

Heuristics for Routing and Spiral Run-time Task Mapping in

NoC-based Heterogeneous MPSOCs

Abbou El Hassen Benyamina1, Mohammed kamel Benhaoua1,2 and Pierre Boulet2

 1 Department of Computer Science, Faculty of Sciences, University of Oran – Es Senia, Algeria

BP 1524, EL M’Naouer, Oran, Algeria

2 University Lille 1, LIFL, CNRS, UMR 8022

F-59650 Villeneuve d’Ascq, France

Abstract
This paper describes a new Spiral Dynamic Task Mapping

heuristic for mapping applications onto NoC-based

Heterogeneous MPSoC. The heuristic proposed in this paper

attempts to map the tasks of an applications that are most related

to each other in spiral manner and to find the best possible path

load that minimizes the communication overhead. In this context,

we have realized a simulation environment for experimental

evaluations to map applications with varying number of tasks

onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we

demonstrate that the new mapping heuristics with the new

modified dijkstra routing algorithm proposed are capable of

reducing the total execution time and energy consumption of

applications when compared to state-of the-art run-time mapping

heuristics reported in the literature.

Keywords: MultiProcessor System on Chip (MPSoC), Network

on Chip (NoC), Heterogeneous architectures, Dynamic mapping

Heuristics, Routing Algorithm.

1. Introduction

Multiprocessor Systems-on-Chip (MPSoCs) is a

solution that implements a multiple processing elements

(PEs) in the same chip. Advancement in nanometer

technology enables that a Future MPSoCs contained

thousands of PEs in a single chip by 2015[3], [14], [8].

MPSoCs are being increasingly used in complex

embedded applications. The Network-On-Chip (NoC) has

been introduced as a power-efficient, scalable inter-

communication, interconnection mechanism between PEs

[14], [8]. Mapping is important phase in architectural

exploration in NoC based MPSOC. The application and

architectural platform are represented by processing model,

application task graph and architectural graph respectively.

Considering the moment when task mapping is executed,

approaches can be either static or dynamic. Static mapping

defines task placement at design time, having a global view

of the MPSoC resources. As it is executed at design time,

it may use complex algorithms to better explore the

MPSoC resources, resulting in optimized solutions

[24],[9],[16],[7],[12], [23],[19]. However, static mapping

is not able to handle a dynamic workload, new tasks or

applications loaded at run-time. To cope with this feature

of actual MPSoCs, Dynamic (runtime) mapping techniques

are required to map them onto the platform resources

[4],[21],[13],[5],[6],[17],[15].

The main goal of this paper is to present a new Spiral

Dynamic Task Mapping heuristic for run-time mapping

applications. The presented heuristics are applied onto

NoC-based Heterogeneous MPSoC platform. Two types of

PEs are considered instruction set processors (ISPs) and

Reconfigurable Areas (RA). Instructions set processors are

used to execute software tasks and Reconfigurable Areas

for hardware tasks. Heuristic also try to map the tasks of an

application in a clustering region to reduce the

communication overhead between the communicating

tasks. The heuristic proposed in this paper attempts to map

the tasks of an applications that are most related to each

other in spiral manner and to find the best possible path

load that minimizes the communication overhead with

using a newly modified dijkstra routing algorithm

proposed also in this paper. The new presented heuristic

show significant performance improvements when

compared to the latest run-time mapping heuristics

reported in the literature. The performance metric includes

execution time and energy consumption.

The rest of the paper is organized as follows. Section2

provides an overview of related work. Section 3 presents

the MPSoC architecture. In Section 4, proposed mapping

strategies along with the routing algorithm are presented.

Experimental set-up and the results are presented in

Section 5 with Section 6 concluding the paper and

providing future directions.

2. Related Work

Mapping of tasks onto the MPSoC platform require

finding the placement of tasks into the platform in view of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 233

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

some optimization criteria like reducing energy

consumption, reducing total execution time and optimizing

occupancy of channels. If the MPSoC platform is

heterogeneous, then a task binding process is required

before finding the placement for a task. The binding

process involves defining a platform resource for each task

type like instruction set processors for software tasks and

FPGA tiles for hardware tasks. Task mapping is

accomplished by static (design-time) or dynamic (run-time)

mapping techniques [3].

