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1. Introduction 

Tourism is one of the major industries profiting various sectors of the economy, such as the 
transportation, accommodation, entertainment and so on. According to the World Tourism 
Organization (2008), international tourism grew at around 5% during the first four months 
of the year 2008. Fastest growth was observed in the Middle East, North-East and South 
Asia, and Central and South America. Even though, uncertainty over the global economic 
situation is affecting consumer confidence and could hurt tourism demand, for 2008 as a 
whole, UNWTO maintains a cautiously positive forecast. Moreover, international trends 
show that tourists are becoming more discerning in their choice of destinations and, 
therefore, becoming less predictable and more spontaneous in terms of their consumption 
patterns (Burger et al. 2001). 
Air transportation is probably the most important mode for international travel and leisure. 
A typical characteristic of air tourism in Europe is the extensive use of non-
scheduled/charter flights and the existence of low-cost carriers in the leisure travel market, 
that account for 8% of passengers and 3% or revenues in the aviation industry (Dresner 
2006). Non-scheduled demand is typical in Mediterranean countries where connections are 
essentially touristic and characterized by non-scheduled services.  
In this type of air travel, the ability to accurately predict tourist arrivals is of importance in 
the successful management and operation of the airport facilities, as well as the adjacent 
transportation network. Yet, the literature has little to offer in modeling demand stemming 
from non-scheduled flights, as such series exhibit seasonality, intense variability and 
inherent unpredictability. 
This paper develops and tests advanced computational approaches in order to predict non-
scheduled/charter international tourist demand. The computational challenges that may 
arise in such a problem are twofold: first, to treat seasonal and stochastic characteristics of 
non-scheduled tourist demand, and, second, to develop models that consider past tourist 
demand characterists. This paper focuses on developing ARFIMA models that consider both 
non-stationarity and long-term memory effects in the auto-regressive process and temporal 
neural networks with advance genetically optimized characteristics that treat both 
nonlinearity and non-stationarity.  
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2. Motivators and prediction of non-scheduled air-travel demand 

A major motivator for the emergence and growth of non-scheduled air travel has been the 
low-cost carriers (LCC) and their prevalence in global aviation. From the period after 9/11 
period that caused a decreasing trend in the airline travel demand, global aviation and 
travel demand, particularly in Europe and the Mediterranean Region LCCs offered an 
attractive alternative for price-sensitive clients during the tight economic times. Whereas 
traditional airlines have concentrated on large cities and major airports, low-cost airlines 
have turned to under-utilized airports at some distance from the main population centers 
embracing a business model much different in its customer base, air network, and provision 
of services by focusing on the more cost-sensitive leisure travel and working in a way that 
traditional airlines cannot (Barrett 2000). 
LCC market providing point-to-point (rather than hub-based) service owes its growth not 
only to low-cost service, but also to the ability to focus on customer segments not 
emphasized by larger carriers; European low-cost leaders Ryanair and EasyJet, for instance, 
focus on providing air services for travelers seeking to visit friends and relatives. By 
focusing on these groups, LCC have demonstrated an ability to grow the overall passenger 
market, particularly on routes with strong tourist appeal (Dennis 2004). 
Literature emphasizes the role of LCC in the development of multiple airport systems and 
the emergence of secondary airports (Bonnefoy & Hansman 2004). LCC appeal to secondary 
airport is in that they provide reduced congestion and lower cost, while still providing 
access to key population centers.  
The shift to secondary airports, along with the reduced gap between charter flights and “no-

frills” / budget flights have significant impact on the volatility of traffic for the entire airport 

system; literature indicates that periods of high volatility and uncertainty in demand exist 

during the developmental phases of secondary airports that can last up to 20 year after the 

opening of such facilities (de Neufville, 1995). 

Regarding leisure airline traffic, the ability to provide custom-made services to tourists has 

been shown to be critical. Tourists increasingly expect to experience a personalized and 

close to their life-style service (Graham 2006). A characteristic example of charter airports is 

Greece where approximately 80% of the total tourist arrivals every year are accommodated 

by air transportation. The importance of non-scheduled international arrivals is depicted in 

Figure 1 that depicts annual evolution of total arrivals for 1989 and 2006 period, along with 

the evolution of non-scheduled and scheduled international arrivals. As can be observed, for 

the period after 2001, nearly 70% of air-travel arrivals concern international flights and 62% 

of the international arrivals are accommodated by non-scheduled flights. 

