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ABSTRACT

An important step in the design and verification process of spacecraft structuresis the coupled transient analysis with
the launch vehicle in the low-frequency domain. In order to reduce the costs of computation, the spacecraft and
launcher models have to be dynamically reduced before they are coupled together. Once the coupled analysis has
been completed, the transient solution for the reduced spacecraft model is available. The recovery of physical
displacements from this transient solution can be improved using OTM’s (OTM = Output Transformation Matrix)
defined on the basis of the mode accel eration method instead of the mode displacement method. This also holds true
for displacement-related data such as element forces, element stresses and multi point constraint forces. The aim of
this paper is to give an overview of the OTM formulations, which are of practical use in space projects. The OTM's
will be derived according to both the mode displacement method and the mode acceleration method. The gain in
accuracy when adopting the mode acceleration method will be demonstrated by means of a simple clamped beam
example. The procedure to calculate the OTM’s has been programmed using M SC.Nastran DMAP. The DMAP alter
has been used successfully by ESA in the frame of the International Space Station project, where coupled loads
analysis with the space shuttle were required. Equipment racks have been reduced to CB-models and associated
OTM'’ s have been generated.

! Consultant - Atos-Origin Engineering Services B.V.
Copyright © 2001 S.H.J.A. Fransen

Pagelof 1



AN OVERVIEW AND COMPARISON OF OTM FORMULATIONS ON THE BASIS OF
THE MODE DISPLACEMENT METHOD AND THE MODE ACCELERATION METHOD

NOMENCLATURE
Symbols & Acronyms

generalised coordinate (DOF)

q

t time

X displacement coordinate (DOF)

CB Craig-Bampton

COG  center of gravity

D stress-displacement relationship
DMAP  direct matrix abstraction program

DOF  degreeof freedom

DT™M  displacement transformation matrix

E total number of elements

ESA European Space Agency

F interface force, constraint force component
FE finite element

G set transformation matrix

[ identity matrix, total number of internal

DOF's
1SS International Space Station
J identity matrix, total number of internal
DOF's

KK stiffness matrix

LT™ interface force transformation matrix
MM  massmatrix

MAM  mode acceleration method

MDM  mode displacement method

MPC  multi point constraint

N total number of physical DOF's

NTM COG net load factor transformation matrix
O™ output transformation matrix

P total number of normal modes

Q™ MPC-force transformation matrix

ST™ element stress/force transformation matrix
f constraint modes

i normal modes with clamped interface
y Craig-Bampton transformation matrix
Subscripts

€ element items

[ internal DOF’s

i interface DOF’'s

g g-set DOF's

m meset DOF’ s associated with MPC’s

n n-set DOF's

p generalised DOF's

r r-set interface DOF's

rel relative
Superscripts

T transpose

-1 inverse

1. INTRODUCTION

In this paper OTM'’s will be derived on the basis of
both the mode displacement and the mode
acceleration method. It will be shown that the mode
acceleration method is the preferred method when
physical data are recovered from a low frequency
transient analysis with a dynamically reduced finite
element model. The mode acceleration method
improves the accuracy of the recovered physical
displacements conpared to the mode displacement
method. As a consequence the differential of the
displacements will be more accurate as well, which
explains the gain in the accuracy of the element forces
and stresses.

OTM’s will be derived to enable the recovery of
displacements, element forces, element stresses and
MPC forces. The dynamic reduction technique
practiced in this paper will be according to Craig and
Bampton[l]. As a consequence the OTM'’s derived,
will be based on a reduced solution according to the
Craig-Bampton method.

To complete the overview of OTM's, the OTM’s for
the recovery of the interface forces and COG net load
factors will be derived as well. The OTM’s for the
recovery of the interface forces can be directly
derived from the Craig-Bampton equations of motion.
The accuracy of the interface forces cannot be
improved by adopting a mode acceleration approach.
Since the OTM’s for the recovery of the COG net
load factors are derived from the OTM’'s for the
recovery of the interface forces, this also applies to
them. This means both the OTM’sfor the recovery of
the interface forces and COG net load factors belong
to a different class of OTM'’s of which the accuracy
can only be improved by taking into account a higher
number of modes.