2.1 Static mapping techniques

The most existing work’s in litterature to solve the

problem of mapping in the NOC platform are Static

mapping. Static mapping defines task placement at design

time, having a global view of the MPSoC resources and the

tasks of applications (tasks graph). As it is executed at

design time, it may use complex algorithms to better

explore the MPSoC resources, resulting in optimized

solutions. Heuristics like Genetic approach and exact

methods like Tabu Search and stimulated annealing are

presented in [24],[7], [12],[23],[19]. In [9], [16], energy-

aware mapping algorithms are presented. These techniques

find fixed placement of tasks at design-time with a well

known computation and communication behavior. Related

works classified for static mapping techniques are shown

in Table 1. However, static mapping is not able to handle a

dynamic workload, new tasks or applications loaded at

runtime. To cope with this feature of actual MPSoCs,

Dynamic (run-time) mapping techniques are required to

map them onto the platform resources.

2.2 Dynamic mapping techniques

The challenge in the latest work’s to solve the

problem of mapping in the NoC-based heterogeneous

MPSoCs are to present run-time mapping techniques for

mapping application’s tasks onto them . Wildermann et al.

[22] evaluate the benefits of using a runtime mapping

heuristic (communication and neighborhood cost

functions), which allows decreasing the communication

overhead.

Holzenspies et al. [20] investigate another run-time

spatial mapping technique, considering streaming

applications mapped onto heterogeneous MPSoCs, aiming

on reducing the energy consumption imposed by such

application behaviors. Schranzhofer et al. [2] suggest a

dynamic strategy based on pre-computed template

mappings (defined at design time), which are used to

define newly arriving tasks to the PEs at run-time.

Carvalho at al. [11] evaluate pros and cons of using

dynamic mapping heuristics (e.g. path load and best

neighbor), when compared to static ones (e.g. simulated

annealing and Taboo search). Carvalho’s approach was

extended by Singh et al. [3], [1], employing a packing

strategy, which minimizes the communication overhead in

the same NoC-based MPSoC platform. Additionally,

Singh’s approach was improved to support multitask

mapping onto the same PE. Different mapping heuristics

were used to evaluate the performance. According to the

Authors, the communication overhead of the whole system

is reduced, decreasing the energy consumption. Faruque et

al. [18] propose a decentralized agent-based mapping

approach, targeting larger heterogeneous NoC-based

MPSoCs (32x64 system is used as case study).

The most related works classified for Dynamic

mapping techniques are shown in Table 2. Mapping

heuristics Nearest Neighbor (NN) and Best Neighbor (BN)

presented in Carvalho and Moraes [10] and two run-time

mapping heuristics presented in Singh et al. [3] are taken

for evaluation and performance comparison with our new

proposed mapping heuristics.

Table 1: Related work classified for static mapping techniques

3. Heterogeneous MPSoC Architecture

MPSoC architecture used in this work contains a set of

different processing elements which interact via a

communication network [14]. Software tasks execute in

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 234

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

instruction set rocessors (ISPs) and hardware tasks execute

in reconfigurable logics (reconfigurable area-RA) or in

dedicated IPs.

Table 2: Related work classified for Dynamic mapping techniques

One of the processing node is used as the Manager

Processor (M) that is responsible for task scheduling, task

binding, task placement (mapping), communication routing,

resource control and reconfiguration control. The M knows

only the initial tasks of the applications. The initial task of

each application is started by the M and new

communicating tasks are loaded into the MPSoC platform

at run-time from the task memory when a communication

to them is required and they are not already mapped.

4. Proposed Approach

This section describes our proposed approach. Firstly we

describe our dynamic spiral task mapping. Secondly we

describe the modified dijkstra routing algorithm. First we

introduce some definitions for proper understanding of the

proposed approach.

Fig. 1: Conceptual MPSOC architecture

4.1 Definitions:

Definition 1:

An application task graph is represented as an acyclic

directed graph TG = (T,E), where T is set of all tasks of an

application and E is the set of all edges in the application.