From a methodological standpoint, although the prediction of tourist demand has been 

extensively treated (a review of approaches can be found in Law et al. 2007, Song & Li 2008) 

little has been done towards the prediction of non-scheduled arrivals. Summarizing the 

methodologies implemented to date for to tourist demand prediction, both econometrics 

and other computational methods have been applied and compared. Law et al. (2007) state 

that, comparing classical econometric prediction techniques that are highly exploited but 

with marginal improvement to modeling touristic demand, the incorporation of data mining 

techniques has led to some “ground breaking outcomes”. 

Moreover, several papers on tourism forecasting problems report neural networks as having 

better performance than classical statistical techniques, such as ARIMA models, exponential 
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smoothing and so on (Law and Au 1997, Law 2000, Burger et al. 2001, Kim et al. 2003, Cho 

2003). These studies compare advanced computational approaches that have enhanced 

capabilities in modeling nonlinear characteristics (for example neural networks) with simple 

linear and stationary approaches such as the ARIMA models. Quite recently, hybrid ARIMA 

and simple static neural networks, as well as mixtures of static neural network models have 

also been found to perform better that classical time-series approaches (Aslanargun et al. 

2007).  

Regarding modeling of non-scheduled demand, previous work has applied regression 

models to predict charter international arrivals to major Greek airports and has highlighted 

that although there is uncertainty and variability in their evolution, historical data can be 

used to provide good predictions (Karlaftis and Papastavrou 1998). However, no previous 

work has been conducted in the direction of predicting non-scheduled international arrivals 

in secondary airports with intense seasonal characteristics. 

3. Computational approaches 

3.1 Fractionally integrated autoregressive moving average processes 

Commonly applied AR(I)MA models are able to describe processes that are covariance 

stationary I(0) or non-stationary through differencing I(1). It has been observed that the 

erroneous consideration of having a unit root leads to models with inflated estimates of the 

moving average component (Box-Steffensmeier and Smith, 1998). In order to account for 

long memory processes Fractional integration is introduced to autoregressive processes to 

account for the processes that are neither I(0) or I(1) in the form of the differentiation 

operator (Baillie 1999): 

 ( ) ( ) ( )2 3

1 1 1 1 ...
2! 3!

d L L
L dL d d d d

⎧ ⎫− = − − − − − −⎨ ⎬⎩ ⎭  (1) 

In the conditional mean, the fractionally integrated autoregressive moving average process 

of orders p and q – ARFIMA(p,dm,q) introduced by Granger and Joyeux (1980) and Hosking 

(1981) is represented by the following equation: 

 ( )(1 ) ( ) ( )md
t tL L y Lμ ε− Ψ − = Θ  (2) 

    ~ (0,1)t t t tz z Nε σ=  (3) 

where μ is the unconditional mean of yt, 
2

1 2( ) 1 ... p
pL L L Lψ ψ ψΨ = − − − −  and 

2
1 2( ) 1 ... q

qL L L Lθ θ θΘ = + + + +  are the AR and MA polynomials having all roots outside the 

unit cycle, while innovations ε
t
 are i.i.d distributed with 2σ

t
 being the conditional variance 

and a positive, time-varying, and measurable function with respect to the information set, 

which is available at time t-1 (Baillie et al. 2002). The differentiation parameter (dm) is 

associated with the following statistical properties of a (time) series (Hosking 1981, Odaki 

1993): 

• For every region where 1
2md < , then yt is stationary, 

• When
 

1
21 md− < < − , the series exhibits invertibility, 
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• When 1
2 0md− ≤ < , the stationary process yt is antipersistent,1 

• When
 

0md = , the stationary process yt 
 has short memory and is mean reverting, 

• When
 

1
20 md< ≤ , yt is fractionally integrated and exhibits long memory, 

• When
 

1
2 1md< < , the process yt is mean-reverting, but the stationarity property cannot 

be verified and, 

• When 1md = , yt is a unit root process. 
Fractionally integrated processes are significant in dealing with two issues: first, data is 
being modeled more precisely, as the knife-edged restriction of an I(0) or I(1) process is 
avoided and both long term persistence and, second, short-term correlation structure of a 
series can be modeled (Hosking 1981). 

