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Abstract  

Product line engineering deals with managing and implementing 
the variability among a set of related products. We distinguish 
between two kinds of variability: configuration and customiza-
tion. Customization variability can be described using program-
ming language code or creative construction DSLs, whereas 
configuration variability is described using configuration based 
approaches, such as feature models. Many product lines have both 
kinds of variability, and they need to be integrated efficiently. 
This paper describes an approach for product line engineering 
using projectional language workbenches. These represent code 
and models with the same fundamental technology, enabling the 
mixing of models and code. They make the tight integration be-
tween several domain-specific languages possible and simple. 
Since they can store arbitrary information in models, it is possible 
to overlay configuration variability over customization variability 
(i.e. apply feature model-based configuration to code and models). 
Because of the projectional approach to editing, programs can be 
shown with or without the dependencies on feature models, they 
can even be rendered (and edited) for a specific variant. This ap-
proach leads to highly integrated and productive tools for product 
line development. The paper explains the approach, outlines the 
implementation of a prototype tool based on Jetbrains MPS and 
illustrates the benefits using a small product line for embedded 
systems.  

Keywords Product Line Engineering, Feature Modeling, Do-
main-Specific Languages, Language Composition 
Classification: D.1.2 Automatic Programming,  D.2.11 Software 
Architectures, D.2.3 Coding Tools and Techniques (Program 
editors), D.2.6 Programming Environments (Programmer work-
bench) 

1. Introduction 

The technical implementation of product line engineering focuses 
on two main issues: a mapping from the problem space to the 
solution space as well as the management and implementation of 
variability. In both contexts, domain specific languages (DSLs), 
i.e. languages that are custom-built to express specific, limited 
aspects of a (software) system, can help. 

When configuring a product, all variation points defined in the 
product line have to be bound to a variant. Variation points can be 
bound at different times (for example, when writing the code, 
during system initialization, or at runtime). A variation point can 
also vary in the degree to which it can be configured. Two funda-
mental kinds of variability can be distinguished: customization 
and configuration.  

When binding a configuration variation point, one among sev-
eral alternatives is chosen. Feature models [11] are a way to de-
scribe the configuration options for a set of variation points as 
well as the constraints between them (such as "feature A cannot be 
selected together with feature B"). The number of alternative con-
figurations may be large, but it is bounded, because only a limited 
number of valid feature combinations exists. 

Customization variability is unbounded. A customization vari-
ation point is bound by writing a (potentially very small) program 
in a (perhaps very specific) language. For example, in a frame-
work, a variation point may require the implementation of a class 
that implements an interface supplied by the framework, or in  a 
data management application, a variation point may expect a regu-
lar expression that validates some data. The regular expression 
example suggests that it may be a good idea to define a domain-
specific language (DSL) to be used to bind the variation point. 
DSLs usually allow the specification of an unlimited number of 
programs ("you can always add one more box "), but the nature of 
the programs is defined by the DSL.  

In this paper I show how projectional language workbenches 
(explained in the next section) can be used for product line devel-
opment, representing configuration and customization variability 
in the same environmnet. I argue the benefits of using DSLs to 
bind customization variability and will briefly show how to define 
DSLs and how configuration variability can be overlaid over arbi-
trary languages, general-purpose and domain-specific. I also show 
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how we can layer several languages on top of each other to enable 
an effective problem space to solution space mapping. An embed-
ded systems product line will be used as the example, and the 
tooling will be based on JetBrains MPS [21], an Open Source 
projectional language workbench.  

Section 2 describes the basics of projectional language work-
benches in general, and MPS specifically work. Section 3 ex-
plains a feature called language annotation that is very useful for 
configuration variability. Section 4 shows our proof-of-concept, 
section 5 takes a look at future work. Section 6 puts our contribu-
tion in relationship to others', and section 7 contains a brief con-
clusion. 

