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ABSTRACT 

An important step in the design and verification process of spacecraft structures is the coupled transient analysis with 
the launch vehicle in the low-frequency domain. In order to reduce the costs of computation, the spacecraft  and 
launcher models have to be dynamically reduced before they are coupled together. Once the coupled analysis has 
been completed, the transient solution for the reduced spacecraft model is available. The recovery of physical 
displacements from this transient solution can be improved using OTM’s  (OTM = Output Transformation Matrix) 
defined on the basis of the mode acceleration method instead of the mode displacement method. This also holds true 
for displacement-related data such as element forces, element stresses and multi point constraint forces. The aim of 
this paper is to give an overview of the OTM formulations, which are of practical use in space projects. The OTM’s 
will be derived according to both the mode displacement method and the mode acceleration method. The gain in 
accuracy when adopting the mode acceleration method will be demonstrated by means of a simple clamped beam 
example. The procedure to calculate the OTM’s has been programmed using MSC.Nastran DMAP. The DMAP alter 
has been used successfully by ESA in the frame of the International Space Station project, where coupled loads 
analysis with the space shuttle were required. Equipment racks have been reduced to CB-models and associated 
OTM’s have been generated. 
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NOMENCLATURE 
Symbols & Acronyms 
q  generalised coordinate (DOF) 

t  time 
x  displacement coordinate (DOF) 
CB  Craig-Bampton 
COG center of gravity 
D  stress-displacement relationship 
DMAP  direct matrix abstraction program 
DOF  degree of freedom 
DTM  displacement transformation matrix 
E  total number of elements 
ESA European Space Agency 
F  interface force, constraint force component 
FE  finite element 
G  set transformation matrix 
I  identity matrix, total number of internal 

DOF’s 
ISS International Space Station 
J  identity matrix, total number of internal 

DOF’s 
KK ,  stiffness matrix 

LTM  interface force transformation matrix 
MM,  mass matrix 

MAM  mode acceleration method 
MDM  mode displacement method 
MPC  multi point constraint 
N  total number of physical DOF’s 
NTM  COG net load factor transformation matrix 
OTM  output transformation matrix 
P  total number of normal modes 
QTM  MPC-force transformation matrix 

STM  element stress/force transformation matrix 
φ  constraint modes 

ϕ  normal modes with clamped interface 

ψ  Craig-Bampton transformation matrix 

 
Subscripts 
e  element items  
i  internal DOF’s 
j  interface DOF’s 

g  g-set DOF’s 

m  m-set DOF’s associated with MPC’s 
n  n-set DOF’s 
p  generalised DOF’s 

r  r-set interface DOF’s 
rel  relative 
 
Superscripts 
T  transpose 

1−  inverse 

1. INTRODUCTION 
In this paper OTM’s will be derived on the basis of 
both the mode displacement and the mode 
acceleration method. It will be shown that the mode 
acceleration method is the preferred method when 
physical data are recovered from a low frequency 
transient analysis with a dynamically reduced finite 
element model. The mode acceleration method 
improves the accuracy of the recovered physical 
displacements compared to the mode displacement 
method. As a consequence the differential of the 
displacements will be more accurate as well, which 
explains the gain in the accuracy of the element forces 
and stresses. 
 
OTM’s will be derived to enable the recovery of 
displacements, element forces, element stresses and 
MPC forces. The dynamic reduction technique 
practiced in this paper will be according to Craig and 
Bampton[1]. As a consequence the OTM’s derived, 
will be based on a reduced solution according to the 
Craig-Bampton method. 
 
To complete the overview of OTM’s, the OTM’s for 
the recovery of the interface forces and COG net load 
factors will be derived as well. The OTM’s for the 
recovery of the interface forces can be directly 
derived from the Craig-Bampton equations of motion. 
The accuracy of the interface forces cannot be 
improved by adopting a mode acceleration approach. 
Since the OTM’s for the recovery of the COG net 
load factors are derived from the OTM’s for the 
recovery of the interface forces, this also applies to 
them.  This means both the OTM’s for the recovery of 
the interface forces and COG net load factors belong 
to a different class of OTM’s of which the accuracy 
can only be improved by taking into account a higher 
number of modes. 
 