3.2 Temporal genetically optimized neural networks 

Temporal Neural Networks can be considered as an extension of the static Multi-layer 

Perceptrons (MLP) that has been extensively applied to touristic demand prediction. They 

differ from the commonly used MLPs in that they incorporate memory mechanisms in their 

structure that can be limited to the input layer or extend to the entire network. The memory 

acts as a time-series reconstruction module with the aim to embed the scalar series S(t) to a 

vector { }( ) ( ),..., ( ( 1) )t S t S t mτ τ= − − −S in an m-dimensional vector space known as Phase 

Space, where τ is the time delay of and m is the dimension.  

We implement a neural network called time-lagged neural networks (TLNN) with a 

complex Gamma memory mechanism in the input layer and the hidden layer (de Vries and 

Principe 1992). Moreover, in order to develop a fully non-stationary model we set the 

network to predict under the iterative consideration: Given the time-series of a variable a 

single step ahead model is constructed to produce a prediction ˆ( )S t  at time t that is then fed 

backwards to the network and is used as new input data in order to produce the next step 
ˆ( 1)S t +  prediction at t+1: 

 { }ˆ ˆ( 1) ( ), ( ), ( 1)...S t S t S t S t+ = −  (4) 

The training of TLNN under iterative consideration feeds back the prediction at time t+1 
and utilizes it as an input for the generation of next prediction step t+2. The training in the 
specific iterative neural network model is conducted via the temporal back-propagation 
algorithm known as Back-propagation to time (BPTT) (Webros 1990); all weights are 
duplicated spatially for an arbitrary number of time steps τ; as such, each node that sends 
activation to the next has τ number of copies as well. For a training cycle n, the weight 
update is given by the following equation (Haykin 1999): 

 ( 1) ( ) ( ) ( )ji ji j in n n nηδ+ = +w w x  (5) 

where, wji(n+1) and wji(n) are the weights of the i-th synapse of the neuron j at training cycle 
n+1 and n respectively, η is the learning rate, xi(n) (i=1,2,…n) is the input vector and j(n) is 
given by: 

                                                 
1 Anti-persistence is a property of an ACF that exhibits slow decay, but the original series 
are not characterized by the long memory property; rather, the autocorrelations (in the ACF) 
alternate in signs. 

www.intechopen.com



Advanced Computational Approaches for Predicting Tourist Arrivals: the Case of Charter Air-Travel  

 

313 

 
( ) ( ( )),   neuron in the output layer

( ) ( ( )) ( ) ,  neuron in the hidden layer
j j

j
j r rj

r

e n n j
n n n j

φ υδ φ υ Τ
∈Α

′⎧⎪= ⎨ ′⎪⎩ ∑Δ w
 (6) 

where, ej(n) is the network’s error, φ  is the nonlinear activation function. Moreover, if A is a 

set of all neurons whose inputs are fed by the j neuron in the hidden layer is a forward 

manner, then 
1

( ) ( )
m

j ji i j
i

n n bυ
=

= +∑w x  is the induced local field of neuron r that belongs to the 

A and [ ]( ) ( ), ( 1),..., ( )
T

r r r rn n n n mδ δ δΤ = + +Δ  is the local gradient vector. 

The iterative neural network approach introduced provides a fully non-stationary and 
nonlinear environment for treating time series problems. However, regardless of being static 
or dynamic, neural networks suffer from the lack of an automatic manner to self-
optimization mainly with respect to their structure (number of hidden units) and learning 
parameters. Recently, genetic algorithms have gained significant interest as they can be 
integrated to the neural network training to search for the optimal architecture without 
outside interference, thus eliminating the tedious trial and error work of manually finding 
an optimal network. Genetic algorithms are based on three distinct operations: selection, 
cross-over and mutation (Mitchell 1998); these operations run sequentially in order for a 
fitness criterion (in the specific case the minimization of the cross-validation error) to 
converge. Details for the specific optimization approach can be found in Vlahogianni et al. 
(2005). 

4. Case study: greek island airports 

We focus on the influence of Non-Scheduled International (NSI) arrivals to the secondary 
airports and a prediction of their temporal evolution. Three case studies from Greek island 
secondary airports are evaluated: Heraklion (Crete), Kefalonia and Rhodes. All three cases 
exhibit significant demand during the peak summer period; however, these case studies 
differ in the overall demand levels, as well as their seasonal arrival characteristics. As can be 
observed in Figure 2, where the evolution of arrivals (passengers per year) and flights per 
year and per airport for the period of 1999-2006 is depicted, Kerkyra is characterized by low 
volumes, whereas Heraklion and Rhodes exhibit high demand during the year. The 
difference is in the volume of the NSI arrivals; as can be seen in Figure 3, where monthly 
arrival variation is depicted for all airports tested, Kerkyra and Rhodes have significantly 
more acute monthly variation, reaching extremely low NSI demand during the off-peak 
periods.  
The analysis to follow will, first, focus on revealing long-term memory features in the 
manner NSI arrivals evolve in time and, second, search for similarities or differences in the 
dynamics of NSI arrivals across the airports selected with different demand distributions. 
Third, advanced neural network predictors will be developed that will apply the iterative 
approach in order to learn to approximate the dynamics of NSI arrivals; models will be 
developed for all the three airports and compared to each other.  