2. Projectional Language Workbenches and MPS 

The term Language Workbench has been coined by Martin Fow-
ler in 2005 [1]. In this article he characterizes it as a tool with the 
following properties: 
 Users can freely define languages which are fully integrated 

with each other. 
 The primary source of information is a persistent abstract 

representation. 
 A DSL is defined in three main parts: schema, editor(s), and 

generator(s). 
 Language users manipulate a DSL through a projectional 

editor. 
 A language workbench can persist incomplete or contradicto-

ry information. 
Projectional editing implies that all text, symbols, and graphics 

are projected, well-known from graphical modeling tools (UML, 
ER, State Charts): the model is stored independent of its concrete 
syntax, only the model structure is persisted, often using XML or 
a database. For editing purposes this abstract syntax is projected 
using graphical shapes. Users perform mouse and keyboard ac-
tions tailored to graphical editing to modify the abstract model 
structure directly. While the concrete syntax of the model does not 
have to be stored because it is specified as part of language defini-
tion and hence known by the projection engine, graphical model-
ing tools usually also store information about the visual layout.  

Projectional editing can also be used for a syntax that is textual 
or semi-graphical (mathematical notations, for example). Howev-
er, since the projection looks like text, users expect interaction 
patterns and gestures known from "real text" to work (such as 
cursor movements, inserting/deleting characters, rearranging text, 
selection). A projectional editor has to "simulate" these interaction 
patterns to be usable.  

The following list shows the benefits of the approach:  
 In projectional editing, no grammar or parser is used. Editing 

directly changes the program structure (AST). Thus, projec-
tional editors can handle unparseable code. Language com-
position is easily possible, because composed languages 
cannot result in ambiguous grammars, a significant issue in 
classical parser-based systems.  

 Notations are more flexible than ASCII/ANSI/Unicode. 
Graphical, semi-graphical and textual notations can be mixed 
and combined. For example, a graphical tool for editing state 
machines can embed a textual expression language for edit-
ing the guard conditions on transitions. 

 Projectional languages by definition need an IDE for editing 
(it has to do the projection!), so language definition and ex-
tension always implies IDE definition and extension. The 
IDE will provide code completion, error checking and syntax 
highlighting for all languages, even when they are combined. 

 Because the model is stored independent of its concrete nota-
tion, it is possible to represent the same model in different 

ways simply by providing several projections. Different 
viewpoints [23] of the overall program can be stored in one 
model; editing can be viewpoint or aspect specific. It is also 
possible to store out-of-band data, i.e. annotations on the 
core model/program. Examples of this include documenta-
tion, pointers to requirements (traceability) [5] or feature de-
pendencies [6] - as we will describe below. 

As a side effect, language workbenches deliver on the promise 
of removing the distinction between what is traditionally called 
programming and what is traditionally called modeling. This dis-
tinction is arbitrary: developers want to express different concerns 
of software systems with abstractions and notations suitable to 
that particular concern, formally enough for automatic processing 
or translation, and with good IDE support. Projectional language 
workbenches deliver on this goal in an integrated, consistent and 
productive way. They do this by applying the technology known 
from modeling tools (projection) to editing any notation. 

The Jetbrains Meta Programming System 

JetBrains’ Meta Programming System is an open source projec-
tional language workbench [21]. Defining a language starts by 
defining the abstract syntax, the editor for the language concepts 
is specified in a second step. Lastly the generator is defined. It 
outputs text (for a low-level language) or it transforms higher-
level code into code expressed in lower level languages. The 
higher-level to lower-level generators are not text generators, they 
transform abstract syntax trees. 

Editing the tree as opposed to “real text” needs some accusto-
mization. Without specific adaptations, every program element 
has to be selected from a drop-down list and "instantiated". How-
ever, MPS provides editor customizations to enable editing that 
resembles modern IDEs that use automatically expanding code 
templates. In some cases though, the tree shines through: Consid-
er changing a statement like int i = j+k; to int i = (j+k)*2; you 
cannot simply move the cursor to the left of j and insert a left 
parenthesis. Rather, you have to select the + operator (the root 
node of the expression on the right) and use a Surround with Pa-
rens refactoring. Using ( as the hotkey for this refactoring creates 
an editing experience very similar to "real" text). 

Language Definition with MPS 

I have described language creation, extension and composition in 
MPS in a separate paper [22]. This section shows an example as a 
short summary. MPS, like other language workbenches, comes 
with a set of DSLs for language definition, a separate DSL for 
each language aspect. Language aspects include structure, editor, 
type system, generator as well as support for features such as 
quick fixes or refactorings.  

Defining a new language starts by defining the language struc-
ture (aka meta model). This is very much like object oriented 
programming as language elements are represented as concepts 
that have properties, children and references to other concepts. 
The second step is the editor for the language concepts. An editor 
defines how the syntax for the concepts should look like - it con-
stitutes the projection rules. Figure 1 is an example. 