The order of the sections is as follows. In section 2
the Craig-Bampton method is briefly discussed. In
section 3 the OTM's for the recovery of
displacements, element forces, element stresses and
MPC forces are derived on basis of the mode
displacement method. In section 4 a similar set of
OTM’s will be derived on basis of the mode
acceleration method. Finally the OTM’s for the
recovery of interface forces and COG net |oad factors
are derived in section 5. In section 6 a description of
the DMAP is given which incorporates the equations
derived in sections 2 up to 5. In section 7 the DMAP
is applied to a simple clamped beam in order to
compute the CB-model and OTM’s on basis of the
mode displacement and mode acceleration method.
Furthermore a transient analysisis run to compare the
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recovered solutions on basis of both methods. Section
8 is devoted to a reduction problem associated with
the ISS project aa ESA-ESTEC. In section 9
conclusions are formulated.

2. CRAIG-BAMPTON REDUCTION

Consider a freefree physica FE-model having J
interface DOF's and | interna DOF’s, which is only
loaded at its interface. The equations of motion can
then be written as follows in partitioned format, if
damping is not considered:

M Mo a0 &K K;
& 0, =+ €
éMu Miiﬂ X g éKij K

One can reduce the model dynamically by using a set
of P normal modes and J constraint modes to describe
the physical displacements. It should be noted that a
considerable reduction of DOF's can only be
achieved in case P<<I. The transformation according
to Craig and Bampton'" is given by:

&,0_ &0 @
=y z
X %) qu
where,
— ?I ii iju (©)]
y —g -
i Jid

where f;; are the constraint modes due to unit
displacements of the interface DOF's and j i, are the
normal modes with a fully constrained interface. The
constraint modes are calculated fom the following
static equilibrium eguation:

Ki ™+ K =0 @
or,
fo=-K. UK ()

The normal modes are calculated from the following
eigenvalue problem:

x =j " 0]
(WZXMH- K|I)% \:0

The solution of this eigenvalue problem has |
eigenvalues W’ and a set of | eigenvectorsj ;;. As such
j ip isasubset of the total modal basis of eigenvectors

jii-

Substitution of eq.(2) into eg.(l) and pre-
multiplication of eq.(1) with the transpose of the
transformation matrix y gives the following reduced
set of equations of motion:

Solving this set of equations gives the solution in
terms of interface DOF's and generalised DOF'’s.
Substitution of the CB-solution into eq.(2) yields the
physical solution according to the so-called mode
displacement method.

For the matrices in eq.(7) the following relations
hold:

M, =M +M o+, ToM, +F,7 M of ®)
_ . T .
MJP _MJI i +f ij xMu ¥ ©

Assuming mass normalised modes:

MPPZIPP (10)

Kjj =K, +K; o, ()
— di 2

K,p =diagw ") 12)

3. MODE DISPLACEMENT METHOD

In this section the OTM’'s will be derived for the
recovery of displacements, element forces and
stresses and MPC forces on the basis of the mode
displacement method. Since the static contribution of
the truncated high frequency modes (-P modes) is
missing, all OTM’s derived in this section will lead to
less accurate physical results than those obtained by
OTM'’s on the basis of the mode acceleration method.
The latter will be derived in section 4.

3.1RECOVERY OF DISPLACEMENTS

The recovery of physical displacements according to
the mode displacement method is simply done by
€q.(2), which can also be written as:

a; g_ DTM & g 13
%; g qp ﬂ

where,

DTM =y (149
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In this way the Craig-Bampton displacement set will
be expanded to the physical displacement set.

32RECOVERY OF ELEMENT STRESSES

Suppose the number of element stresses to be
resolved, equals E. Then the element stresses can be
calculated from:

] X § (15)

se:[Dej %

The matrix D is a differential operator calculating
element strains from the node displacements. It also
multiplies the strains with material properties
according to the stress-strain relationship to obtain
stresses. A similar relation also holds for element
forces. Hence no distinction will be made between
stresses and forces.

Substituting eq.(2) into eg.(15) one can derive:

s =stmM 208
° a5

Using eq.(3) for the transformation matrix y one can
derive for the STM:

(16)

stM=[p, D ])5 ‘”E @

or,

ST™M =lDej +Dg Xy Do} ipJ
(18)

The recovery of element forces and stresses on the
basis of the mode displacement method can now be
conducted by means of eq.(16) and (18). Considering
the y matrix in eq.(17) as a set of displacement
solutions of the physical FE-model, one can calculate
the STM by means of the SDR2 module of
MSC.Nastran.