4.1 Fractional dynamics in NSI arrivals 
Several ARFIMA models were fitted to the available time –series in order to test whether 
there exist fractional dynamics in the evolution of non-scheduled international arrivals. The 
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models are fitted to both three study airport, as well as to the pooled data, as well as data 
from the peak (months from May to September). Moreover, in the same datasets I(1) ARIMA 
processes are also fitted in order to compare the estimated autoregressive and moving 
average parameters from ARFIMA and ARIMA models. The choice of the best fitting model 

is done via Akaike’s ( -2 2
LogL k

n n
+ , where logL is the log likelihood value, n is the number 

of observations and k the number of estimated parameters) and Schwartz’s 

(
log

-2 2
LogL k

n n
+ ) criteria. Furthermore, the Jarque-Bera test (JB test) goodness-of-fit test 

measuring the of departure from normality, Q2(i) statistics that indicate the possible 
existence of serial correlation in the standardized residuals, as well as the LM ARCH 
statistics that test the null hypothesis of no ARCH effect in the series tested are also 
presented; the above test will provide information of the quality of the ARFIMA models 
developed. 
Results for the best fitted ARFIMA models are shown in Tables 1 to 3( parameter estimates 
depicted in the tables are significantly different from zero at the 1% significance level). 
Interestingly, for all case studies the fractional dynamics are similar. NSI arrivals in all 
airports tested are found to be best described by a fractionally integrated ARMA process 
with p=1 (autoregressive term) and q=1 (moving average term). Parameter d is found to 
vary between 0.24 and 0.46 indicating that NSI arrivals regardless of study period (peak or 
off-peak), as well as of the airport tested, exhibit long-term memory (for more details on the 
memory properties see Washington et al. 2003). We observe that the ARFIMA modeling 
results exhibit an apparent “inability” to approximate the monthly variability of NSI 
arrivals, particularly at low demand levels (off-peak months) (Figure 4).  

4.2 Iterative predictions of NSI arrivals using temporal neural networks 

For iterative predictions, the specifications of the TLNN are shown in Table 4. As can be 
observed, the depth of the Gamma memory of the TLNN (parameters τ and m) are 
genetically optimized during the learning, along with the number of hidden units h in the 
hidden layer and the learning rate ǈ and momentum μ of back-propagation. The available 
data is separated into three subsets in order to test the training (cross-validation) and then 
test the performance of the network (testing). Moreover, the genetic algorithm optimization 
specifications are also depicted on Table 4; a roulette selection method is applied in order to 
select the parents according to their fitness. Moreover, the probabilities of cross-over and 
mutation are to be equal to 0.9 and 0.09 respectively, following literature that indicates that 
crossover should usually be selected at high values and mutation should approximate the 
inverse of the number of chromosomes (population) and be much lower than the crossover 
probability to avoid permutation (Gen and Cheng, 2000).  
Results concerning the optimization of the look-back time window, or else the depth of the 
memory of the iterative temporal neural networks, are shown in Table 5. Interestingly, the 
required data to produce accurate predictions – as determined by the genetic optimization 
of the parameters τ and m during learning – differ between Heraklion airport and the rest of 
the cases examined. The recurrence of the dynamics in the Heraklion case is every 6 months, 
whereas NSI arrivals of Kerkyra and Rhodes are affected by data from up to 4 months in the 
past. 
Results of the predictions (test set) using TLNN are seen in Table 6; predictions for the same 
period using ARFIMA (averaged for the three airports) are also illustrated. As can be 
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observed, the TLNN has, overall, better accuracy that is evident both in the high and low 
demand periods in all three airport cases examined. The averaged behavior of the ARFIMA 
and TLNN models developed with respect to the actual and predicted NSI arrivals is 
graphically represented in Figure 5. Interestingly, the accuracy of predictions seems to 
decrease significantly in the case of low demand time periods, such as months between 
November and March, where touristic arrivals to Greek islands are, in general, significantly 
lower than the ones during summer months. The decreased accuracy in the case of Kerkyra 
indicates the existence of significant stochasticity in the manner in which arrivals evolve in 
low demand and off-peak period cases. 