 
Figure 1. Defining an editor for a local variable declara-
tion statement (as in int i = 2*2;) 



Next is the definition of the type system. For example, the type 
property of a LocalVariableDeclaration must be compatible with 
the type of its init expression.  

At this point, the definition of the language and the basic edi-
tor, as well as the type system are finished. However, to use the 
new LocalVariableDeclaration statement, the user has to bring up 
the code completion menu in the editor, select the concept Local-
VariableDeclaration and use tab or the mouse to fill in the vari-
ous properties (type, name, init). A couple of editor 
customizations are necessary to make sure users can "just type" 
the declaration. I refer to [22] for details on how this works.  

Language Modularization and Extension 

I referred above to the ability to modularize and compose lan-
guages as a way of breaking down monolithic languages into ma-
nageable modules that can be combined as needed. I also already 
alluded to the relationship between object oriented programming 
and language definition in MPS. This analogy also holds for lan-
guage extension and specialization. Concepts can extend other 
concepts, and subconcepts can be used polymorphically. Lan-
guages can extend other languages, too, and the sublanguage can 
contain subconcepts of concepts in the base language or can over-
ride the translation rules (generators) of concepts defined in the 
base language. Concept interfaces are also available. Using the 
Adapter pattern [29], unrelated concepts can be made to fit to-
gether. To use a B in places where an A (or subtypes) is expected, 
an adapter BAdapter that extends A and contains or references a B 
is necessary. As shown in [22], this approach supports embedding 
of completely unrelated languages.  

Languages also define translation rules to lower-level languag-
es or to text. MPS includes an incremental translation engine that 
reduces program code as long as translation rules are available for 
the program elements. At the end, text generators output regular 
program text that can be fed into a compiler. 

The language modularization and composition features are ex-
tremely useful for handling customization variability, because 
DSLs that describe a specific aspect of the overall system can be 
easily integrated with the languages used to implement the rest of 
the system. 

3. Language Annotations 

With MPS it is possible to add additional data to program ele-
ments that has not been "planned for" when designing the original 
language. It is possible for language X to contribute properties to 
elements of language Y without invasively changing language Y. 
This is a little bit like introductions in aspect oriented program-
ming [2]. It is an extremely interesting feature for adding feature 
dependencies, i.e. as a way of implement configuration variability. 
Section 4 shows how this feature is used in the context of embed-
ded systems development. 

Defining an annotation for feature dependencies 

As figure 2 shows, an annotation declares which elements it tar-
gets (A in the example). As a consequence, this element (and all 
its subtypes) appears to possess the additional child r declared by 
the annotation. The child can be used like any other child of A. 
The annotation can reside in a different language than the target 
elements, supporting external, a-posteriori non-invasive extension 
of languages.  

concept A

child x: X

child y: Y

annotation Q

wrap r: R
+

targets A

=

concept A

child x: X

child y: Y

child r: R

concept R

...

 
Figure 2. Annotations can add properties to concepts 
without invasive modification 

It is, however, not enough to add the additional property to the 
program elements. It also has to be rendered in the editor, so the 
editor needs to be adapted as well. For example, if a program 
element has a feature dependency annotation, the actual feature 
expression must be shown near the element. Figure 3 shows an 
example of three variables that are annotated with a dependency 
to the sonar feature. 

 
Figure 3. Feature dependencies annotated to variable dec-
larations 

This is a placeholder cell which, at runtime, is replaced with the 
editor of the node to which the annotation has been added. So, in 
essence, it means that the editor of the annotation element R 
wraps around and embeds the editor to which the annotation has 
been added. 

concept A

child x: X

child y: Y

annotation Q

wrap r: R
+

targets A

=

concept A

child x: X

child y: Y

child r: R

A’s editor
concept R

...

R’s editor

[- … annotatedNode … -]

A’s editor

R’s editor

[- …                                      … -]

 
Figure 4. The editor of the annotation "wraps around" the 
editor of the annotated element 

Figure 4 shows how editor annotation works in principle. In 
the definition of the editor for the element that is "added" to the 
target, you can use a special editor cell type (annotatedNode). 