Figure 2 (a) describes an application having initial,

software and hardware tasks along with the edges (E)

connecting these tasks and (b) shows the master-slave pair

(communicating tasks). The starting task of an application

is the initial task that has no master. E contains all the pair

of communicating tasks and is represented as (mtid, stid,

(Vms, Vsm)), where mtid represents the master task

identifier, stid represents the slave task identifier; Vms is

the data volumes from master to slave; Vsm is the data

volumes from slave to master.

Fig. 2: Application modeling and Master-Slave

Definition 2:

A NoC-based heterogeneous MPSoC architecture is a

directed graph AG = (P, V), where P is the set of tiles pi

and vi,j presents the physical channel between two tiles pi

and pj. A tile pi consists of a router, a network interface, a

heterogeneous processing element, local memory and a

cache.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 235

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Definition 3:

The application mapping is represented by mpng : ti|pi

to map the tasks of the application onto the NoC-based

heterogeneous MPSoC.

4.2 Reference dynamic mappings heuristics

1) The First Free (FF) heuristic: Simply selects the next

compatible processor to map a given task, thus walking

sequentially through all processors before considering an

processor again.

2) Minimum Maximum Channel load (MMC) heuristic:

Considers all possible mappings for a given task and

chooses the one that increases the least the peak load of a

channel of the NoC.

3) Minimum Average Channel load (MAC) heuristic:

Considers all possible mappings for a given task and

chooses the one that increases the least the average load of

the channels of the NoC

4) The Nearest Neighbor (NN) heuristic: Considers only

the proximity of an available resource to execute a given

task. NN starts searching for a free PE able to execute the

target task near the source task. The search tests all n-hop

neighbors, n varying between 1 and the NoC limits

5) The Path Load (PL) heuristic : Computes the load in

each channel used in the communication path. PL

computes the cost of the communication path between the

source task and each one of the available resources. The

selected mapping is the one with minimum cost.

6) The Best Neighbor (BN) heuristic: Combines NN search

strategy with the PL computation approach. The search

method of BN is similar to NN.

4.3 Proposed spiral heuristic based on our Modified

Dijikstra routing Algorithm
1) Spiral heuristic: To Map the applications, firstly the

initials tasks of applications are placed in distributive way

the farest possible between them in a middle of the

clusters, using a strategy of clusters like shown in Fig. 3.

This permit the same tasks of application could be placed

in a same region near between them, which reduces the

communications costs. The frontiers of clusters are virtual

and the common regions could be shared by the tasks of

different applications.

After that the initials tasks of each application are placing

communicative tasks ask to be placed. To place required

task, the master processor (M) try to place it around the

processor which has executed the appealed task going from

a distance equal 1 (hop) until the limit of NoC. The

ressource (the processor according to type of the task) is

researched on spiral manner according to sequencement 1,

2, 3, 4, 5, 6, 7, 8 like shown in the figure Fig .3. Explores

spiral neighbors and performs the mapping this prevents

the calculation of all possible solutions mapping, as in the

PL and calculation of the best neighbor as in the BN

heuristic, reducing the execution time for mapping.

Fig. 3: Initial tasks placement for mapping applications with Spiral

packing strategy.

2) Modified dijkstra routing algorithm: After mapping the

communicating tasks, we need a communication mapping

between them. Our new proposed communication mapping

tries to search a best path with a high bandwidth. The

proposed heuristic reduce the computational time and

energy consumption.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 236

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

5. Experimental Set-Up and the Results

For the experimentation we have used a language of

programming of high level which the JAVA language.

5.1 Experimental set-up

We have realize a heterogeneous platform simulated which

comprises 64 processors of which 14 hardware, 49

software and a processor which is used like processor

manager which is responsible of placement of the

applications tasks, the configuration and update the

platform, the communications routing. This platform uses a

network on chip for the communication. We have used

XML file for describing graphs of tasks used which are the

same used in work of A.K.Singh, tasks (initial,software

and hardware). The time processing of tasks depends on

the specificity and the capacity of processor. we have fixed

parameter software processors needs 40 cycles for an

instruction, however hardware processors is fast and needs

20 cycles for one instruction. In a reverse of the

consumption of energy or the processors hardware

consume more than the processors software that we have

fixed to 20 and 10 respectively. The shape of tasks is fixed

to a number of instructions. The shape of data changed is

100 parquets. The used scenario is a number of one, three,

seven and ten (10) applications witch proceeds between 7

to 9 tasks.