3.3.RECOVERY OF MPC-FORCES

To explain the recovery of MPC-forces, a set of
equations will be presented which describes the
procedure for the mcorporatlon of MPC's in
MSC.Nastran. Schaeffert? explains how the MPC's
are represented in MSC.Nastran for a static problem.
Here the extension from statlcs to dynamics is made,
alsoillustrated by Craig!®

The equations of motion (1) can also be partitioned as
follows, in case MPC-equations are defined in the
physical model:

uaé(ngA K
YL

mm mn

In eq.(19) the constraint forces at the dependent m-set
and independent n-set DOF's are respectively called
Fm and F,. The applied interface loads F; are part of
P, and/or Py,.

Eq. (19) can also be written as:

X, 0 engu X, 0 o] (20)

ngugxnﬂ eKnguﬁxnﬂ g P anz

or,
MQQ XXQ+KQQXXQ =PQ +Fg (21)
The dependent mset DoFs are related to the

independent n-set DoFs by the following MPC-
equations:

= Gmn XX (22)

Then the gset displacements can be expressed in
terms of n-set displacements as:

?5

U (23
X =
|y 450

o
D:D>

or,

Xy =Gy %X, 24

The reduced set of equations of motion, to solve the
n-set unknowns, is then found by noting that the
constraint forces Fgy perform no work during a virtual
displacement xg:

X, X(F,) =0]" x, (25)
Substitution of Fg found from eq.(21) yields:

Xg XM oo 3%, +K o0 - P)=0]" x, (26)
Substitution of eq.(24) into eq.(26) leads to the
following reduced set of equations of motion for the

independent n-set DOF’ s:

Mo X%+ Ko, =F @n
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where,

Mm =Gy, M g XGy, 28
Km =Gy, XKy 3Gy, (29
Fn=Gy,' *P, G0

The n-set solution can now be obtained by solving
eq.(27). Afterwards the meset solution is obtained
from eq.(22).

The mset MPC-forces can be solved from the m-set
equations of motion in eq.(20):

Now the mset MPC forces are known, the n-set
forces can be solved from eq.(25) splitting it up into
the mset and n-set:

(31)

X, *F, +x, F, =0]" X, (32)
or after substitution of eq.(22),
XnT (FI’\ + GmnT me) = 0|" Xn (33)

Eq.(47) then gives the following equilibrium
equation:

F,=-G,, xF @34

n mn m

This equation will result in non-zero F,, values for the
n-set DOF's associated with the MPC's. Note it
would be much more expensive to solve F, from the
n-set equations of motion in eg.(20). Equations (31)
and (34) will now be used to define the OTM’sfor the
recovery of MPC-forces.

Substitution of the second derivative of eg.(2) and its
second derivative into eq.(31) gives:

j 85( 0
F,=QT™M,, —+ QTM >§ i
]
(35)
where,

QM =My 3y
€D

and,

QM =Ky 3y @

From eq.(34) and eq.(35) one can derive for the n-set
MPC-forces:

F.=QTM,, >§q —+QTM N Néq —+G (38)

where,

QTM,, =- G ' XQTM,, (39)
and,

QTM,, =- Gy’ XQTM ,, (40)

Combination of equations (35) and (38) yields:

, , 1)
F, =QTM, >§ —+QTM >§ —+QTM3><Pm
9, 5 q

7]

where,
™
QT™, = §Q im u “2)
™ in U
™
QT™, = ) 2m 43)
&TM oanl
&1 U (44)
QTM, = eG Tu

Since the r-set, associated with the interface DOF's,
and the meset, associated with dependent MPC-
DOF’s, are mutually exclusive in MSC.Nastran, Pp,
does not contain any interface loads. Hence QTM;
equals zero and eq.(41) can be reduced to:

(45)

F, =QTM™, xéq —+QTM Méq,,%

34 DAMPING CONSIDERATIONS

The derivation of the DTM and STM recovery
matrices on the basis of the mode displacement
method, would be identical for systems with
damping, aso when the damping forces are
considerable compared to the inertia and stiffness
forces. The reason for this observation is that those
recovery matrices are based on the transformation
metrix ? rather than on the equations of motion. If the
derivation of the OTM’s is based on the equations of
motion (1), which is true for OTM’s for the recovery
of MPC-forces, then the effect of damping is not
taken into account. However, the recovery of MPC-
forces according to eq.(45) is still valid for systems
which are lightly damped, like typical spacecraft
structures. For highly damped structures, the damping
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matrix should be included in the derivation of the
OTM’sfor the MPC-forces.