The order of the sections is as follows. In section 2 
the Craig-Bampton method is briefly discussed. In 
section 3 the OTM’s for the recovery of 
displacements, element forces, element stresses and 
MPC forces are derived on basis of the mode 
displacement method. In section 4 a similar set of 
OTM’s will be derived on basis of the mode 
acceleration method. Finally the OTM’s for the 
recovery of interface forces and COG net load factors 
are derived in section 5. In section 6 a description of 
the DMAP is given which incorporates the equations 
derived in sections 2 up to 5. In section 7 the DMAP 
is applied to a simple clamped beam in order to 
compute the CB-model and OTM’s on basis of the 
mode displacement and mode acceleration method. 
Furthermore a transient analysis is run to compare the 
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recovered solutions on basis of both methods. Section 
8 is devoted to a reduction problem associated with 
the ISS project at ESA-ESTEC. In section 9 
conclusions are formulated.  
 
2. CRAIG-BAMPTON REDUCTION 
Consider a free-free physical FE-model having J 
interface DOF’s and I internal DOF’s, which is only 
loaded at its interface. The equations of motion can 
then be written as follows in partitioned format, if 
damping is not considered: 
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One can reduce the model dynamically by using a set 
of P normal modes and J constraint modes to describe 
the physical displacements. It should be noted that a 
considerable reduction of DOF’s can only be 
achieved in case P<<I. The transformation according 
to Craig and Bampton[1] is given by: 
 









⋅=









p

j

i

j

q
x

x
x

ψ     (2) 

 
where, 
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where φij are the constraint modes due to unit 
displacements of the interface DOF’s and ϕip are the 
normal modes with a fully constrained interface. The 
constraint modes are calculated from the following 
static equilibrium equation: 
 

0=⋅+⋅ ijiijjij KIK φ     (4) 

 
or, 
 

ijiiij KK ⋅−= −1φ     (5) 

 
The normal modes are calculated from the following 
eigenvalue problem: 
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The solution of this eigenvalue problem has I 
eigenvalues ω2 and a set of I eigenvectors ϕii. As such 
ϕip is a subset of the total modal basis of eigenvectors 
ϕii.  
 

Substitution of eq.(2) into eq.(1) and pre-
multiplication of eq.(1) with the transpose of the 
transformation matrix ψ gives the following reduced 
set of equations of motion: 
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Solving this set of equations gives the solution in 
terms of interface DOF’s and generalised DOF’s. 
Substitution of the CB-solution into eq.(2) yields the 
physical solution according to the so-called mode 
displacement method. 
 
For the matrices in eq.(7) the following relations 
hold: 
 

ijii
T

ijij
T

ijijjijjjj MMMMM φφφφ ⋅⋅+⋅+⋅+=  (8) 

 

ipii
T

ijipjijp MMM ϕφϕ ⋅⋅+⋅=    (9) 

 
Assuming mass normalised modes: 
 

pppp IM =     (10) 

 
ijjijjjj KKK φ⋅+=     (11) 

 

)( 2
ppp diagK ω=     (12) 

 
3. MODE DISPLACEMENT METHOD 
In this section the OTM’s will be derived for the 
recovery of displacements, element forces and 
stresses and MPC forces on the basis of the mode 
displacement method. Since the static contribution of 
the truncated high frequency modes (I-P modes) is 
missing, all OTM’s derived in this section will lead to 
less accurate physical results than those obtained by 
OTM’s on the basis of the mode acceleration method. 
The latter will be derived in section 4. 
 
3.1 RECOVERY OF DISPLACEMENTS 
The recovery of physical displacements according to 
the mode displacement method is simply done by 
eq.(2), which can also be written as: 
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where, 
 

ψ=DTM     (14) 
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In this way the Craig-Bampton displacement set will 
be expanded to the physical displacement set. 
 
