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Summary

It is shown that any excited Higgs-field mediates an attractive scalar gravi-
tational interaction of Yukawa-type between the elementary particles, which
become massive by the ground-state of the Higgs-field.

1. Introduction.

Until now the origin of the mass of the elementary particles is unclear. Usu-
ally mass is introduced by the interaction with the Higgs-field; however in
this way the mass is not explained, but only reduced to the parameters of
the Higgs-potential, whereby the physical meaning of the Higgs-field and its
potential remains non-understood. We want to give here a contribution for
its interpretation.

There exists an old idea of Einstein, the so called ”principle of relativity of
inertia” according to which mass should be produced by the interaction with
the gravitational field [1]. Einstein argued that the inertial mass is only a
measure for the resistance of a particle against the relative acceleration with
respect to other particles; therefore within a consequent theory of relativity
the mass of a particle should be originated by the interaction with all other
particles of the Universe (Mach’s principle), whereby this interaction should
be the gravitational one which couples to all particles, i.e. to their masses or
energies. He postulated even that the value of the mass of a particle should
go to zero, if one puts the particle in an infinite distance of all other ones.

This fascinating idea was not very successful in Einstein’s theory of grav-
ity, i.e. general relativity, although it has caused, that Einstein introduced
the cosmological constant in order to construct a cosmological model with
finite space, and that Brans and Dicke developed their scalar-tensor-theory
[2]. But an explanation of the mass does not follow from it until now.

In this paper we will show, that the successful Higgs-field mechanism
lies in the direction of Einstein’s idea of producing mass by gravitational
interaction; we find, that the Higgs-field as source of the inertial mass of the
elementary particles has to do something with gravity [3], i.e. it mediates a
scalar gravitational interaction between massive particles, however of Yukawa
type. This results from the fact, that the Higgs-field itself becomes massive
after symmetry breaking. On the other hand an estimation of the coupling

1



constants shows that it may be unprobable that this Higgs-field gravity can
be identified with any experimental evidence. Perhaps its applicability lies
beyond the scope of the present experimental experiences.

2. Gravitational force and potential equation.

We perform our calculations in full generality with the use of an U(N)
model and start from the Lagrange density of fermionic fields coupled with
the Higgs-field both belonging to the localized group U(N) (c = 1, ηµν =
diag(1,−1,−1,−1)):

(1) L =
h̄

2
iψγµDµψ + h.c.− h̄

16π
F a

λµF
λµ

a +

+
1

2
(Dµφ)†Dµφ− µ2

2
φ†φ− λ

4!
(φ†φ)2 − kψφ†x̂ψ + h.c.

(µ2, λ, k are real parameters of the Higgs-potential). Herein Dµ represents
the covariant derivative with respect to the localized group U(N)

(1a) Dµ = ∂µ + igAµ

(g gauge coupling constant, Aµ = A a
µ τa gauge potentials, τa generators of the

group U(N)) and the gauge field strength Fµν is determined by its commuta-
tor (Fµν = (1/ig) [Dµ, Dν ] = F a

µντa); furthermore x̂ is the Yukawa coupling-
matrix. For the case of applying the Lagrange density (1) to a special model,
as e.g. the Glashow-Salam-Weinberg model or even the GUT-model, the wave
function ψ, the generators τa, the Higgs-field φ and the coupling matrix x̂
must be specified explicitly [4].

From (1) we get immediately the field equations for the spinorial matter
fields (ψ-fields):

(2) iγµDµψ −
k

h̄
(φ†x̂+ x̂†φ)ψ = 0,

the Higgs-field φ

(3) DµDµφ+ µ2φ+
λ

3!
(φ†φ)φ = −2kψx̂ψ
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and the gauge-fields F aµλ

(4) ∂µF
aµλ + igfa

bcA
bµF cλ

µ = 4πjaλ

with the gauge-current density

(4a) jaλ = g(ψγλτaψ +
i

2h̄

[
φ†τaDλφ − (Dλφ)†τaφ

]
).

Herein fa
bc are the totally skew symmetric structure constants of the group

U(N). The gauge invariant canonical energy momentum tensor reads with
the use of (2)

(5) T µ
λ =

ih̄

2

[
ψγµDλψ − (Dλψ)γµψ

]
−

− h̄

4π

[
Fα

λνF
µν

a − 1

4
δ µ
λ F

a
αβF

αβ
a

]
+

+
1

2

[
(Dλφ)†Dµφ+ (Dµφ)†Dλφ−

−δ µ
λ {(Dαφ)†Dαφ− µ2φ†φ− 2λ

4!
(φ†φ)2}

]

and fulfils the conservation law

(6) ∂µT
µ

λ = 0.