The platform is divided to nine (9) clusters which permits

to launch nine (9) applications en parallel beyond this

number the others applications which requires to be

placed, have to waited in queue. For the placement of the

tasks of applications we have implemented our proposed

Dynamic task mapping based on Spiral packing strategy

and Modified Dijkstra routing method. The spiral method

tries to map the tasks in close manner with minimum

exploration of the NoC space. The implementation of our

method Modified Dijkstra routing which minimize the time

processing and energy consumption of the system. For a

comparison study we have implemented the NN and BN

dynamic mapping heuristics.

5.2 Experimental results

We have executed the implemented dynamic heuristics the

Nearest Neighbor (NN) and the Best Neighbor (BN) for

the placement of one, three, seven and ten applications in

parallel on the platform simulated of 64 processors whose

14 hardware, 49 software and one for the processor

manager (M). For the same we have executed our proposed

Heuristics for Routing and Spiral Run-time task Mapping.

For the measurements of performances we have calculated

the execution time and the energy consumption. The Fig.4

show the optimization brought by our approach in terms of

execution time awards the use of the proposed approach.

The Fig.5 show the optimization brought by our approach

in terms of energy consumption towards the use of the

proposed approach.

Fig. 4: Execution Time comparison of proposed approach

with NN and BN respectively

Fig. 5: Energy Consumption comparison of proposed

approach with NN and BN respectively

6. Conclusion and Future Directions

A new dynamic task mapping heuristic that try to map the

application tasks in close manner to reduce the cost of

communications is proposed. To reduce more optimal the

cost of the communications a Modified Dijkstra routing is

proposed also in this paper. Through the environment of

simulation that we have realized the comparative study

between the nearest neighbor (NN), the best neighbor (BN)

and the proposed dynamic tasks mapping heuristic based

on the spiral packing strategy and Modified Dijkstra

routing Algorithm. We have showed the offered

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 237

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

optimization by our approach. In our future research works

the right challenge is trying to propose others strategies of

research other than the one used in the latest works and

Proposition of other heuristics of dynamic mapping.

References

[1] A.K.Singh and al. Eficient heuristics for minimizing

communication overhead in NoC-based heterogeneous MPSoC

platforms. In Rapid System Prototyping, 2009. RSP ’09.

IEEE/IFIP International Symposium on, 2009.

[2] A.Schranzhofer, C.Jian-Jia, L.Santinelli, and L.Thiele.

Dynamic and adaptive allocation of applications on MPSoC

platforms. In Design Automation Conference (ASP-DAC), 2010

15th Asia and South Pacific, 2010.

[3] A.Singh, T.Srikanthan, A.Kumar, and W.Jigang.

Communication-aware heuristics for run-time task mapping on

NoC-based MPSoC platforms. Journal of Systems Architecture,

56 , Issue: 7:242–255, 2010.

[4] Carvalho and al. Evaluation of static and dynamic task

mapping algorithms in NoC-based MPSoCs. In 2009 12th

Euromicro Conference on Digital System Design, Architectures,

Methods and Tools, 2009.

[5] CL.Chou. Incremental run-time application mapping for

homogeneous NoCs with multiple voltage levels. In

Hardware/Software Codesign and System Synthesis

(CODES+ISSS), 2007 5th IEEE/ACM/IFIP International

Conference on, 2007.

[6] CL.Chou. User-aware dynamic task allocation in networks-

on-chip. In Design, Automation and Test in Europe, 2008. DATE

’08, 2008.

[7] CL.Chou, C.Wu, and J.Lee. Integrated mapping and

scheduling for circuit-switched networkon-chip architectures. In

Electronic Design, Test and Applications, 2008. DELTA 2008.

4th IEEE International Symposium on, 2008.

[8] D.Bertozzi and L.Benini. A network-on-chip architecture for

gigascale systems-on-chip. Circuits and Systems Magazine,

IEEE, 4 , Issue: 2:18–31, 2004.

[9] D.Shin and J.Kim. Power-aware communication optimization

for networks-on-chips with voltage scalable links. In

Hardware/Software Codesign and System Synthesis, 2004.

