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NON–SYMMETRIC STOLARSKY MEANS

SAAD IHSAN BUTT, JOSIP PEČARIĆ AND ATIQ UR REHMAN

(Communicated by A. Vukelić)

Abstract. In this paper we construct n -exponentially convex functions and exponentially con-
vex functions using the functional defined as the difference of the right parts of the Hermite-
Hadamard inequality, for different classes of functions. Applying these results on some star-
shaped functions, we derive non-symmetric means of Stolarsky type.

1. Introduction

Let us consider the sets of continuous, convex, starshaped and superadditive func-
tions on [a,b] respectively, given by

C[a,b] = { f : [a,b] → R continuous},
K[a,b] = { f ∈C[a,b]; f (λx+(1−λ )y) � λ f (x)+ (1−λ ) f (y),

∀ x,y ∈ [a,b],∀ λ ∈ [0,1]},
St[a,b] = { f ∈C[a,b];( f (x)− f (a))/(x−a) is an increasing function ∀ x > a},
S[a,b] = { f ∈C[a,b]; f (x)+ f (y) � f (x+ y−a)+ f (a), ∀ x,y,x+ y−a∈ [a,b]}.

Let us denote integral arithmetic mean of f on [a,b] and arithmetic mean of a and b
as follows:

A( f ;a,b) =
1

b−a

∫ b

a
f (x)dx and A(a,b) =

a+b
2

. (1)

The inequalities of Hermite-Hadamard, valid for every function f from K[a,b] are:

f (A(a,b)) � A( f ;a,b) � A( f (a), f (b)). (2)

For a = 0 we denote by C(b) , K(b) , St(b) and S(b) the corresponding set of functions,
submitted also to the condition f (0) = 0.

A. M. Bruckner and E. Ostrow have proved in [1] the strict inclusions:

K(b) ⊂ St(b)⊂ S(b).

The following results are given in Gh. Toader [7]. For positive identity function, p(x) =
x , the following inequality∫ x

0
p(t)

[
f (x)
x

− f (t)
t

]
dt � 0, ∀x ∈ [0,b] (3)

holds for every f ∈ S(b) .
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REMARK 1.1. Of course, for f ∈ St(b) the inequality (3) is valid for all posi-
tive p .

LEMMA 1.2. For every f ∈ S(b) , the following inequality holds

∫ x

0
f (t)dt � x f (x)

2
, ∀ x ∈ [0,b]. (4)

We can write (4) as:

1
x

∫ x

0
f (t)dt � f (x)+ f (0)

2
, where x �= 0, (5)

which is one of Hermite-Hadamard’s inequalities. In (5) we see that the inequality

A( f ;a,b) � A( f (a), f (b)) ,

holds for all f ∈ S(b) . Since St(b) ⊂ S(b) , the above inequality also holds for all
f ∈ St(b) .

Gh. Toader [7] considered the above means and proved the following result.

THEOREM 1.3. Let f ∈ St[a,b] . Then the following inequality is valid:

A( f ;a,b) � A( f (a), f (b)) , (6)

where A( f ;a,b) and A(a,b) are defined in (1) .

REMARK 1.4. If ( f (x)− f (a))/(x− a) is strictly increasing for x ∈ [a,b] , then
strict inequality holds in (6) .

In the next section we prove two mean-value theorems. In Section 3 we con-
struct n-exponentially convex functions and exponentially convex functions by using
the functional defined as the difference of the right and the left side of inequality (6) ,
for different classes of functions. In the last section, we define non-symmetric Stolarsky
means using the same functional for some star-shaped functions, and the mean-value
theorem proved in Section 2.

2. Mean value theorems

To prove related mean value theorems of Lagrange and Cauchy type, we consider
the functions φ1 and φ2 defined in a following lemma.

LEMMA 2.1. Let f ∈C1[a,b] and denote

Gf (x) =
f ′(x)(x−a)− f (x)+ f (a)

(x−a)2 , where x �= a. (7)
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Let m,M ∈ R be such that

m � Gf (x) � M for all x ∈ [a,b]. (8)

Let the functions φ1 and φ2 be defined by

φ1(x) = M(x−a)2− f (x)+ f (a) (9)

and
φ2(x) = f (x)− f (a)−m(x−a)2. (10)

Then φ1,φ2 ∈ St[a,b] .

