be taken to address this:
 In real systems, the set of features is not unrestricted, they

have constraints among each other. This limits the size of the
set of valid feature combinations (i.e. variants)

 Feature macros can be introduced, i.e. features that encapsu-
late a set of other features and their constraints (e.g. fast :=
!small && !dynamic). If feature dependencies refer to the ma-
cro features, they can be seen as one combination and the
combinatorics behind them can be ignored.

 If only a part of a program needs to be validated, only the fea-
ture combinations involving the features referenced from the
respective part of the program need to be calculated.

 Finally, using a solver instead of the try-all-combinations
brute force approach may yield even more scalable results.

We will explore these alternatives as part of our in the future work
(see below).

Figure 12. A simple robot routing script

Customization Variability - a DSL on top

Consider now a robot vendor who sells Lego robots with two
wheels that can follow a predefined route. Of course, each cus-
tomer wants a different predefined route. The vendor has to de-
velop a different route-driving program for each customer. Of
course this can be achieved with tasks, state machines, variables
and procedures, or in other words, the general-purpose MEL. But
it would be better if a domain specific language for defining
routes was available. In PLE terminology, the DSL would be used
to express the problem domain and a transformation would map
this to a solution domain implementation.

The program in figure 12 is an example expressed with such as
route definition DSL, it uses native route-definition constructs.
Since the robot routing language extends the core language, it can
be embedded in a module - like the general purpose MEL con-
structs. The robot script can even call procedures. The robot
routing language is executed by transformation into the following
MEL constructs:
 a state machine that keeps track of the current command/step
 module variables that remember the current speeds for the

two motors
 module variables that store the current deltas for the speeds

of both motors to be able to "ramp up" the speeds in accele-
rate and decelerate commands

 a cyclic tasks that updates motor speeds based on the current-
ly selected deltas.

Figure 13 shows a robot script together with the lower-level
program that results from the transformation.

Combining the DSL and Feature Annotations

It useful to combine customization and confguration variability.
In the example this would mean that we can attach feature expres-
sions to robot script programs. This is of course also possible. The
feature annotations are completely generic and make no assump-
tion about the language to which they are attached. Consequently,
they can be used with the robot DSL in the same way as with the
lower level programs.

Figure 13. A simple robot script (top right, grey) and the
lower level MEL program it is transformed into

5. Future Work

Future work will progress in three main directions: additional
language concepts, real world-validation and integration of exist-
ing feature modeling tools.

Feature Modeling Tools

Currently we use a flat list of features (each basically boolean
switches) as our feature model. We chose this approach because it
is trivial to implement, and the point we wanted to make with our
work was not to implement a new feature modeling tool.

However, to make our approach more useful in practice, inte-
gration with tools such as pure-variants [12]. We will simply im-
port the list of features as well as the constraints among them.
This will allow us to refer to these features from within feature
expressions, and it will allow us to exploit the constraints between
the features when we calculate whether a program is structurally
valid.

Additional Language Concepts

An alternative to overlaying configuration over program or model
code is to make the feature model the main configuration tool and
add DSL code to it. In most feature management tools (for exam-
ple, pure::variants [12]) features can have parameters. For exam-
ple, when selecting a buffered feature for a communication
protocol product line, a buffer size parameter can be specified.
Generalizing this approach leads to the following:
 each feature may define any number of parameters. These

cannot just be simple types (int, string, boolean) but can in-
clude DSLs.

 When a feature is selected, a value for the parameter that
complies to the parameter's type has to be supplied. For
DSL-typed parameters, this means that a model that con-
forms to the DSL must be supplied.

Because projectional language workbenches can integrate
models using any combination of DSLs, this approach is feasible.
Figure 14 shows a very early prototype of this; a retry algorithm is
used as the value for the retry parameter of the polling feature.

Optionally taking away program elements if they are not in-
cluded in the variant is only one way of implementing variability.

The approach is often called negative variability. The other alter-
native is to conditionally add to a minimal core - positive variabil-
ity. The advantage is that the minimal core remains small, quite in
contrast to negative variability where the overall program that
includes all variants can grow quite large. Like in AOP [2], posi-
tive variability requires pointcuts to define where to add the addi-
tional program elements to the core. Future work will focus on
positive variability MEL as a means of implementing variability.

Figure 14. A DSL snippet in a feature model

As mentioned above, the current approach to feature validation
is brute force and does not at all scale. One aspect of our future
work will address this issue. We've already started collaborating
with a university who has experience in this regard.