3.2 RECOVERY OF ELEMENT STRESSES 
Suppose the number of element stresses to be 
resolved, equals E. Then the element stresses can be 
calculated from: 
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x
DDσ    (15) 

 
The matrix D is a differential operator calculating 
element strains from the node displacements. It also 
multiplies the strains with material properties 
according to the stress-strain relationship to obtain 
stresses. A similar relation also holds for element 
forces. Hence no distinction will be made between 
stresses and forces. 
 
Substituting eq.(2) into eq.(15) one can derive: 
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Using eq.(3) for the transformation matrix ψ one can 
derive for the STM: 
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or, 
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(18) 

 
The recovery of element forces and stresses on the 
basis of the mode displacement method can now be 
conducted by means of eq.(16) and (18). Considering 
the ψ matrix in eq.(17) as a set of displacement 
solutions of the physical FE-model, one can calculate 
the STM by means of the SDR2 module of 
MSC.Nastran. 
 
3.3. RECOVERY OF MPC-FORCES 
To explain the recovery of MPC-forces, a set of 
equations will be presented which describes the 
procedure for the incorporation of MPC’s in 
MSC.Nastran. Schaeffer[2] explains how the MPC’s 
are represented in MSC.Nastran for a static problem. 
Here the extension from statics to dynamics is made, 
also illustrated by Craig [3]. 
 

The equations of motion (1) can also be partitioned as 
follows, in case MPC-equations are defined in the 
physical model: 
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In eq.(19) the constraint forces at the dependent m-set 
and independent n-set DOF’s are respectively called 
Fm and Fn. The applied interface loads Fj are part of 
Pm and/or Pn. 
 
Eq. (19) can also be written as: 
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or, 
 

gggggggg FPxKxM +=⋅+⋅ &&    (21) 

 
The dependent m-set DoFs are related to the 
independent n-set DoFs by the following MPC-
equations: 
 

nmnm xGx ⋅=     (22) 

 
Then the g-set displacements can be expressed in 
terms of n-set displacements as: 
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The reduced set of equations of motion, to solve the 
n-set unknowns, is then found by noting that the 
constraint forces Fg perform no work during a virtual 
displacement xg: 
 

gg
T

g xFx ∀=⋅ |0)(     (25) 

 
Substitution of Fg found from eq.(21) yields: 
  

gggggggg
T

g xPxKxMx ∀=−⋅+⋅⋅ |0)( &&   (26) 

 
Substitution of eq.(24) into eq.(26) leads to the 
following reduced set of equations of motion for the 
independent n-set DOF’s: 
 

nnnnnnn FxKxM =⋅+⋅ &&    (27) 
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where, 
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gnnn GKGK ⋅⋅=    (29) 

g
T
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The n-set solution can now be obtained by solving 
eq.(27). Afterwards the m-set solution is obtained 
from eq.(22). 
 
The m-set MPC-forces can be solved from the m-set 
equations of motion in eq.(20): 
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Now the m-set MPC forces are known, the n-set 
forces can be solved from eq.(25) splitting it up into 
the m-set and n-set: 
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or after substitution of eq.(22), 
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Eq.(47) then gives the following equilibrium 
equation: 
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This equation will result in non-zero Fn values for the 
n-set DOF’s associated with the MPC’s. Note it 
would be much more expensive to solve Fn from the 
n-set equations of motion in eq.(20). Equations (31) 
and (34) will now be used to define the OTM’s for the 
recovery of MPC-forces. 
 