Obviously, the current-density (4a) has a gauge-covariant matter-field and
Higgs-field part, i.e. jaλ(ψ) and jaλ(φ) respectively, whereas the energy-
momentum tensor (5) consists of a sum of three gauge-invariant parts:

(7) T µ
λ = T µ

λ (ψ) + T µ
λ (F ) + T µ

λ (φ),

represented by the brackets on the right hand side of equ. (5).
In view of analyzing the interaction caused by the Higgs-field we inves-

tigate at first the equation of motion for the expectation value of the 4-
momentum of the matter fields and the gauge-fields. From (6) and (7) one
finds under neglection of surface-integrals in the space-like infinity:

(8) ∂0

∫ [
T 0

λ (ψ) + T 0
λ (F )

]
d3x = −

∫
∂µT

µ
λ (φ)d3x.
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Insertion of T µ
λ (φ) according to (5) and elimination of the second derivatives

of the Higgs-field by the field-equations (3) results in:

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (F )

]
d3x =

(9) = k
∫
ψ

[
(Dλφ)†x̂+ x̂†(Dλφ)

]
ψd3x+

+
ig

2

∫
F a

µλ

[
φ†τaD

µφ− (Dµφ)†τaφ
]
d3x.

The right hand side represents the expectation value of the 4-force, which
causes the change of the 4-momentum of the ψ -fields and the F-fields with
time. However, the last expression can be rewritten with the use of the field-
equations (4) as follows:

(9a) ∂µT
µ

λ (F ) = h̄F a
µλ(j

µ
a (ψ) + j µ

a (φ)).

Herewith one obtains instead of (9):

(10)
∂

∂t

∫
T 0

λ (ψ)d3x =
∫
h̄F a

λµj
µ
a(ψ)d3x+

+k
∫
ψ

[
(Dλφ)†x̂+ x̂†(Dλφ)

]
ψd3x,

where on the right hand side we have the 4-force of the gauge-field and
the Higgs-field, both acting on the matter-field. Evidently, the gauge-field
strength couples to the gauge-currents, i.e. to the gauge-coupling constant g
according to (4a), whereas the Higgs-field strength (gradient of the Higgs-
field) couples to the fermionic mass-parameter k (c.f. [5]). This fact points to
a gravitational action of the scalar Higgs-field.

a) Gravitational interaction on the level of the field-
equations.

For demonstrating the gravitational interaction explicitly we perform at first
the spontaneous symmetry breaking, because in the case of a scalar gravity
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only massive particles should interact. 1 For this µ2 < 0 must be valid, and
according to (3) and (5) the ground state φ0 of the Higgs-field is defined by

(11) φ†0φ0 = v2 =
−6µ2

λ
,

which we resolve as

(12) φ0 = vN

with

(12a) N †N = 1, ∂λN ≡ 0.

The general Higgs-field φ is different from (12) by a local unitary transfor-
mation:

(13) φ = ρUN, U †U = 1

with

(13a) φ†φ = ρ2, ρ = v†η,

where η represents the real valued excited Higgs-field.
Now we use the possibility of a unitary gauge transformation which is

inverse to (13):

φ′ = U−1φ, ψ′ = U−1ψ,

(14) F ′
µν = U−1FµνU,

so that

(14a) φ′ = ρN,

and perform in the following all calculations in the gauge (14) (unitary
gauge). For this we note, that in the case of the symmetry breaking of the
group G

(15) G→ G̃,

1The only possible source of a scalar gravity is the trace of the energy momentum
tensor.

5



where G̃ represents the rest-symmetry group, we decompose the unitary
transformation:

(15a) U = Û · Ũ , Ũ ∈ G̃, Û ∈ G/G̃

with the isotropy property (τ ã generators of the unbroken symmetry):

(16) ŨN = eiλ ãτ ãN = N,

so that

(17) τ ãN = 0

is valid. For Û we write Û = eiλ âτ â , where τ â are the generators of the broken
symmetry.

Using (12) up to (17) the field-equations (2) through (4) take the form,
avoiding the strokes introduced in (14):

(18) iγµDµψ −
m̂

h̄
(1 + ϕ)ψ = 0,

∂µF
µλ

a + igfabcA
bµF c λ

µ +

(19) +
1

h̄2M
2
ab(1 + ϕ)2Abλ = 4πjλ

a (ψ),

∂µ∂µϕ+
M2

h̄2 ϕ+
1

2

M2

h̄2 (3ϕ2 + ϕ3) =

(20) − 1

v2

[
ψm̂ψ − 1

4πh̄
M2

abA
a
λA

bλ(1 + ϕ)
]
,

wherein ϕ = η/v represents the excited Higgs-field and

(18a) m̂ = kv(N †x̂+ x̂†N)

is the mass-matrix of the matter-field (ψ-field),

(19a) M2
ab = M2

âb̂
= 4πh̄g2v2N †τ( âτ b̂)N
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the symmetric matrix of the mass-square of the gauge-fields (A â
µ -fields) and