Real-World validation

The other main avenue of future work is real world validation. We
are currently in the process of starting up a project to do a real
prototype - something more realistic than the Lego Mindstorms
example we are currently building. The connection to real re-
quirements management systems and to variant management tools
will be a part of this prototype.

6. Related Work

The idea of using DSLs to describe variability in product lines is
not new. Various authors have published about this [13,14,15]
and the approach is used in practice. The approach described in
this paper is different since the various DSLs can be mixed and
integrated. Language composition for textual languages is not
easily possible with non-projectional editors, although progress is
being made, as exemplified by [18, 28].

Overlaying configuration variability over customization varia-
bility has been done before, too. The C preprocessor can be used
to this effect using #ifdefs. The approach can also be used on
models. For example, Krzysztof Czarnecki and his group have
overlaid feature-based variability over UML diagrams [16].The
approach described in this paper is different in that configurative
variability can be overlaid over models and code in the same way
- there is no difference between the two in the first place. Since
the feature expressions are also a formal language, the expressions
can be formally checked and interpreted. The ability to show the
program/model code with feature clauses enabled or not, and to
show the (and edit!) the model in a variant-specific way is also
radically different from these tools. CIDE, a specific solution for
C code is described in [19]. However, the approach described in
this paper is different since it works for any language within MPS.
Also, the approach described in this paper supports the combina-
tion of the annotation-based approach with language composition
and DSLs. VML [17] is another tool (based on Eclipse EMF) that

can map configurative variability to arbitrary models. However,
since source code (C, Java) is not represented with EMF in Ec-
lipse, a special solution had to be created to "adapt" VML to
source code.

Showing statically that every valid variant of the feature model
will result in a structurally valid program has been done before by
[27] for the case of UML models and OCL constraints. Also the
tool developed by Czarnecki et al. [16] has static validation to
make sure that every variant of the UML model is structurally
correct. Another approach for the same problem is described as
part of the AHEAD methodology in [20]. Verifying that only
"correct" programs are synthesized by program synthesis is a pop-
ular resarch topic [25, 26, 27,31]. We will use the approaches
described in these papers in our future work, since the focus of
our work is not primarily on this kind of verification.

Krzysztof Czarnecki and his group are currently working on a
very interesing language: Clafer [24], a combination of structural
class modeling and feature modeling. Krzysztof and his group are
planning to integrate Clafer into the MPS prototype. One area
where the approach described in this paper is more flexible is that
we can use arbitrary DSLs and syntax to describe structural varia-
bility, whereas Clafer is essentially limited to class (or meta-)
modeling.

7. Evaluation & Conclusion

As we continue to build Mindstorms applications with our lan-
guage, it turned out that it is useful to extend plain C with embed-
ded-specific concepts. Programs can be read and analyzed more
easily: the more the language constructs resemble the intent of the
programmer, the more meaningful analyses can be.

It is feasible to package the various aspects into separate lan-
guage modules and make incremental extension possible. It is also
surprisingly little effort to build language extensions: developing
the basic C implementation has taken us about 3 weeks. Adding
the statemachine facilities has been done in one afternoon. Creat-
ing the robot routing DSL on top was a matter of 4 hours, includ-
ing the mapping down to tasks and state machines. Consequently,
the concept of building DSLs to express some aspect of a product
line is absolutely feasible.

Adding variability annotations to program elements is not fun-
damentally new. #ifdefs in C programs can be used for a similar
approach. However, the ability to reliably evaluate the expres-
sions, show and edit the programs in variant-specific ways as well
as the static validation of feature dependencies has proven useful
even in our simple examples.

Acknowledgments

My thanks go to Konstantin Solomatov of JetBrains who tirelessly
supported my efforts of learning MPS, as well as to Christoph
Elsner for his feedback on this paper.

References

[1] Fowler, M., Language Workbenches: The Killer-App for

 Domain Specific Languages?,

 http://martinfowler.com/articles/languageWorkbench.html

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

 C., Loingtier, J., Irwin, J. Aspect-Oriented Programming. Proceed

 ings of ECOOP 1997, vol.1241. pp. 220–242.