Returning to the example for feature dependencies, figure 5 is 
the definition of the annotation. It contributes a child named fea-
tureDependencyAnnotation of type FeatureClause to BaseCon-
cept and its subtypes (all language element extend BaseConcept, 
at least indirectly. It is like java.lang.Object).  



 
Figure 5. Definition of an Annotation that adds  
FeatureClause instances to instances of any subtype of 
BaseConcept 

In terms of the editor, this means that the editor of Feature-
Clause has to "wrap around" the editor of whichever other ele-
ment it is contributed to. Figure 6 shows the definition of the edi-
tor for FeatureClause: it first includes the feature expression 
(such as car && !pedestrian) and then delegates to the node to 
which it has been annotated using the attributedNode element. 

 
Figure 6. Definition of the annotation's editor. Note the 
delegation to the editor of the annotated node 

Evaluating the feature expression during projection 

With the facilities described above it is possible to annotate arbi-
trary program elements with feature clauses. These contain a boo-
lean expression over a set of features. Because the language that is 
used to define the feature expression is formally defined, it is 
possible to evaluate the expression in the IDE and show the pro-
gram in a variant-specific way. This is done by not projecting 
those elements whose feature clause evaluates to false considering 
the current feature selection. The projection rules in the editor 
definition contain the respective if statements. Conditional projec-
tion is supported by the cells with a leading question mark (see 
figure 6). These are conditional cells, i.e. they are only shown in 
the editor at runtime if their associated condition is true. For the 
feature-aware code editor, the feature annotations themselves (i.e. 
the {car && !pedestrian}) are only shown if a global configura-
tion flag Show Feature Annotations is true. So the condition in 
the conditional cell directly before the {expression} in the editor 
definition in figure 6 contains the following expression shown in 
figure 7: 

 
Figure 7. Expression that makes sure the feature clause is 
only shown if the configuration allows it 

 
Figure 8. Expression that makes sure the whole annotated 
element is only shown if the configuration allows it 

Also, in the projection mode that shows a program variant, we 
want to make sure that the program element (e.g. a procedure, or 
an if statement) to which a feature expression is annotated is not 
shown, if the feature expression is false. This is achieved by the 
outer conditional cell in figure 6 that surrounds the expression 
and the attributed node. The condition is shown in figure 8. 

4. The Proof of Concept 

Together with Bernhard Merkle, the author is currently working 
on a modular language for embedded development based on C 
(MEL - Modular Embedded Language). It is described in detail in 
another paper [3]. Among other things it contains support for 
product line variability as described in the previous section. This 
section is a brief overview of the language. 

Embedded Software Development Language 

Embedded systems are becoming more and more software inten-
sive. Consequently, software development plays an increasingly 
important part in embedded system development, and the software 
becomes bigger and more complex. Traditional embedded system 
development approaches use a variety of tools for various aspects 
of the system, making tool integration a major headache. Some of 
the specific problems of embedded software development include 
the limited capability for meaningful abstraction in C, some of C's 
"dangerous" features (leading to various coding conventions such 
as Misra-C [4]), the proprietary and closed nature of modeling 
tools, the integration of models and code, traceability to require-
ments [5], long build times as well as the consistent implementa-
tion of product line variability [6]. 

To address these issues, we propose a modular modeling and 
programming language and IDE that supports higher-level ab-
stractions and system-specific extensions based on a projectional 
language workbench and to use code generation to C as a way of 
integrating with existing compilers and platforms. The proposed 
language uses C as its core and adds several useful extensions, 
including a module system with visibility rules, physical quanti-
ties (as opposed to just ints and floats), first-class state machines, 
dataflow ports, mathematical notations, memory mapping and bit 
fields, as well as first-class support for various inter-process 
communication approaches (shared memory, message passing, 
bus communication).  

As a proof of concept, we are currently building a first cut of 
this modular embedded language (MEL) based on JetBrains MPS. 
We use Lego Mindstorms [7] as the target platform together with 
the OSEK [30, 8] operating system. C and OSEK are widely  used 
in automotive systems, so the technologies used in the prototype 
are relevant in real systems. The  current  baseline showcase is a 
simple line follower robot. It uses a single light sensor to follow a 
thick black line. It keeps track of the curving  line by changing the 
speed of motors that drive the two wheels. The current state of the 
prototype contains language modules for components, tasks, state 
machines, bit-level data structures, physical quantities, documen-
tation annotations, basically all of C as well as support for product 
line variability and requirements traces.  