(20a) M2 = −2µ2h̄2, (µ2 < 0)

is the square of the mass of Higgs-field (ϕ-field). Obviously in the field-
equations (18) up to (20) the Higgs-field ϕ plays the role of an attractive
scalar gravitational potential between the massive particles: According to
equ. (20) the source of ϕ is the mass of the fermions and of the gauge-
bosons, 2 whereby this equation linearized with respect to ϕ is a potential
equation of Yukawa-type. Accordingly the potential ϕ has a finite range

(21) l = h̄/M

given by the mass of the Higgs-particle and v−2 has the meaning of the
gravitational constant, so that

(22) v−2 = 4πGγ

is valid, where G is the Newtonian gravitational constant and γ a dimension-
less factor, which compares the strength of the Newtonian gravity with that
of the Higgs-field and which can be determined only experimentally, see sect.
3. On the other hand, the gravitational potential ϕ acts back on the mass of
the fermions and of the gauge-bosons according to the field equations (18)
and (19). Simultaneously the equivalence between inertial and passive as well
as active gravitational mass is guaranteed. This feature results from the fact
that by the symmetry breaking only one type of mass is introduced.

b) Gravitational interaction on the level of the momen-
tum law.

At first we consider the potential equation from a more classical standpoint.
With respect to the fact of a scalar gravitational interaction we rewrite equa-
tion (20) with the help of the trace of the energy-momentum tensor, because
this should be the only source of a scalar gravitational potential within a

2The second term in the bracket on the right hand side of equ. (20) is positive with
respect to the signature of the metric.
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Lorentz-covariant theory. From (5) one finds after symmetry breaking in
analogy to (7):

(23a) T µ
λ (ψ) =

ih̄

2

[
ψγµDλψ − (Dλψ)γµψ

]
,

(23b) T µ
λ (A) = − h̄

4π
(F a

λνF
µν

a − 1

4
δ µ
λ F

a
αβF

αβ
a )+

+
1

4πh̄
(1 + ϕ)2M2

ab(A
a
λA

bµ − 1

2
δ µ
λ A

a
νA

bν),

T µ
λ (ϕ) = v2

[
∂λϕ∂

µϕ− 1

2
δ µ
λ {∂αϕ∂

αϕ+

(23c) +
M2

4h̄2 (1 + ϕ)2(1− 2ϕ− ϕ2)

}]
.

From this it follows immediately using the field equation (18):

T = T λ
λ = ψm̂ψ(1 + ϕ)− 1

4πh̄
M2

abA
a
λA

bλ(1 + ϕ)2+

(23d) +v2

[
M2

2h̄2 (ϕ4 + 4ϕ3 + 4ϕ2 − 1)− ∂λϕ∂
λϕ

]
.

The comparison with equ. (20) shows, that the source of the potential ϕ is
given by the first two terms of (23d), i.e. by T (ψ) and T (A) as expected.In
this way we obtain as potential equation using (22):

∂µ∂µϕ+
M2

h̄2 ϕ+
1

2

M2

h̄2 (3ϕ2 + ϕ3) =

(24) = −4πGγ(1 + ϕ)−1(T (ψ) + T (A)).

In the linearized version (with respect to ϕ) equ. (24) represents a potential
equation for ϕ of Yukawa-type with the trace of the energy-momentum tensor
of the massive fermions and the massive gauge-bosons as source.
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Finally we investigate the gravitational force caused by the Higgs-field
more in detail. Insertion of the symmetry breaking according to (12) up to
(17) into the first integral of the right-hand side of (9) yields:

Kλ = kψ
[
(Dλφ)†x̂+ x̂†(Dλφ)

]
ψ =

(25) = ψm̂ψ∂λϕ+ v(1 + ϕ)
[
(DλN)†kψx̂ψ + kψx̂†ψDλN

]
.

Substitution of the conglomerate kψx̂ψ by the left hand side of the field-
equation (3) results with the use of (13a) and (14a) in:

Kλ =
[
ψm̂ψ− 1

4πh̄
M2

abA
a
µA

bµ(1 + ϕ)
]
∂λϕ−

− 1

4πh̄
∂µ

[
(1 + ϕ)2M2

ab(A
a
λA

bµ − 1

2
δ µ
λ A

a
νA

bν)
]
+

(26) +
v2

2
ig(1 + ϕ)2F a

λµ

[
N †τaD

µN − (DµN)†τaN
]
.

By insertion of (26) into the right hand side of (9) the last term of (26)
drops out against the last term of (9), whereas the second term of (26) can
be combined with ∂µT

µ
λ (F ) to ∂µT

µ
λ (A) according to (23b). In this way we

obtain neglecting surface integrals in the space-like infinity:

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (A)

]
d3x =

∫ [
ψm̂ψ −

(27) − 1

4πh̄
M2

abA
a
µA

bµ(1 + ϕ)
]
∂λϕd

3x.