Proof. Now

(
φ1(x)−φ1(a)

x−a

)′
=
(

M(x−a)− f (x)− f (a)
x−a

)′
= M−Gf (x) � 0,

and (
φ2(x)−φ2(a)

x−a

)′
=
(

f (x)− f (a)
x−a

−m(x−a)
)′

= Gf (x)−m � 0.

This gives that φ1,φ2 ∈ St[a,b] . �

THEOREM 2.2. Let f ∈C1[a,b] , G f ∈C[a,b] as defined in Lemma 2.1, A( f ;a,b)
the integral arithmetic mean of f on [a,b] and A( f (a), f (b)) the arithmetic mean of
f (a) and f (b) . Then there exists ξ ∈ [a,b] such that

A( f (a), f (b))−A( f ;a,b) =
(b−a)2

6
Gf (ξ ).

Proof. Since Gf is continuous on a compact set, it attains its maximum and min-
imum value on [a,b] . Let us consider

m = min{Gf (x)}

and
M = max{Gf (x)}.

Applying Theorem 1.3 on functions φ1 and φ2 defined in Lemma 2.1, we get the fol-
lowing inequalities:

A( f (a), f (b))−A( f ;a,b) � M
(b−a)2

6

A( f (a), f (b))−A( f ;a,b) � m
(b−a)2

6
.
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Combining both inequalities, we get

m
(b−a)2

6
� A( f (a), f (b))−A( f ;a,b) � M

(b−a)2

6
.

Since Gf is continuous on [a,b] , there exists ξ ∈ [a,b] such that

A( f (a), f (b))−A( f ;a,b) =
(b−a)2

6
Gf (ξ )

holds and the proof is completed. �

THEOREM 2.3. Let f ,g ∈ C1[a,b] , G f ,Gg ∈ C[a,b] as defined in Lemma 2.1,
A( f ;a,b) the integral arithmetic mean of f on [a,b] and A( f (a), f (b)) the arithmetic
mean of f (a) and f (b) . Then there exists ξ ∈ [a,b] such that the following equality is
true:

A( f (a), f (b))−A( f ;a,b)
A(g(a),g(b))−A(g;a,b)

=
f ′(ξ )(ξ −a)− f (ξ )+ f (a)
g′(ξ )(ξ −a)−g(ξ )+g(a)

,

provided that the denominators are nonzero.

Proof. Consider

k = c1 f − c2g,

where c1 and c2 are defined as

c1 = A(g(a),g(b))−A(g;a,b),

c2 = A( f (a), f (b))−A( f ;a,b).

Then k ∈C1[a,b] and Gk = c1Gf − c2Gg ∈C[a,b] , so using Theorem 2.2 with f = k ,
we have

0 =
(
c1Gf (ξ )− c2Gg(ξ )

)[(b−a)2

6

]
. (11)

Since [
(b−a)2

6

]
�= 0,

(11) gives

c2

c1
=

f ′(ξ )(ξ −a)− f (ξ )+ f (a)
g′(ξ )(ξ −a)−g(ξ )+g(a)

. (12)

�
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3. n -exponential convexity and exponential convexity

We start this section by giving some definitions and notions which are used fre-
quently in the results. Throughout this section I is an interval in R . The following
results for n -exponentially convex functions have been cited from [4].

DEFINITION 1. A function f : I → R is n -exponentially convex in the Jensen
sense on I , if

n

∑
i, j=1

ξiξ j f

(
xi + x j

2

)
� 0

holds for all choices ξi ∈ R and every xi ∈ I , i = 1, ...,n .
A function f : I −→ R is n -exponentially convex if it is n -exponentially convex

in the Jensen sense and continuous on I .

REMARK 3.1. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions. Also, n -exponentially convex
functions in the Jensen sense are k -exponentially convex in the Jensen sense for every
k ∈ N, k � n .

By using some linear algebra and definition of positive semi-definite matrices, we
have the following proposition.

PROPOSITION 3.2. If f is an n-exponentially convex function in the Jensen sense
then the matrix [

f

(
xi + x j

2

)]k

i, j=1

is a positive semi-definite matrix for all k ∈ N, k � n. In particular,

det

[
f

(
xi + x j

2

)]k

i, j=1
� 0

for all k ∈ N, k � n.