[3] Markus Voelter, Embedded Software Development with

 Projectional Language Workbenches, Proc. of MODELS 2010,

[4] MISRA Group, Misra-C, http://www.misra-c2.com/

[5] Gotel, O., Finkelstein, A., An Analysis of the Requirements

 Traceability Problem, Proc. of First International Conference on

 Requirements Engineering, 1994, pages 94-101

[6] Software Engineering Institute, Software Product Lines,

 http://www.sei.cmu.edu/productlines/

[7] Lego SA, Mindstorms, http://mindstorms.lego.com

[8] Sourceforge.net, nxtOSEK, http://lejos-OSEK.sourceforge.net/ Osek

[9] IBM Corp, Requisite Pro - a Requirements Management Tool,

 http://www-01.ibm.com/software/awdtools/reqpro/

[10] IBM Corp, Rational DOORS, http://www-01.ibm.com/

 software/awdtools/doors/productline/

[11] Kang, K.C. and Cohen, S.G. and Hess, J.A. and Novak, W.E. and

 Peterson, A.S., Feature-oriented domain analysis (FODA) feasibili

 ty study, Technical Report CMU/SEI-90-TR-021, SEI, Carnegie

 Mellon University, November 1990

[12] Pure Systems GmbH, pure::variants,

 http://www.pure-systems.com/pure_variants.49.0.html

[13] Batory, D., Johnson, C., MacDonald, B., von Heeder, D., Achieving

 Extensibility through Product-Lines and Domain-Specific Lan

 guages: A Case Study, LNCS, Volume 1844/2000

[14] Mernik, M., Heering, J., Sloane, A., When and how to develop

 domain-specific languages, ACM Computing Surveys (CSUR),

 Volume 37 , Issue 4

[15] Tolvanen, J., Kelly, S., Defining Domain-Specific Modeling Lan-

 guages to Automate Product Derivation: Collected Experiences,

 Lecture Notes in Computer Science, Volume 3714/2005

[16] Czarnecki, K., Antkiewicz, M.. Mapping Features to Models: A

 Template Approach Based on Superimposed Variants. In Proceed

 ings of GPCE'05, 2005

[17] Loughran, N., Sanchez, P., Garcia, A., Fuentes, L., Language

 Support for Managing Variability in Architectural Models,

 Lecture Notes in Computer Science, Volume 4954/2008

[18] Bravenboer, M., Visser, E., Designing Syntax Embeddings and

 Assimilations for Language Libraries, ATEM'07 and

 http://swerl.tudelft.nl/bin/view/EelcoVisser

[19] Kästner, C., CIDE: Virtual Separation of Concerns,

 http://wwwiti.cs.uni-magdeburg.de/~ckaestne/

[20] Thaker, S., Batory, D., Kitchin D., Cook, W., Safe Composition of

 Product Lines, GPCE 2007, http://userweb.cs.utexas.edu/~wcook/

 papers/gpce07/ThakerGPCE07.pdf

[21] JetBrains Inc, Meta Programming System (MPS),

 http://jetbrains.com/mps

[22] Voelter, M., Solomatov, K., Language Modularization and Compo-

 sition with Projectional Language Workbenches illustrated with

 MPS, submitted to SLE 2010

[23] Wikipedia, View Model, http://en.wikipedia.org/wiki/View_model

[24] Krzyzsztof Czarnecki, Feature and Class Models in Clafer:

 Mixed, Specialized, and Coupled, personal communication, now

 probably available at http://gsd.uwaterloo.ca/~kczarnec/

[25] Huang S., Zook D., Smaragdakis, Y., Statically Safe

 Program Generation with SafeGen, GPCE 2005

[26] Krishnamurthi S., Fisler K.,, Greenberg M.. Verifying

 Aspect Advice Modularly, ACM SIGSOFT 2004

[27] Czarnecki, K., Pietroszek, K.. Verification of Feature-

 Based Model Templates Against Well-Formedness OCL

 Constraints. GPCE 2006

[28] Bravenboer, M., Visser, E., Parse Table Composition, Separate

 Compilation and Binary Extensibility of Grammars, SLE'08 and

 http://swerl.tudelft.nl/bin/view/EelcoVisser

[29] Gamma, E., Helm, R., Johnson R., Vlissides, J., Design Patterns,

 Addison-Wesley, 1994

[30] Continental Automotive, http://osek-vdx.org/

[31] Kästner, C., Apel, S., Trujillo, S., Kuhlemann M., Batory, D.,

 Guaranteeing Syntactic Correctness for all Product Line Variants:

 A Language-Independent Approach, TOOLS Europe 2009