4. MODE ACCELERATION METHOD

In the previous section the OTM's were derived for
the recovery of physical data on the basis of the mode
displacement method. The physical data to be
recovered were the displacements themselves or data
dependent of the displacements. The accuracy of this
physical data can be improved by deriving the OTM’s
on the basis of the mode acceleration method, as also
explained by Klein, Reynolds and Ricks™. In the
mode acceleration method the solution for the
physical displacements is improved by incorporating
the static contribution of the truncated high frequency
modes, as explained in many books, refer for instance
to Craigt®¥, Petyt™ or Géradin and Rixen'®. For this
purpose the physical equations of motion (1) are
taken asthe starting point, and are split into two parts:

(46)

M Mji]’gxl%[Kn Kj']xg(xji%:

0 0 U a; 0 | u
S K 1y _ K1y L:I% T+ e
i %] iQa

(47)

& I IO
(D)(D\
m;m)m\

e

:

Eq.(47) expresses the physical displacements as a
function of the physical accelerations and interface
displacements. This equation will now be used to
improve the quality of the OTM’'s needed for the
recovery of displacements and related data from a
Craig-Bampton solution.

41 RECOVERY OF DISPLACEMENTS

Substitution of the second derivative of eg.(2) into
eq.(47) gives the complete set of physica
displacements of which the internal displacements are
corrected according to the mode accel eration method:
a; 9 Uxx
e
(48)

0

1

& I+ I o:
m,rw oY
C)C g
m;m» [¢N

$3

Substituting the transformation matrix (eg.(3)) into
€g.(48), one can derive the following equation for the
recovery of physical displacements according to the
mode accel eration method:

g ;— DTM, >§q 2+DTM™, x| “9)

where,

0 0 uél; o

U
e u : U
1 K, >‘M - K/ N..u%u vl

DTM, =

(50)
or,

é 0 0 L‘J
eK XM, +M ) - KM

i ij i

DTM, =
ip u
(51)

and,

I JJ ':‘ (52)

K, xK”ﬂ

DTM™,

or (using eq.(5) for the constraint modes):

DTM, = 3 53)

ia

DTM; has a size of @+)x(J+P)=Nx(J+P) and DTM,
has asize of (J+)xJ=NxJ.

42 RECOVERY OF STRESSES
Substitution of eq.(48) into eq.(15) one can derive:

s, =SIM, >§ —+STM xX; 9

where,

- _[D 5 ] é 0 0 ud; O u
1= & ei Xg— Kii- iJ K Muuxg J 'F'U

(55)
or,

SI-,\/Il :l' De\ )(Kii XM + KII XMH )fu) Dei )4‘(“'1 XMii )1 ip
(56)

and,

(57)

u
xKu

STMZ_[DeJ Del]@ K “ a
ij

or (using eq.(5) for the constraint modes),

STM, =D, +Dg % ; (58)

STM; has a size of EX(J+P) and STM, has a size of
ExJ. Note that LTM,=0 for a statically determinate
structure, which by definition causes no stresses due
to interface deformation.
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4.3 RECOVERY OF MPC-FORCES
Substitution of the second derivative of eq.(2) and
€g.(49) into eq.(31) gives:

F, _QTM1m>§q'—+QTM - P, ©9

where,

QTMy,, =My ¥ + Ky XDTM, (60)
and,

QTM ,, =Ky XDTM, (61)

From eq.(34) and eq.(59) one can derive for the n-set
MPC-forces:

_ a; 0 T (62)
F,= QTMH| >§q S+QTM an X +Grm P
P

where,

QTM,, =- G, XQTM,,
(63)
and,

QTM, = -G’ XQTM 5, (64)
Combination of egs.(59) and (62) gives:
aF,0_ €QTM,, 0880 €QTM,, U &l
>43
g nﬂ &TMM U%qpﬂ g?TMZnU : + G T u
(65)

or,

&; 0 (66)
F, =QTM, ><éq T+QTM, xx; + QTM, xR
LN}

where,
o™ _€&QTM,, ¢ u (67)
g?TM U
™
QmM, = §Q Zm (68)
™ 2n U
_é ., (69)
QTM™, eG T u

As explained in section 3.3, Py, does not contain any
interface loads. For that reason QTM3 equals zero and
eg.(66) reducesto:

(70)

F, =QTM, §q —+QTM XX,

For a structure with a statically determinate interface,
the MPC-forces should be zero for arbitrary interface
displacements. Therefore QTM, equals zero in case of
astatically determinate interface.