Substitution of the second derivative of eq.(2) and its 
second derivative into eq.(31) gives: 
 

m
p

j
m

p

j
mm P

q
x

QTM
q
x

QTMF −





⋅+





⋅= 21 &&

&&    

     (35) 

 
where, 
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     (36) 
 
and, 
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From eq.(34) and eq.(35) one can derive for the n-set 
MPC-forces: 
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where, 
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Combination of equations (35) and (38) yields: 
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Since the r-set, associated with the interface DOF’s, 
and the m-set, associated with dependent MPC-
DOF’s, are mutually exclusive in MSC.Nastran, Pm 
does not contain any interface loads. Hence QTM3 
equals zero and eq.(41) can be reduced to: 
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3.4 DAMPING CONSIDERATIONS 
The derivation of the DTM and STM recovery 
matrices on the basis of the mode displacement 
method, would be identical for systems with 
damping, also when the damping forces are 
considerable compared to the inertia and stiffness 
forces. The reason for this observation is that those 
recovery matrices are based on the transformation 
matrix ?  rather than on the equations of motion. If the 
derivation of the OTM’s is based on the equations of 
motion (1), which is true for OTM’s for the recovery 
of MPC-forces, then the effect of damping is not 
taken into account. However, the recovery of MPC-
forces according to eq.(45) is still valid for systems 
which are lightly damped, like typical spacecraft 
structures. For highly damped structures, the damping 
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matrix should be included in the derivation of the 
OTM’s for the MPC-forces. 
 
4. MODE ACCELERATION METHOD 
In the previous section the OTM’s were derived for 
the recovery of physical data on the basis of the mode 
displacement method. The physical data to be 
recovered were the displacements themselves or data 
dependent of the displacements. The accuracy of this 
physical data can be improved by deriving the OTM’s 
on the basis of the mode acceleration method, as also 
explained by Klein, Reynolds and Ricks [4]. In the 
mode acceleration method the solution for the 
physical displacements is improved by incorporating 
the static contribution of the truncated high frequency 
modes, as explained in many books, refer for instance 
to Craig[3], Petyt[5] or Géradin and Rixen[6]. For this 
purpose the physical equations of motion (1) are 
taken as the starting point, and are split into two parts: 
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Eq.(47) expresses the physical displacements as a 
function of the physical accelerations and interface 
displacements. This equation will now be used to 
improve the quality of the OTM’s needed for the 
recovery of displacements and related data from a 
Craig-Bampton solution. 
 
4.1 RECOVERY OF DISPLACEMENTS 
 
Substitution of the second derivative of eq.(2) into 
eq.(47) gives the complete set of physical 
displacements of which the internal displacements are 
corrected according to the mode acceleration method: 
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Substituting the transformation matrix (eq.(3)) into 
eq.(48), one can derive the following equation for the 
recovery of physical displacements according to the 
mode acceleration method: 
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or, 
 









⋅⋅−+⋅−

= −−
ipiiiiijiiijii MKMMK

DTM
ϕφ 111 )(

00     

(51) 
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or (using eq.(5) for the constraint modes): 
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DTM1 has a size of (J+I)x(J+P)=Nx(J+P) and DTM2 
has a size of (J+I)xJ=NxJ. 
 
4.2 RECOVERY OF STRESSES 
Substitution of eq.(48) into eq.(15) one can derive: 
 

j
p

j
e xSTM

q

x
STM ⋅+








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&&
σ    (54) 

 
where, 
 

[ ] 
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
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
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




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eiej

I
MKMK
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     (55) 
 
or, 
 

[ ]ipiiiieiijiiiiijiiei MKDMKMKDSTM ϕφ ⋅⋅⋅−⋅⋅+⋅⋅−= −−− 111
1 )(

     (56) 
 
and, 
 

[ ] 







⋅−

⋅= −
ijii

jj
eiej KK

I
DDSTM 12

  (57) 

 
or (using eq.(5) for the constraint modes), 
 

ijeiej DDSTM φ⋅+=2
    (58) 

 
STM1 has a size of Ex(J+P) and STM2 has a size of 
ExJ. Note that LTM2=0 for a statically determinate 
structure, which by definition causes no stresses due 
to interface deformation. 
 