In total analogy to the procedure yielding the potential equation (24) we
substitute the bracket of the 4-force in (27) by the traces T (ψ) and T (A)
given by (23d):

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (A)

]
d3x =
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(28) =
∫

(1 + ϕ)−1 [T (ψ) + T (A)] ∂λϕd
3x.

Considering the transition from equ. (9) to (10) we can express the time-
derivative of the 4-momentum of the gauge-fields by a 4-force acting on the
matter currents. Restricting this procedure to the massless gauge-fields we
get from (28):

∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (A â

σ )
]
d3x =

=
∫
h̄F ã

λµj
µ
ã(ψ)d3x+

(29) +
∫

(1 + ϕ)−1
[
T (ψ) + T (A â

σ )
]
∂λϕd

3x.

Herein the first term of the right hand side describes the 4-force of the mass-
less gauge-bosons acting on the matter-field coupled by the gauge-coupling
constant g, see (4a), whereas the second term (identical with the right hand
side of (28)) is the attractive gravitational force of the Higgs-field ϕ acting
on the masses of the fermions and of the gauge-bosons, which are simultane-
ously the source of the Higgs-potential ϕ according to (24). This behaviour
is exactly that of classical gravity, coupling to the mass (≡ energy) only and
not to any charge. However the qualitative difference with respect to the
Newtonian gravity consists besides the non-linear terms in (24) in the finite
range of ϕ caused by the Yukawa term.

3. Final Remarks.

In the end we want to point to some interesting features of our result. First
of all we note, that in view of the right hand side of (28) it is appropriate to
define

(30) ln(1 + ϕ) = χ

as new gravitational potential, so that the momentum law reads:

(31)
∂

∂t

∫ [
T 0

λ (ψ) + T 0
λ (A)

]
d3x =

∫
[T (ψ) + T (A)] ∂λχd

3x.
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Then the non-linear terms concerning ϕ in (24) can be expressed by T (ϕ) ≡
T (χ) according to the third term of the right hand side of (23d). In this
way the field equation for the potential χ (excited Higgs-field) takes the very
impressive form:

(32) ∂µ∂
µe2χ +

M2

h̄2 e
2χ = −8πGγ [T (ψ) + T (A) + T (χ)] .

Equations (31) and (32) are indeed those of scalar gravity with self interac-
tion in a natural manner. For the understanding of the Higgs-field it may
be of interest, that the structure of equation (32) exists already before the
symmetry breaking. Considering the trace T of the energy momentum tensor
(5) one finds with the use of the field-equations (2) and (3):

(33) ∂µ∂
µ(φ†φ) +

M2

h̄2 (φ†φ) = −2T

withM2 = −2µ2h̄2. Accordingly, the Yukawa-like self-interacting scalar grav-
ity of the Higgs-field is present within the theory from the very beginning.
Equation (33) possesses an interesting behaviour with respect to the symme-
try breaking. Then from the second term on the left hand side there results
in view of (11) in the first step a cosmological constant M2v2/h̄2; but this
is compensated exactly by the trace of the energy momentum tensor of the
ground state. It is our opinion that this is the property of the cosmological
constant at all, also in general relativity.

Furthermore because in (21) the mass M is that of the Higgs-particle, the
range l of the potential ϕ should be very short, so that until now no experi-
mental evidence for the Higgs-gravity may exist, at least in the macroscopic
limit. For this reason it also appears unprobable, that it has to do something
with the so called fifth force [6]. Finally the factor γ in (22) can be esti-
mated as follows: Taking into consideration the unified theory of electroweak
interaction the value of v (see (19a)) is correlated with the mass MW of the
W -bosons according to v−2 = πg 2

2 h̄/M
2
W (g2 = gauge-coupling constant of

the group SU(2)). Combination with (22) results in

(34) γ =
g2
2

2
(
MP

MW

)2 = 2× 1032

(MP Planck-mass). Consequently the Higgs-gravity represents a relatively
strong scalar gravitational interaction between massive elementary particles,
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however with extremely short range and with the essential property of quan-
tizability. If any Higgs-field exists in nature, this gravity is present.

The expression (34) shows that in the case of a symmetry breaking where
the bosonic mass is of the order of the Planck-mass, the Higgs-gravity ap-
proaches the Newtonian gravity, if the mass of the Higgs-particle is suffi-
ciently small. In this connection the question arises, following Einstein’s idea
of relativity of inertia, if it is possible to construct a tensorial quantum theory
of gravity with the use of the Higgs-mechanism, leading at last to Einstein’s
gravitational theory in the classical macroscopic limit.
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