Configuration Variability - Feature Annotations 

Lego is a good way of showing product line variability because it 
is easy to clip on variant specific hardware. The following two 
optional hardware elements are available: 
 a bumper at the front of the robot that stops it if the bumper 

is pressed. Essentially, this is a collision sensor. 
 a sonar sensor, that temporarily stops the robot if something 

steps into its way. This is a collision prevention system. 



In Figure 9, configuration A shows the robot in its basic setup 
(bumper = false and sonar = false), B shows the configuration 
with the bumper and C shows bumper and sonar.  

 
Figure 9. Three different variants of the robot 

Feature dependencies are a way to implement configuration 
variability in programs. Handling configuration variability re-
quires two ingredients. First, a set of variation points (aka features 
in the feature modeling approach [11]) and the constraints among 
them have to be defined. Second, program elements have to be 
annotated with expressions over these features. These expressions 
determine whether a piece of program is in a variant or not. 

In a real-life system, feature management happens in an exter-
nal tool (such as pure::variants [12]). In the proof-of-concept, just 
like with the requirements, features are managed in a simple list. 
Features can be selected (see figure 9) to determine whether they 
are in the system or not (which will become relevant later).  

The second ingredient are feature annotations, i.e. annotations 
on program elements that contain an expression that determines 
which features it depends on, and how. As described above, pro-
grams can be projected in a way that shows the feature annota-
tions directly on the element it is attached to (Figure 10). 
Although the figure contains only dependencies on single fea-
tures, we can use boolean expressions in the feature annotation 
such as {bumper && sonar && !debugOutput}. This is actually a 
small sublanguage for boolean expressions (again with code com-
pletion into the feature model, error checking etc.).  

 
Figure 9. The dummy feature model for the line follower 
robot (also contains true/false switches to define a variant) 

As can be seen from Figure 10, feature dependency expres-
sions can be annotated to any program element. Annotated ele-
ments have a grey background and the feature annotation 
expression is given on the left of the element. Alternatively it 
would also be possible to assign a specific color to each feature 
and then use the respective color as the background for the ele-
ments annotated with this feature (as done by CIDE [19]). 

By flipping a switch in the overall projection settings it is 
possible to show the program in a variant-specific way. For exam-
ple, if we switch off the debugOutput and the bumper feature, the 
code in Figure 11 will result. 

 
Figure 10. A piece of the overall linefollower program 
projected with feature annotations 

Note that these projections still contain the grey highlight for 
parts that are feature dependent. This can be turned off, too. Also, 
the feature dependency expressions can be shown in this view if 
requested. It is important to point out that this is not a read-only 
projection! Rather, the program can still be edited while shown in 
the variant-specific way.  

As mentioned above, for compilation the program is generated 
into plain C and then compiled with the existing legacy compiler 
infrastructure. When generating C, the current feature configura-
tion is taken into account. A simple transformation script is run as 
part of the incremental reduction process that removes all program 
elements whose feature clause evaluates to false, making sure they 
are not part of the resulting C text.  

Static Validation of Feature Dependencies 

Making parts of models or code optional runs the risk of produc-
ing structurally or semantically broken programs after "cutting 
away" all the stuff that is not configured to be in a certain variant. 
Detecting semantic errors in turing-complete programs is imposs-
ible in general, of course. But static correctness can be verified. 



 
Figure 11. A part of the program with debugOutput and 
bumper switched off (pls compare with Figure 10) 

Consider that in MPS (and in projectional editors in general) 
every element is a node with a unique identity. Relationships be-
tween elements are expressed with actual references to these 
unique identities. A structurally broken program is one where a 
referencing element is in the code for a given variant, but the ref-
erence target is not. Static validation of feature dependencies re-
quires showing that for any (valid) feature combination, no such 
"dangling pointer" will result. The following is a simple approach 
to verify this:  
 Calculate all combinations of all features (i.e. all variants) 
 For each referencing element R, collect all feature combina-

tions CR for which this element will be in the variant code 
 For each reference target element T of R, collect all combina-

tions CT for which this element will be in the variant code 
 If CR is not a subset of CT, an error has been detected  

This algorithm has been implemented in the prototype and it 
works well in principle. The fact that all references can be fol-
lowed easily, and the fact that feature dependencies are expressed 
as expressions based on a formal expression language makes im-
plementing this algorithm simple - and it does work for small sets 
of configuration features. But of course the set of possible feature 
combinations grows exponentially over the number of features, so 
for real-world sized systems it will not work. The following steps 
could be taken to address this: 
 In real systems, the set of features is not unrestricted, they 

have constraints among each other. This limits the size of the 
set of valid feature combinations (i.e. variants) 

 Feature macros can be introduced, i.e. features that encapsu-
late a set of other features and their constraints (e.g. fast := 
!small && !dynamic). If feature dependencies refer to the ma-
cro features, they can be seen as one combination and the 
combinatorics behind them can be ignored. 