 

 



AN OVERVIEW AND COMPARISON OF OTM FORMULATIONS ON THE BASIS OF  
THE MODE DISPLACEMENT METHOD AND THE MODE ACCELERATION METHOD 

 
 

Page 7 of 7 
  

4.3 RECOVERY OF MPC-FORCES 
Substitution of the second derivative of eq.(2) and 
eq.(49) into eq.(31) gives: 
 

mjm
p

j
mm PxQTM

q
x

QTMF −⋅+





⋅= 21 &&

&&   (59) 

 
where, 
 

11 DTMKMQTM mgmgm ⋅+⋅= ψ   (60) 

 
and, 
 

22 DTMKQTM mgm ⋅=    (61) 

 
From eq.(34) and eq.(59) one can derive for the n-set 
MPC-forces: 
 

m
T
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p

j
nn PGxQTM

q
x

QTMF ⋅+⋅+





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&&   (62) 

 
where, 
 

m
T

mnn QTMGQTM 11 ⋅−=  
     (63) 
and, 
 

m
T

mnn QTMGQTM 22 ⋅−=    (64) 

 
Combination of eqs.(59) and (62) gives: 
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     (65) 

 
or, 
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j
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

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where, 
 


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


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QTM
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1

1
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







=

n

m

QTM

QTM
QTM

2

2
2

    (68) 








−
= T

mn

mm

G

I
QTM 3

    (69) 

 
As explained in section 3.3, Pm does not contain any 
interface loads. For that reason QTM3 equals zero and 
eq.(66) reduces to: 
 

j
p

j
g xQTM

q
x

QTMF ⋅+





⋅= 21 &&

&&    (70) 

 
For a structure with a statically determinate interface, 
the MPC-forces should be zero for arbitrary interface 
displacements. Therefore QTM2 equals zero in case of 
a statically determinate interface. 
 
4.4 DAMPING CONSIDERATIONS 
As already stated in section 3.4, the effect of damping 
is not taken into account in the derivation of the 
OTM’s, if they are based on the equations of motion 
(1). This is true for all OTM’s based on the mode 
acceleration approach as derived in sections 4.1, 4.2 
and 4.3. However, the recovery equations (49), (54) 
and (70) are still valid for lightly damped systems, 
like typical spacecraft structures. For highly damped 
systems the equations of motions with damping 
included should be taken as the starting point to 
derive the OTM’s. 
 
5. RECOVERY OF INTERFACE FORCES AND 
COG NET LOAD FACTORS 
As stated in the introduction another class of OTM’s 
exists which cannot be improved by using the mode 
acceleration method. Those are the OTM’s for the 
recovery of the interface forces and the related OTM’s 
for the recovery of the COG net load factors. 
 
5.1 RECOVERY OF INTERFACE FORCES 
Splitting the CB equations of motion (7) into an 
interface part (upper set) and modal part (lower set), 
the following equations can be derived: 
 

[ ] jjjj
p

j
jpjj FxK

q
x
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



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⋅
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


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


−−

0

00
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&&  

(72) 
 
If the Craig-Bampton model is part of a bigger system 
of models, then the interface forces can be calculated 
from eq.(71). Equation (72) expresses the CB-space 
displacements in terms of the CB-space accelerations 
and the physical interface displacements. Pre-
multiplication of the upper part of eq.(1) with the 
transpose of the transformation matrix ψ and 
subsequent substitution of the expanded Craig-
Bampton solution into eq.(1) would lead directly to 
eq.(71). Hence there is no difference in accuracy 
between recovery with eq.(71) or recovery by 
substitution of the expanded CB accelerations and 
displacements in eq.(1). A mode acceleration 
expression is not possible in this case. Hence, the 
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only way to increase the accuracy is to include more 
modes. The OTM’s for the recovery of interface 
forces can therefore be classified as a separate class. 
 