DEFINITION 2. A function f : I → R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function f : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous on I .

LEMMA 3.3. It is known (and easy to show) that f : I → R
+ is log -convex in the

Jensen sense if and only if

l2 f (t)+2lm f

(
t + r

2

)
+m2 f (r) � 0

holds for each l,m ∈ R and r,t ∈ I .
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It follows that a positive function is log-convex in the Jensen sense if and only if
it is 2-exponentially convex in the Jensen sense. Also, using basic convexity theory it
follows that a positive function is log-convex if and only if it is 2-exponentially convex.

The following lemma is equivalent to the definition of convex function [5, page 2].

LEMMA 3.4. If x1,x2,x3 ∈ I are such that x1 < x2 < x3 , then the function f : I →
R is convex if and only if inequality

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) � 0

holds.

LEMMA 3.5. If Φ is a convex function on an interval I and if x1 � y1 , x2 � y2 ,
x1 �= x2 , y1 �= y2 , then the following inequality is valid

Φ(x2)−Φ(x1)
x2− x1

� Φ(y2)−Φ(y1)
y2− y1

. (13)

If the function Φ is concave then the inequality reverses.

Divided differences are found to be very handy and interesting when we have to
operate with different functions having different degree of smoothness. Let f : I → R

be a function. Then for distinct points ui ∈ I , i = 0,1, the divided difference of first
order is defined as follows:

[ui; f ] = f (ui) (i = 0,1) ,

[u0,u1; f ] =
f (u1)− f (u0)

u1−u0
.

The values of the divided difference are independent of the order of the points u0 , u1

and may be extended to include the case when the points are equal, that is

[u0,u0; f ] = lim
u1→u0

[u0,u1; f ] = f ′(u0),

provided that f ′ exists.

REMARK 3.6. One can note that if for all u0 , u1 ∈ I holds [u0,u1; f ] � 0, then f
is increasing on I .

We consider the functional

Φ( f ) = A( f (a), f (b))−A( f ;a,b) (14)

where A( f ;a,b) and A( f (a), f (b)) are defined in (1) .

REMARK 3.7. Under the assumptions of Theorem 1.3, if f is a starshaped func-
tion on [a,b] then Φ( f ) � 0.
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To define different families of functions let [a,b],J ⊆ R be intervals. For distinct
points u0,u1 ∈ [a,b] , we suppose

E1 =
{

ft : [a,b] → R | t ∈ J and t 	→ [u0,u1;Ft ] is n-exponentially convex

in the Jensen sense on J, where Ft(u) =
ft(u)− ft(a)

u−a

}
.

E2 =
{

ft : [a,b] → R | t ∈ J and t 	→ [u0,u1;Ft ] is exponentially convex

in the Jensen sense on J, where Ft(u) =
ft(u)− ft(a)

u−a

}
.

E3 =
{

ft : [a,b] → R | t ∈ J and t 	→ [u0,u1;Ft ] is 2-exponentially convex

in the Jensen sense on J, where Ft(u) =
ft(u)− ft(a)

u−a

}
.

THEOREM 3.8. Let Φ( f ) be linear functional defined as in (14) and ft ∈ E1 .
Then t 	→ Φ( ft ) is an n-exponentially convex function in the Jensen sense on J . If the
function t 	→ Φ( ft ) is continuous on J , then it is n-exponentially convex on J .

Proof. Consider the families of functions E1 , and for ξi ∈ R , i = 1, ...,n , and
ti ∈ J , i = 1, ...,n , define the function

h(u) =
n

∑
i, j=1

ξiξ j f ti+t j
2

(u). (15)

We have

[u0,u1;H] =
n

∑
i, j=1

ξiξ j

[
u0,u1;Fti+t j

2

]
,

where H(u) = h(u)−h(a)
u−a and Ft(u) = ft(u)− ft(a)

u−a .
Since t 	→ [u0,u1;Ft ] is n -exponentially convex in the Jensen sense on J , right

hand side of the above expression is nonnegative, which implies by Remark 3.6, that
h(u)−h(a)

u−a is an increasing function on [a,b] .
Thus by Remark 3.7, we have

Φ(h) � 0,

thus
n

∑
i, j=1

ξiξ jΦ
(

f ti+t j
2

)
� 0.