5. Discussion and conclusions 

A large portion of tourist demand is conducted by air. Several air links can have intrinsic 
characteristics concerning the touristic demand evolution with strong non-stationary and 
seasonal characteristics. In this paper we implemented recent data mining techniques to 
model tourist demand and developed two advanced models of time-series prediction: a 
fractionally integrated autoregressive moving average model (ARFIMA) and a temporal 
genetically optimized iterative neural networks. These models originate from different 
methodological backgrounds and aim to evaluate different statistical properties of tourist 
demand (such as the existence of long-term memory, the parameters of memory depth for 
predictions and so on). To evaluate the proposed methodologies, three cases studies were 
examined that encompass three secondary airport located in the Greek Islands which exhibit 
different yearly and monthly demand distributions. 
In terms of prediction accuracy, the advanced form of temporal neural networks 

implemented seems to outperform the ARFIMA model. This applies to both high and low 

tourist demand periods. In terms of the knowledge acquired by the modeling, both 

approaches revealed very interesting results; the fractional dynamics observed in both the 

pooled data and the peak demand period, show that the tourist arrivals are not always 

stationary or best described as most frequently - assumed - by ARIMA models. The 

fractionally integrated processes fitted to the available data showed that all case studies 

examined have similar fractional dynamics and exhibit long term memory. This finding has 

significant implications to the process of modeling NSI arrivals, as it suggests the 

persistence of the effect of several socio-economic issues to the evolution of NSI arrivals.  

Moreover, the iterative approach to predicting NSI arrivals showed significant improvement 

to the prediction accuracy. The advanced genetic optimization implemented with regards to 

the look-back time window of the TLNN shows that the past could be utilized to predict the 

evolution of tourist demand. Nevertheless, the differences in the memory depth of the three 

TLNN models developed to approximate the dynamics of NSI arrivals in the three airports 

indicates the stochasticity of the temporal evolution of NSI arrivals during periods of low 

volume that significantly affect the accuracy of predictions. 

Finally, lack of prediction accuracy during transitional conditions reveals that, as expected, 
the demand evolution can have multiple causal dimensions that need to be considered in an 
effective methodological framework that could integrate both the temporal and 
causal/relational characteristics of other possible influential variables in the prediction 
process. Our ongoing work focuses on extending the present methodological framework to 
iterative neural network prediction that incorporates other socio-economic data to develop 
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influential relationships and evaluate whether they can improve predictability during 
periods of stochasticity in tourist demand. 
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  Pooled Peak Period 

  p=1,q=1 p=1,q=1 

Degree of differentiation dm 0.24 0.46 
ψ1 0.66 0.02 

AR polynomial coefficients ψ2 - - 
ǉ1 0.52 0.55 

MA polynomial coefficients ǉ2 - - 
 ǉ3  - 
 ǉ4  - 
 ǉ5  - 
Log-likelihood  -2622.36 -1079.26 
JB Test 
Null: normality 

 2.02 1.42 

Q2(7) 
Null: serial independence 

 136.25** 66.18** 

LM ARCH (1) 
Null: no ARCH effect 

 1.41 1.32 

* rejection at 5% significance level 

** rejection at 1% significance level 

Table 1. Estimation Results for the ARFIMA(p,dm,q) models for the Heraklion airport. 

 

  Pooled Peak Period 

  p=1,q=1 p=1,q=1 

Degree of differentiation dm 0.15 0.31 
ψ1 0.66 0.05 AR polynomial coefficients 
ψ2 - - 
ǉ1 0.35 0.48 MA polynomial coefficients 
ǉ2 - - 

 ǉ3  - 
 ǉ4  - 
 ǉ5  - 
Log-likelihood  -2588.14 -1002.80 
JB Test 
Null: normality 

 4.43 1.24 

Q2(7) 
Null: serial independence 

 145.25** 64.54** 

LM ARCH (1) 
Null: no ARCH effect 

 1.65 0.03 

* rejection at 5% significance level 

** rejection at 1% significance level 

Table 2. Estimation Results for the ARFIMA(p,dm,q) models for the Kerkyra airport.