Equation (71) can also be written as: 
 

j
p

j
j xLTM

q
x

LTMF ⋅+







⋅= 21 &&

&&    (73) 

 
where, 
 

[ ]jpjj MMLTM =1
    (74) 

 
jjKLTM =2
    (75) 

 
For a statically determinate interface it is known that 
the interface forces and internal forces are zero for 
any arbitrary displacement xj: 
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|
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The second row gives: 
 

jijjijiii xxKKx ⋅=⋅⋅−= − φ1    (77) 

 
Substitution of eq.(77) into the first row of eq.(76) 
gives: 
 

jjijjijj xxKK ∀=⋅⋅+ |0)( φ    (78) 

 
Comparing the equations (78) and (11), one can see 
that jjK =0 for a statically determinate interface. As 
such one can conclude from eq.(75) that for this 
special case LTM2=0. 
 
5.2 RECOVERY OF COG NET LOAD 
FACTORS 
The COG net load factors are defined as the 
accelerations in the component COG due to the 
recovered interface forces as if it were a rigid 
structure. Consider a FE-model, which is  loaded at its 
interface only. For each point in time, the equilibrium 
force at the COG is calculated as follows: 
 

j
T

RjCOG FF ⋅= φ     (79) 

 
Here φRj are the 6 rigid body vectors relative to the 
COG associated with the interface DOF’s and FCOG is 
a force vector with 6 components. Now the COG net 
load factors can be calculated as: 
 

COGRCOG FMa ⋅= −1     (80) 

where the rigid body mass matrix at the COG is given 
by: 
 

R
T

RR MM φφ ⋅⋅=     (81) 
 
Substitution of equation (80) into (79) yields: 
 

j
T

RjRCOG FMa ⋅⋅= − φ1    (82) 

 
Substitution of the interface forces Fj according to 
eq.(73) yields: 
 

j
p

j
COG xNTM

q
x

NTMa ⋅+



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
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where NTM1 is given by, 
 

1
1

1 LTMMNTM T
RjR ⋅⋅= − φ    (84) 

 
and NTM2 is given by, 
 

2
1

2 LTMMNTM T
RjR ⋅⋅= − φ    (85) 

 
5.3 DAMPING CONSIDERATIONS 
Since the derivation of the OTM’s for the recovery of 
interface forces and COG net load factors is based on 
the equations of motion (1), the recovery equations 
(73), and (83) are only valid for systems which are 
lightly damped, like typical spacecraft structures. For 
highly damped systems the equations of motions with 
damping included should be taken as the starting 
point to derive the OTM’s. 
 
6. DMAP 
Tong and Chang[7] developed a DMAP alter for 
MSC.Nastran SOL 103, version 67, to generate CB-
models and OTM’s for the recovery of accelerations, 
interface forces, displacements and element forces. 
This DMAP was used as a baseline for implementing 
all functionality described in the previous sections. 
Compared to Tong and Chang[7] the following 
functionality was added: 
• OTM’s for element stresses 
• OTM’s for MPC forces 
• OTM’s for COG net load factors 
• Tools to reduce the OTM’s to the required DOF’s 
• Incorporation of the single point constraint s-set 

DOF’s and MPC related dependent m-set DOF’s 
in the matrices ψ, DTM1 and DTM2. 

 
The DMAP alter runs with MSC.Nastran SOL 103, 
version 70.5. The complete functionality of the 
DMAP alter can be summarised as follows: 
• generates CB mass and stiffness matrix 
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• generates the transformation matrix ψ 
• generates the recovery matrices LTM1 and LTM2 

for the recovery of interface forces 
• generates the recovery matrix DTM (mode 

displacement method) or the matrices DTM1 and 
DTM2 (mode acceleration method) for the 
recovery of displacements for a specified set of 
DOF’s 

• generates the recovery matrix STM (mode 
displacement method) or the matrices STM1 and 
STM2 (mode acceleration method) for the 
recovery of element stresses for a specified set of 
elements 

• generates a similar OTM’s as noted under the 
previous point for the recovery of element forces 

• Generates the recovery matrix QTM (mode 
displacement method) or the matrices QTM1 and 
QTM2 for the recovery of constraint forces 
resulting from MPC’s 

 
The user has to define some parameters in the bulk 
data deck to control the DMAP. 
 