 If only a part of a program needs to be validated, only the fea-
ture combinations involving the features referenced from the 
respective part of the program need to be calculated. 

 Finally, using a solver instead of the try-all-combinations 
brute force approach may yield even more scalable results. 

We will explore these alternatives as part of our in the future work 
(see below). 

 
Figure 12. A simple robot routing script 

Customization Variability - a DSL on top  

Consider now a robot vendor who sells Lego robots with two 
wheels that can follow a predefined route. Of course, each cus-
tomer wants a different predefined route. The vendor has to de-
velop a different route-driving program for each customer. Of 
course this can be achieved with tasks, state machines, variables 
and procedures, or in other words, the general-purpose MEL. But 
it would be better if a domain specific language for defining 
routes was available. In PLE terminology, the DSL would be used 
to express the problem domain and a transformation would map 
this to a solution domain implementation.  

The program in figure 12 is an example expressed with such as 
route definition DSL, it uses native route-definition constructs. 
Since the robot routing language extends the core language, it can 
be embedded in a module - like the general purpose MEL con-
structs. The robot script can even call procedures. The robot 
routing language is executed by transformation into the following 
MEL constructs: 
 a state machine that keeps track of the current command/step 
 module variables that remember the current speeds for the 

two motors 
 module variables that store the current deltas for the speeds 

of both motors to be able to "ramp up" the speeds in accele-
rate and decelerate commands 

 a cyclic tasks that updates motor speeds based on the current-
ly selected deltas. 

Figure 13 shows a robot script together with the lower-level 
program that results from the transformation. 

Combining the DSL and Feature Annotations 

It useful to combine customization and confguration variability. 
In the example this would mean that we can attach feature expres-
sions to robot script programs. This is of course also possible. The 
feature annotations are completely generic and make no assump-
tion about the language to which they are attached. Consequently, 
they can be used with the robot DSL in the same way as with the 
lower level programs. 

 



 
Figure 13. A simple robot script (top right, grey) and the 
lower level MEL program it is transformed into 

5. Future Work  

Future work will progress in three main directions: additional 
language concepts, real world-validation and integration of exist-
ing feature modeling tools. 

Feature Modeling Tools 

Currently we use a flat list of features (each basically boolean 
switches) as our feature model. We chose this approach because it 
is trivial to implement, and the point we wanted to make with our 
work was not to implement a new feature modeling tool.  

However, to make our approach more useful in practice, inte-
gration with tools such as pure-variants [12]. We will simply im-
port the list of features as well as the constraints among them. 
This will allow us to refer to these features from within feature 
expressions, and it will allow us to exploit the constraints between 
the features when we calculate whether a program is structurally 
valid. 

Additional Language Concepts 

An alternative to overlaying configuration over program or model 
code is to make the feature model the main configuration tool and 
add DSL code to it. In most feature management tools (for exam-
ple, pure::variants [12]) features can have parameters. For exam-
ple, when selecting a buffered feature for a communication 
protocol product line, a buffer size parameter can be specified. 
Generalizing this approach leads to the following:  
 each feature may define any number of parameters. These 

cannot just be simple types (int, string, boolean) but can in-
clude DSLs. 

 When a feature is selected, a value for the parameter that 
complies to the parameter's type has to be supplied. For 
DSL-typed parameters, this means that a model that con-
forms to the DSL must be supplied. 

Because projectional language workbenches can integrate 
models using any combination of DSLs, this approach is feasible. 
Figure 14 shows a very early prototype of this; a retry algorithm is 
used as the value for the retry parameter of the polling feature. 

Optionally taking away program elements if they are not in-
cluded in the variant is only one way of implementing variability. 