www.intechopen.com



Advanced Computational Approaches for Predicting Tourist Arrivals: the Case of Charter Air-Travel  

 

319 

 

  Pooled Peak Period 

  p=1,q=1 p=1,q=1 

Degree of differentiation dm 0.34 0.37 
ψ1 0.67 0.05 AR polynomial coefficients 
ψ2 - - 
ǉ1 0.43 0.58 MA polynomial coefficients 
ǉ2 - - 

 ǉ3  - 
 ǉ4  - 
 ǉ5  - 
Log-likelihood  -2689.31 -1017.48 
JB Test 
Null: normality 

 3.48 2.48 

Q2(7) 
Null: serial independence 

 122.52** 75.67** 

LM ARCH (2) 
Null: no ARCH effect 

 0.82 0.10 

* rejection at 5% significance level 
** rejection at 1% significance level 

Table 3. Estimation Results for the ARFIMA(p,dm,q) models for Rhodes airport. 
 

 Specifications 

 DATA TR–CV–TE *: 60%-20%-20% 

 Structure 
Input layer: Gamma memory (genetically optimized memory 

depth) 
1 hidden layer (genetically optimized number of hidden units h) 

 Learning Back-propagation 

Chromosome [5,15] ,  [0.01 - 0.1],  [0.5 - 0.9],  τ [1,5],  m [1,12]h γ μ∈ ∈ ∈ ∈ ∈ ** 

Fitness function Mean square error (cross-validation set) 
Selection Roulette 

Cross-over Two point (p=0.9) G
en

et
ic

 

al
g

o
ri

th
m

 

o
p

ti
m

iz
at

io
n

 

Mutation Probability p=0.09 

* Training - Cross-validation - Testing 
** h: neurons in hidden layer, γ: learning rate, μ: momentum, τ: time delay, m:dimension 

Table 4. Data and neural network specifications for iterative short-term prediction. 
 

Pooled NSI Arrivals 
 

τ m 

Heraklion 1 6 
Kerkyra 1 4 
Rhodes 1 4 

Table 5. Estimates of the depth of the Gamma memory (parameters τ and m) of the 
genetically-optimized TLNNs for the three cases. 
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 Pooled Data Peak Demand Period 

GA-TLNN* 
     Heraklion 
     Kerkyra 
     Rhodes 

17% 
26% 
18% 

2.8 
3.4 
3.2 

ARFIMA 
(average over cases tested) 

37% 8.2 

  *genetically optimized TLNN 

Table 6. Mean Absolute Percent Error of predictions using ARFIMA and genetically 
optimized TLNN. 
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Fig. 1. Yearly evolution of the total arrivals, non-scheduled international arrivals (NSI 
Arrivals) and scheduled international arrivals (SI Arrivals) for the Greek airports. 
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Rhodes 

Fig. 2. Evolution of arrivals (passengers per year) and flights per year for the period of 1999-
2006. 
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Rhodes 

Fig. 3. Monthly variation of non-scheduled international arrivals in Rhodes for the period 
between 1999 and 2006. 
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Fig. 4. Scatter plots of actual versus predicted values of NSI arrivals for the three airports. 
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Fig. 5. Predictions using the ARFIMA and genetically optimized TLNN. Results from the 
three case study airports are aggregated both for ARFIMA and TLNN. 

www.intechopen.com



Nonlinear Dynamics
Edited by Todd Evans

ISBN 978-953-7619-61-9
Hard cover, 366 pages
Publisher InTech
Published online 01, January, 2010
Published in print edition January, 2010

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This volume covers a diverse collection of topics dealing with some of the fundamental concepts and
applications embodied in the study of nonlinear dynamics. Each of the 15 chapters contained in this
compendium generally fit into one of five topical areas: physics applications, nonlinear oscillators, electrical
and mechanical systems, biological and behavioral applications or random processes. The authors of these
chapters have contributed a stimulating cross section of new results, which provide a fertile spectrum of ideas
that will inspire both seasoned researches and students.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Eleni I. Vlahogianni, Ph.D. and Matthew G. Karlaftis, Ph.D. (2010). Advanced Computational Approaches for
Predicting Tourist Arrivals: the Case of Charter Air-Travel, Nonlinear Dynamics, Todd Evans (Ed.), ISBN: 978-
953-7619-61-9, InTech, Available from: http://www.intechopen.com/books/nonlinear-dynamics/advanced-
computational-approaches-for-predicting-tourist-arrivals-the-case-of-charter-air-travel



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