Hence, we conclude that the function t 	→ Φ( ft ) is n -exponentially convex in the
Jensen sense on J .

If the function t 	→Φ( ft ) is also continuous on J then t 	→Φ( ft ) is n -exponentially
convex by definition. �

The following corollary is an immediate consequence of the above theorem.
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COROLLARY 3.9. Let Φ( f ) be linear functional defined as in (14) and ft ∈ E2 .
Then t 	→ Φ( ft ) is an exponentially convex function in the Jensen sense on J . If the
function t 	→ Φ( ft ) is continuous on J then it is exponentially convex on J .

Proof. For any n ∈ N , applying the same steps as in above theorem. �

COROLLARY 3.10. Let Φ( f ) be linear functional defined as in (14) and ft ∈E3 .
Then the following statements hold:

(i) If the function t 	→ Φ( ft ) is continuous on J then it is 2-exponentially convex
function on J . If the function t 	→ Φ( ft ) is additionally strictly positive, then it
is also log-convex on J , and for r,s,t ∈ J such that r < s < t , we have

(Φ( fs))t−r � (Φ( fr))t−s(Φ( ft ))s−r. (16)

(ii) If the function t 	→ Φ( ft ) is strictly positive and differentiable on J then for every
t,r,u,v ∈ J such that t � u, r � v, we have

B(t,r;Φ) � B(u,v;Φ),

where

B(t,r;Φ) =

⎧⎪⎪⎨
⎪⎪⎩
(

Φ( ft)
Φ( fr)

) 1
t−r

, t �= r,

exp

(
d
dt (Φ( ft))

Φ( ft)

)
, t = r.

(17)

Proof. (i) The first part is an immediate consequence of Theorem 3.8 and in sec-
ond part log-convexity on J is a consequence of Lemma 3.3. Since t 	→Φ( ft ) is strictly
positive, so for r,s, t ∈ J such that r < s < t with f (t) = logΦ( ft ) in Lemma 3.4 gives

(t− s) logΦ( fr)+ (r− t) logΦ( fs)+ (s− r) logΦ( ft ) � 0.

This is equivalent to inequality (16).
(ii) By (i) the function t 	→ Φ( ft ) is log-convex on J , that is, the function t 	→

logΦ( ft ) is convex on J . Thus, by using Lemma 3.5 with t � u , r � v , t �= r , u �= v ,
we get

logΦ( ft )− logΦ( fr)
t− r

� logΦ( fu))− logΦ( fv)
u− v

, (18)

concluding
B(t,r;Φ) � B(u,v;Φ).

Now, if t = r � u , we apply limr−→t , concluding

B(t,t;Φ)) � B(u,v;Φ).

Other possible cases are treated similarly. �
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REMARK 3.11. The results given in Theorem 3.8, Corollary 3.9 and Corollary
3.10 are still true when the points u0 , u1 ∈ I coincide, say u1 = u0 , for a family of dif-
ferentiable function ft such that the function t 	→ [u0,u1;Ft ] is n -exponentially convex
in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense).

4. Means

Let r,s ∈ R and let a,b > 0. The Stolarsky mean E(a,b;r,s) of order (r,s) of a
and b with a �= b are defined as

E(a,b;r,s) =
{

r(bs−as)
s(br−ar)

} 1
s−r

, for r �= s, rs �= 0;

E(a,b;r,0) = E(a,b;0,r) =
{

br−ar

r(logb−loga)

}1/r
, for r �= 0;

E(a,b;r,r) = e−
1
r

(
aar

bbr

)1/(ar−br)

, for r �= 0;

E(a,b;0,0) =
√

ab.

Stolarsky [6] in 1975 (see also [5, page 120]) introduced these means. He also proved
that the function E(r,s;a,b) is increasing in both r and s . One can note that these
means are symmetric with respect to the variable a and b . In [3] and [4], new classes
of symmetric means of Stolarsky type are introduced. In this section we consider a
class of starshaped functions to introduce means of Stolarsky type with functional due
to the difference of Hermite-Hadamard inequality.