4.4DAMPING CONSIDERATIONS

As aready stated in section 3.4, the effect of damping
is not taken into account in the derivation of the
OTM’s, if they are based on the equations of motion
(1). This is true for al OTM’s based on the mode
acceleration approach as derived in sections 4.1, 42
and 4.3. However, the recovery equations (49), (54)
and (70) are still valid for lightly damped systems,
like typical spacecraft structures. For highly damped
systems the equations of motions with damping
included should be taken as the starting point b
derivethe OTM'’s.

5. RECOVERY OF INTERFACE FORCES AND
COG NET LOAD FACTORS

As stated in the introduction another class of OTM’s
exists which cannot be improved by using the mode
acceleration method. Those are the OTM’s for the
recovery of the interface forces and the related OTM’ s
for the recovery of the COG net load factors.

5.1 RECOVERY OF INTERFACE FORCES

Splitting the CB equations of motion (7) into an
interface part (upper set) and modal part (lower set),
the following equations can be derived:

(71)

u' Jp])‘é _+K XX

& 0_¢ 0 0 U aX; o+eI”uxx
I=e -1 -1 s, T é
gqpﬂ g Ko My Ky, Nppuxéqpﬂ eoU :

(72)

If the Craig-Bampton model is part of a bigger system
of models, then the interface forces can be calculated
from eq.(71). Equation (72) expresses the CB-space
displacements in terms of the CB-space accelerations
and the physical interface displacements. Pre-
multiplication of the upper part of eg.(1) with the
transpose of the transformation matrix y and
subsequent substitution of the expanded Craig-
Bampton solution into eq.(1) would lead directly to
€g.(71). Hence there is no difference in accuracy
between recovery with eq.(71) or recovery by
substitution of the expanded CB accelerations and
displacements in eq.(1). A mode acceleration
expression is not possible in this case. Hence, the
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only way to increase the accuracy is to include more
modes. The OTM’s for the recovery of interface
forces can therefore be classified as a separate class.

Equation (71) can also be written as:

F, =LTM™, xé 24 LTM, xx, ™39

where,
LT™, =M, M| (74)
L™, = K (75)

For a statically determinate interface it is known that
the interface forces and internal forces are zero for
any arbitrary displacement x;:

& 0_ 280 , (76)

X =-K. R xx = xx @7

Substitution of eq.(77) into the first row of eq.(76)
gives:

(K +K )% =0]" X (78)

Comparing the equations (78) and (11), one can see
that ;=0 for a statically determinate interface. As

such one can conclude from eq.(75) that for this
special case LTM,=0.

52 RECOVERY OF COG NET LOAD
FACTORS

The COG net load factors are defined as the
accelerations in the component COG due to the
recovered interface forces as if it were a rigid
structure. Consider a FE-model, which is loaded at its
interface only. For each point in time, the equilibrium
force at the COG is calculated asfollows:

=f _T xF (79)

CoG Rj j

Here fg; are the 6 rigid body vectors relative to the
COG associated with the interface DOF's and Fcog is
a force vector with 6 components. Now the COG net
load factors can be calculated as:

8cos = Mg ! XFoog (80)

where the rigid body mass matrix at the COG is given
by:

T

Mg =fr xMf g (81)
Substitution of equation (80) into (79) yields:
8o =M R-l * RjT xF; 2

Substitution of the interface forces F; according to
€q.(73) yields:

2o = NTM, xg +NTM x| 83)

where NTM, isgiven by,
NTM, =M " T LTM, (84)
and NTM, is given by,

NTM, =M o T xLTM, (85)

5.3 DAMPING CONSIDERATIONS

Since the derivation of the OTM’s for the recovery of
interface forces and COG net load factors is based on
the equations of motion (1), the recovery equations
(73), and (83) are only valid for systems which are
lightly damped, like typical spacecraft structures. For
highly damped systems the eguations of motions with
damping included should be taken as the starting
point to derive the OTM’s.