CODES + ISSS 2004. International Conference on, 2004.

[10] E.Carvalho and F.Moraes. Congestion-aware task mapping

in heterogeneous MPSoCs. In System-on-Chip, 2008. SOC 2008.

International Symposium on, 2008.

[11] E.Carvalho, N.Calazans, and F.Moraes. Dynamic task

mapping for MPSoCs. IEEE Design Test of Computers, 27 ,

Issue: 5:26–35, 2010.

[12] F.Vardi, S.Saeidi, and A.Khademzadeh. Crinkle: A heuristic

mapping algorithm for network on chip. IEICE Electronics

Express, 6 , Issue: 24:1737–1744, 2009.

[13] Holzenspies. Mapping streaming applications on a

reconfigurable MPSoC platform at run-time. In System-on-Chip,

2007 International Symposium on, 2007.

[14] L.Benini and G. D. Mecheli. Networks on chips: a new SoC

paradigm. Computer, 35 , Issue: 1:70–78, 2002.

[15] Marcelo. Multi-task dynamic mapping onto NoC-based

MPSoCs. In SBCCI ’11 Proceedings of the 24th symposium on

Integrated circuits and systems design, 2011.

[16] M.Armin, S.Saeidi, and A.Khademzadeh. Spiral : A

heuristic mapping algorithm for network on chip. IEICE

Electronic Express, 4 , Issue: 15:478–484, 2007.

[17] Mehran. Dsm: A heuristic dynamic spiral mapping

algorithm for network on chip. IEICE Electronics, 5 , Issue:

13:5–13, 2008.

[18] M.Faruque, R.Krist, and J.Henkel. Adam: Run-time agent-

based distributed application mapping for on-chip

communication. In Design Automation Conference, 2008. DAC

2008. 45th ACM/IEEE, 2008.

[19] P.Ghosh, A.Sen, and A.Hall. Energy efficient application

mapping to NoC processing elements operating at multiple

voltage levels. In Networks-on-Chip, 2009. NoCS 2009. 3rd

ACM/IEEE International Symposium on, 2009.

[20] P.Holzenspies, J.Hurink, J.Kuper, and G.Smit. Run-time

spatial mapping of streaming applications to a heterogeneous

multi-processor system-on chip (MPSOC). In Design,

Automation and Test in Europe, 2008. DATE ’08, 2008.

[21] Smit and al. Run-time mapping of applications to a

heterogeneous SoC. In Design, Automation and Test in Europe

Conference and Exhibition, 2004. Proceedings, 2004.

[22] S.Wildermann, T.Ziermann, and J.Teichet. Run time

mapping of adaptive applications onto homogeneous NoC-based

reconfigurable architectures. In Field-Programmable

Technology, 2009. FPT 2009. International Conference on,

2009.

[23] X.Wang, M.Yang, Y.Jiang, and P.Liu. Power-aware

mapping for network-on-chip architectures under bandwidth and

latency constraints. ACM Transactions on Architecture and Code

Optimization (TACO), 7:1, 2010.

[24] Y.Zhang and al. Task scheduling and voltage selection for

energy minimization. In Design Automation Conference, 2002.

Proceedings.39th, 2002.

Benhaoua Mohammed Kamel : Received his Magister degree in
computer science, Oran University, Algeria, in 2009. Currently, he
is student towards the completion of his PhD. His research
interests include NoC-based MPSoC design, run-time mapping
algorithms.

Benyamina Abbou el hassen : received his Ph.D. degree in
Computer Science in 2008 from University of Oran (Algeria), He is
assistant professor at the university (Algeria). His research works
include parallel processing, optimization, design space exploration
and Model Driven Engineering with the special focus on real-time
and embedded systems.

Pierre Boulet : received his Ph.D. degree in Computer Science in
1996 from University of Lyon, He was assistant professor at the
university Lille 1 from September 1998 to August 2002, and then
became a researcher at INRIA Futurs from September 2002 to
August 2003. Since September 2003, he is a full professor at the
university Lille 1. His research works include parallel processing,
optimization, design space exploration and Model Driven
Engineering with the special focus on real-time and embedded
systems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 4, No 1, July 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 238

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