7. TEST PROBLEM 
In order to test the DMAP a test model was prepared. 
A transient analysis was run with the physical model 
and CB-model, in order to compare the solutions. 
 
7.1 PROBLEM DEFINITION 
A simple beam model with a statically indeterminate 
interface was defined to test the DMAP. Refer to 
figure 1 where the physical model is shown. The 
beam consists of mainly bar elements (CBAR) and 
one rigid body element (RBE2). The total span of the 
beam is 100 meters. Furthermore a rigid body support 
is defined such that the end nodes of the beam are 
rigidly connected. Stiff springs (CELAS2 elements) 
are defined between the rigid support and the beam, 
i.e. between nodes 100&300 and nodes 110&310. In 
the true model those node couples are coincident. The 
rigid support is meant to accelerate the end nodes of 
the beam, nodes 100 and 110, simultaneously in the 
course of a transient analysis. To conduct the transient 
analysis the big mass method is used, with a big mass 
at node 320.  
 
The part of the beam model, which includes nodes 
100 through 110, has 60 independent DOF’s and 
weighs 45 kg. This part of the physical model will be 
subject to Craig-Bampton reduction, as shown in 
figure 1. The CB-model has the following 
characteristics: 
• 12 physical interface DOF’s of nodes 100 and 

110 
• 2 generalised DOF’s 

The 2 modes associated with the generalised DOF’s 
have a total effective mass equal to 80% of the rigid 
mass and can be identified as the first bending modes 
in the x-y plane and the x-z plane. 
 
After having created the CB-model and all OTM’s, 
the CB-model (+ rigid support) and physical model 
were subjected to a transient analysis for comparison. 
A modal viscous damping factor of 2.5% applies to 
both transient analyses. Both models are loaded at 
node 320 with a linear increasing acceleration in z-
direction until t=0.8 s, where it reaches an 
acceleration of 1 m/s2. This acceleration is kept 
constant for the rest of the run-time, i.e. until t=10 s. 
For t>0.8 seconds the model will lift-off in z-direction 
with a linearly increasing velocity. The displacement 
increases with the square of time. 

Subsequently the CB-solution was used together with 
the OTM’s to recover the physical solution. Where 
applicable, results were recovered both according to 
the mode displacement method and the mode 
acceleration method. The recovered physical solution 
in terms of interface forces, accelerations, 
displacements, element stresses and forces and MPC-
forces was compared with the solution obtained from 
the transient analysis of the physical model (no modal 
truncation). In section 7.2 only the results for the 
displacements and stresses will be highlighted for 
reasons of brevity.  

 
7.2 ANALYSES RESULTS 
In figure 2 the input acceleration at node 100 is 
compared with the CB recovered acceleration at node 
100. Both are equal according to expectation. From 
figure 3 up to figure 6 the recovered solutions 
according to the mode acceleration method (MAM) 
and the mode displacement method (MDM) are 
compared with the physical solution. Plotting the 
relative displacements (i.e. relative to the rigid body 
movement), one can observe the difference in 
accuracy between the mode displacement and mode 
acceleration method, refer to figures 3 and 4. The 
relative displacements according to the mode 
acceleration method were obtained using total 
accelerations and relative displacements as follows: 
 

( )
relj
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j
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q
x

DTM
x

x
⋅+





⋅=








21 &&

&&   (86) 

 
Obviously the mode displacement method fails in 
accuracy in case low-frequency or constant loads are 
applied to the CB-model. Part of the static behaviour 
is missing due to modal truncation. Even more drastic 
differences can be observed for displacement-related 
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data such as the element stresses. The reason for this 
observation is that these quantities are related to the 
differential of the relative displacements, giving even 
greater errors. It should be noted that all quantities 
should converge to the values found for a static 
analysis with a gravity field of 1 m/s2 (see figure 2). 
For the mode displacement method this convergence 
value has an offset, which can be regarded as the error 
due to modal truncation. For the element stress as 
plotted in figure 5 and 6, the error for the mode 
displacement method and the mode acceleration 
method relative to the physical solution is plotted in 
figure 7. The error for the mode displacement method 
is greater than 10-2 whereas the mode acceleration 
method shows an error of 10-3 and less. 
 