6.DMAP
Tong and Chang!” developed a DMAP ater for
MSC.Nastran SOL 103, version 67, to generate CB-
models and OTM'’s for the recovery of accelerations,
interface forces, displacements and element forces.
This DMAP was used as a baseline for implementing
al functionality described in the previous sections.
Compared to Tong and Changm the following
functionality was added:

OTM’sfor element stresses

OTM’sfor MPC forces

OTM’sfor COG net load factors

Toolsto reduce the OTM’ s to the required DOF’'s

Incorporation of the single point constraint s-set

DOF’'s and MPC related dependent m-set DOF’s

inthe matricesy , DTM; and DTM,.

The DMAP adter runs with MSC.Nastran SOL 103,
version 70.5. The complete functionality of the
DMAP alter can be summarised as follows:

generates CB mass and stiffness matrix
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generates the transformation matrix y

generates the recovery matrices LTM; and LTM,
for the recovery of interface forces

generates the recovery matrix DTM (mode
displacement method) or the matrices DTM; and
DTM, (mode acceleration method) for the
recovery of displacements for a specified set of
DOF's

generates the recovery matrix STM (mode
displacement method) or the matrices STM; and
STM, (mode acceleration method) for the
recovery of element stresses for a specified set of
elements

generates a similar OTM’s as noted under the
previous point for the recovery of element forces

Generates the recovery matrix QTM (mode
displacement method) or the matrices QTM; and
QTM, for the recovery of constraint forces
resulting from MPC’s

The user has to define some parameters in the bulk
data deck to control the DMAP.

7. TEST PROBLEM

In order to test the DMAP atest model was prepared.
A transient analysis was run with the physical model
and CB-model, in order to compare the solutions.

7.1 PROBLEM DEFINITION

A simple beam model with a statically indeterminate
interface was defined to test the DMAP. Refer to
figure 1 where the physical model is shown. The
beam consists of mainly bar elements (CBAR) and
one rigid body element (RBE2). The total span of the
beam is 100 meters. Furthermore a rigid body support
is defined such that the end nodes of the beam are
rigidly connected. Stiff springs (CELAS2 elements)
are defined between the rigid support and the beam,
i.e. between nodes 100& 300 and nodes 110& 310. In
the true model those node couples are coincident. The
rigid support is meant to accelerate the end nodes of
the beam, nodes 100 and 110, simultaneously in the
course of atransient analysis. To conduct the transient
analysis the big mass method is used, with abig mass
at node 320.

The part of the beam model, which includes nodes
100 through 110, has 60 independent DOF's and
weighs 45 kg. This part of the physical model will be
subject to Craig-Bampton reduction, as shown in
figure 1. The CB-model has the following
characteristics:

12 physical interface DOF's of nodes 100 and

110

2 generalised DOF's

The 2 modes associated with the generalised DOF's
have a total effective mass equal to 80% of the rigid
mass and can be identified as the first bending modes
in the x-y plane and the x-z plane.

After having created the CB-model and d OTM'’s,
the CB-model (+ rigid support) and physical model
were subjected to a transient analysis for comparison.
A modal viscous damping factor of 2.5% applies to
both transient analyses. Both models are loaded at
node 320 with a linear increasing acceleration in z
direction until t=0.8 s, where it reaches an
acceleration of 1 m/s®. This acceleration is kept
constant for the rest of the run-time, i.e. until t=10s.
For t>0.8 seconds the model will lift-off in zdirection
with a linearly increasing velocity. The displacement
increases with the square of time.

Subsequently the CB-solution was used together with
the OTM'’s to recover the physical solution. Where
applicable, results were recovered both according to
the mode displacement method and the mode
acceleration method. The recovered physical solution
in terms of interface forces, accelerations,
displacements, element stresses and forces and MPC-
forces was compared with the solution obtained from
the transient analysis of the physical model (no modal
truncation). In section 7.2 only the results for the
displacements and stresses will be highlighted for
reasons of brevity.