The approach is often called negative variability. The other alter-
native is to conditionally add to a minimal core - positive variabil-
ity. The advantage is that the minimal core remains small, quite in 
contrast to negative variability where the overall program that 
includes all variants can grow quite large. Like in AOP [2], posi-
tive variability requires pointcuts to define where to add the addi-
tional program elements to the core. Future work will focus on 
positive variability MEL as a means of implementing variability. 

 
Figure 14. A DSL snippet in a feature model 

As mentioned above, the current approach to feature validation 
is brute force and does not at all scale. One aspect of our future 
work will address this issue. We've already started collaborating 
with a university who has experience in this regard.  

Real-World validation 

The other main avenue of future work is real world validation. We 
are currently in the process of starting up a project to do a real 
prototype - something more realistic than the Lego Mindstorms 
example we are currently building. The connection to real re-
quirements management systems and to variant management tools 
will be a part of this prototype.  

6. Related Work 

The idea of using DSLs to describe variability in product lines is 
not new. Various authors have published about this [13,14,15] 
and the approach is used in practice. The approach described in 
this paper is different since the various DSLs can be mixed and 
integrated. Language composition for textual languages is not 
easily possible with non-projectional editors, although progress is 
being made, as exemplified by [18, 28]. 

Overlaying configuration variability over customization varia-
bility has been done before, too. The C preprocessor can be used 
to this effect using #ifdefs. The approach can also be used on 
models. For example, Krzysztof Czarnecki and his group have 
overlaid feature-based variability over UML diagrams [16].The 
approach described in this paper is different in that configurative 
variability can be overlaid over models and code in the same way 
- there is no difference between the two in the first place. Since 
the feature expressions are also a formal language, the expressions 
can be formally checked and interpreted. The ability to show the 
program/model code with feature clauses enabled or not, and to 
show the (and edit!) the model in a variant-specific way is also 
radically different from these tools. CIDE, a specific solution for 
C code is described in [19]. However, the approach described in 
this paper is different since it works for any language within MPS. 
Also, the approach described in this paper supports the combina-
tion of the annotation-based approach with language composition 
and DSLs. VML [17] is another tool (based on Eclipse EMF) that 



can map configurative variability to arbitrary models. However, 
since source code (C, Java) is not represented with EMF in Ec-
lipse, a special solution had to be created to "adapt" VML to 
source code. 

Showing statically that every valid variant of the feature model 
will result in a structurally valid program has been done before by 
[27] for the case of UML models and OCL constraints. Also the 
tool developed by Czarnecki et al. [16] has static validation  to 
make sure that every variant of the UML model is structurally 
correct. Another approach for the same problem is described as 
part of the AHEAD methodology in [20]. Verifying that only 
"correct" programs are synthesized by program synthesis is a pop-
ular resarch topic [25, 26, 27,31]. We will use the approaches 
described in these papers in our future work, since the focus of 
our work is not primarily on this kind of verification. 

Krzysztof Czarnecki and his group are currently working on a 
very interesing language: Clafer [24], a combination of structural 
class modeling and feature modeling. Krzysztof and his group are 
planning to integrate Clafer into the MPS prototype. One area 
where the approach described in this paper is more flexible is that 
we can use arbitrary DSLs and syntax to describe structural varia-
bility, whereas Clafer is essentially limited to class (or meta-) 
modeling.  

7. Evaluation & Conclusion 

As we continue to build Mindstorms applications with our lan-
guage, it turned out that it is useful to extend plain C with embed-
ded-specific concepts. Programs can be read and analyzed more 
easily: the more the language constructs resemble the intent of the 
programmer, the more meaningful analyses can be.  

It is feasible to package the various aspects into separate lan-
guage modules and make incremental extension possible. It is also 
surprisingly little effort to build language extensions: developing 
the basic C implementation has taken us about 3 weeks. Adding 
the statemachine facilities has been done in one afternoon. Creat-
ing the robot routing DSL on top was a matter of 4 hours, includ-
ing the mapping down to tasks and state machines. Consequently, 
the concept of building DSLs to express some aspect of a product 
line is absolutely feasible. 

Adding variability annotations to program elements is not fun-
damentally new. #ifdefs in C programs can be used for a similar 
approach. However, the ability to reliably evaluate the expres-
sions, show and edit the programs in variant-specific ways as well 
as the static validation of feature dependencies has proven useful 
even in our simple examples. 
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