8. ISS EQUIPMENT RACK 
For a transient coupled loads analysis with the space 
shuttle, a CB-model had to be generated of a payload 
rack as shown in figure 8. In order to recover the 
physical data from the CB-space transient solution, 
OTM’s were requested as well. The CB-reduction and 
OTM generation was performed according to Nieder 
[8]. Payload racks are usually part of habitable 
modules, like ESA’s Columbus Orbital Facility 
(COF) depicted in figure 9. The rack considered here, 
is part of a similar module used for transportation of 
pressurised payloads. 
 
The payload rack, having about 200000 DOF’s, was 
reduced to a CB-model with 30 interface DOF’s and 
200 generalised DOF’s. The sum of the effective 
mass of the 200 retained normal modes was greater 
than 90% of the rigid mass of the rack. The properties 
of the matrices delivered to the coupled loads analysis 
authority are given in table 1. 
 
matrix type method size 
MCB CB-system CB 230 x 230 
KCB CB-system CB 230 x 230 
ATMA) OTM - 848 x 230 
LTM1 OTM - 14 x 230 
LTM2 OTM - 14 x   30 
DTM1 OTM MAM 1887 x 230 
DTM2 OTM MAM 1887 x   30 
STM1 OTM MAM 4548 x 230 
STM2 OTM MAM 4548 x   30 
STM1

B) OTM MAM 135 x 230 
STM2 OTM MAM 135 x   30 
QTM1 OTM MAM 1069 x 230 
QTM2 OTM MAM 1069 x   30 
A) Acceleration transformation matrix = row partition of ψ 
B)  Second set of STM’s for recovery of element forces 

Table 1: CB and OTM matrices 

Each OTM listed in table 1 was checked by 
comparing the transient output of a recovery item of 
the physical model and of the CB-model. The same 
approach was used in the test problem of section 7. 
 
9. CONCLUSIONS 
A DMAP alter has been developed to create 
component Craig-Bampton models. The DMAP alter 
generates the CB mass and stiffness matrix and 
recovery matrices for accelerations, interface forces, 
COG net load factors, displacements, element forces, 
element stresses and MPC-forces. The latter four 
items can be defined according to the mode 
displacement method or mode acceleration method, 
which uses the full physical mass and stiffness matrix 
to incorporate the static contribution of the truncated 
modes. This will be advantageous if low frequency 
(compared to cut-off frequency) forcing functions are 
defined to excite the structure. The solution for the 
physical displacements will be more accurate. The 
accuracy of the element stresses and forces will 
improve, since they are dependent of the differential 
of the recovered displacements (strain). The accuracy 
of the MPC-forces will improve for the same reason. 
However, the MPC-forces are also dependent of the 
inertia forces. 
 
Of course the mode acceleration method also has a 
disadvantage. In case of a high damping ratio, the 
mode displacement method (except for the MPC-
force recovery according to the mode displacement 
method) will be more accurate, since damping has 
been neglected in the formulation of the mode 
acceleration method. Fortunately high damping 
values are not very common for spacecraft structures. 
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Figure 1: Beam model 

 

 

Figure 2: Input acceleration at end-points 

part of model subject to CB-reduction 
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Figure 3: Relative displacement of node 105 

 

Figure 4: Relative displacement / [1-2]s 
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Figure 5: Element stress (CBAR element) 

 

Figure 6: Element stress (CBAR element) / [1-2] s 
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Figure 7: Error in element stress relative to physical solution 

 

Figure 8: Payload Rack 
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Figure 9: ESA’s Columbus Orbital Facility 