72ANALYSESRESULTS

In figure 2 the input acceleration at node 100 is
compared with the CB recovered acceleration at node
100. Both ae equal according to expectation. From
figure 3 up to figure 6 the recovered solutions
according to the mode acceleration method (MAM)
and the mode displacement method (MDM) are
compared with the physical solution. Plotting the
relative displacements (i.e. relative to the rigid body
movement), one can observe the difference in
accuracy between the mode displacement and mode
acceleration method, refer to figures 3 and 4. The
relative displacements according to the mode
acceleration method were obtained using total
accel erations and rel ative displacements as follows:

gx Qd—DTM xé 124 oTM, Hx (), ®)

Obviously the mode displacement method fails in
accuracy in case low-frequency or constant loads are
applied to the CB-model. Part of the static behaviour
is missing due to modal truncation. Even more drastic
differences can be observed for displacement-related
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data such as the element stresses. The reason for this
observation is that these quantities are related to the
differential of the relative displacements, giving even
greater errors. It should be noted that all quantities
should converge to the values found for a static
analysis with a gravity field of 1 m/s? (see figure 2).
For the mode displacement method this convergence
value has an offset, which can be regarded as the error
due to modal truncation. For the element stress as
plotted in figure 5 and 6, the error for the mode
displacement method and the mode acceleration
method relative to the physical solution is plotted in
figure 7. The error for the mode displacement method
is greater than 10 whereas the mode acceleration
method shows an error of 10 and less.

8. ISSEQUIPMENT RACK

For a transient coupled loads analysis with the space
shuttle, a CB-model had to be generated of a payload
rack as shown in figure 8. In order to recover the
physical data from the CB-space transient solution,
OTM’s were requested as well. The CB-reduction and
OTM generation was performed according to Nieder
[8]. Payload racks are usualy part of habitable
modules, like ESA's Columbus Orbital Facility
(COF) depicted in figure 9. The rack considered here,
is part of a similar module used for transportation of
pressurised payloads.

The payload rack, having about 200000 DOF's, was
reduced to a CB-model with 30 interface DOF’s and
200 generalised DOF's. The sum of the effective
mass of the 200 retained normal modes was greater
than 90% of the rigid mass of the rack. The properties
of the matrices delivered to the coupled loads analysis
authority are givenin table 1.

matrix type method size

MCB CB-system | CB 230x 230
KCB CB-system | CB 230x 230
ATM? OTM - 848 x 230
LTM, OTM - 14x 230
LTM, OTM - 14x 30
DTM; OTM MAM 1887 x 230
DTM, OTM MAM 18387x 30
ST™M, OTM MAM 4548 x 230
STM, OTM MAM 4548x 30
ST™M, P OTM MAM 135 x 230
STM, OTM MAM 135x 30
QTM; OTM MAM 1069 x 230
QTM, OTM MAM 1069x 30

A Acceleration transformation matrix = row partition of y
®) Second set of STM's for recovery of element forces

Tablel: CB and OTM matrices

Each OTM listed in table 1 was checked by
comparing the transient output of a recovery item of
the physical model and of the CB-model. The same
approach was used in the test problem of section 7.

9. CONCLUSIONS

A DMAP ater has been developed to create
component Craig-Bampton models. The DMAP alter
generates the CB mass and stiffness matrix and
recovery matrices for accelerations, interface forces,
COG net load factors, displacements, element forces,
element stresses and MPC-forces. The latter four
items can be defined according to the mode
displacement method or mode acceleration method,
which uses the full physical mass and stiffness matrix
to incorporate the static contribution of the truncated
modes. This will be advantageous if low frequency
(compared to cut-off frequency) forcing functions are
defined to excite the structure. The solution for the
physical displacements will be more accurate. The
accuracy of the element stresses and forces will
improve, since they are dependent of the differential
of the recovered displacements (strain). The accuracy
of the MPC-forces will improve for the same reason.
However, the MPC-forces are also dependent of the
inertiaforces.

Of course the mode acceleration method also has a
disadvantage. In case of a high damping ratio, the
mode displacement method (except for the MPC-
force recovery according to the mode displacement
method) will be more accurate, since damping has
been neglected in the formulation of the mode
acceleration method. Fortunately high damping
values are not very common for spacecraft structures.
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part of model subject to CB-reduction

fme [s]

Figure 2: Input acceleration at end-points
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Figure 8: Payload Rack

Page 15 of 15



AN OVERVIEW AND COMPARISON OF OTM FORMULATIONS ON THE BASIS OF
THE MODE DISPLACEMENT METHOD AND THE MODE ACCELERATION METHOD

Figure 9: ESA’s Columbus Orbital Facility
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