For all t ∈ R , let ft : (0,∞) → R be the function defined as

ft (x) =
{ (x−a)xt

t , t �= 0;
(x−a) logx, t = 0.

Then Ft(x) := ( ft (x)− ft (a))/(x−a) is strictly increasing for x ∈ (0,∞) and for each
t ∈R . One can note that t 	→ [u0,u0;Ft ] is log-convex for all t ∈R and hence t 	→Φ( ft )
is log-convex. Also for r < s < t , where r,s,t ∈ R , we have

(Φ( fs))
t−r � (Φ( fr))

t−s (Φ( ft ))
s−r . (19)

From Corollary 3.10, we can define, for t �= r and t,r �= 0,−1,−2,

B(t,r;Φ) =

(
r(r+1)(r+2)
t(t +1)(t +2)

·
(
B1t2 +(B2−a2)t +2a2

)
bt −2at+2

(B1r2 +(B2−a2)r+2a2)br −2ar+2

) 1
t−r

(20)

where B1 = (b−a)2 and B2 = (b−2a)2 , and for t = r and t �= 0,−1,−2,

B(t, t;Φ) = exp

(
− 3t2+6t+2

t(t+1)(t+2) + (2B1t+B2
2−a2)bt+(B1t

2+(B2−a2)t+2a2)bt logb−2at+2 loga

(B1t2+(B2−a2)t+2a2)bt−2at+2

)
.
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However, to get the continuous extension of (20) in order to cover all choices of r and
t , we consider the following.

For t �= 0,−1,−2,

B(t,0;Φ) = B(0, t;Φ) =
(

2
t(t+1)(t+2)

(B1t
2+(B2−a2)t+2a2)bt−2at+2

B2−a2(1−2 logb+2 loga)

) 1
t

,

B(t,−1;Φ) = B(−1,t;Φ) =
(

−b
t(t+1)(t+2)

(B1t
2+(B2−a2)t+2a2)bt−2at+2

(logb−2)B1+(1−logb)B2−a2(1−3 logb)−2ab loga

) 1
t+1

,

B(t,−2;Φ) = B(−2,t;Φ) =
(

2b2

t(t+1)(t+2)
(B1t

2+(B2−a2)t+2a2)bt−2at+2

4(logb−1)B1+(1−2 logb)B2−a2(1−4 logb)−2b2 loga

) 1
t+2

,

B(0,0;Φ) = exp

(
2B1+(2 logb−3)B2+a2(3−8 logb+6 loga+2(logb)2−2(loga)2)

2(B2−a2(1+2 loga−2 logb))

)
,

B(−1,−1;Φ) = exp

(
(2−4 logb+(logb)2)B1+(2−logb)B2 logb+a((3 logb−2)a logb−2b(loga)2)

2[(logb−2)B1+(1−logb)B2−a2(1−3 logb)−2ab loga]

)
,

B(−2,−2;Φ)

=exp

(
2(−5+2 logb+2(logb)2)B1+(3−4 logb−2(logb)2)B2+a2(−3+10 logb+4(logb)2)−2b2(3+ loga) loga

2(4(logb−1)B1+(1−2 logb)B2+a2(−1+4 logb)−2b2 loga)

)
.

Also note that if the function t 	→ Φ(ϕt ) is positive and differentiable on R then
for every t,r,u,v ∈ R such that t � u , r � v , we have

B(t,r;Φ) � B(u,v;Φ). (21)

If we apply Theorem 2.3 on functions f = ft and g = fr , where t �= r , we get
that there exists some ξ ∈ [a,b] such that

A( ft(a), ft (b))−A( ft ;a,b)
A( fr(a), fr(b))−A( fr;a,b)

= ξ t−r.

Since the function ξ 	→ ξ t−r is invertible for t �= r , we then have

a �
(

A( ft(a), ft (b))−A( ft ;a,b)
A( fr(a), fr(b))−A( fr;a,b)

) 1
t−r

� b,

that is

a � B(t,r;Φ) � b,

which together with the fact that B(t,r;Φ) is continuous and monotonous with respect
to its both arguments t and r , shows that B(t,r;Φ) are means of a and b for all
t,r ∈ R . These means are non-symmetric with respect to its variable a and b .
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