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NON-SYMMETRIC STOLARSKY MEANS

SAAD IHSAN BUTT, JOSIP PECARIC AND ATIQ UR REHMAN

(Communicated by A. Vukelic)

Abstract. In this paper we construct n-exponentially convex functions and exponentially con-
vex functions using the functional defined as the difference of the right parts of the Hermite-
Hadamard inequality, for different classes of functions. Applying these results on some star-
shaped functions, we derive non-symmetric means of Stolarsky type.

1. Introduction

Let us consider the sets of continuous, convex, starshaped and superadditive func-
tions on [a,b] respectively, given by
Cla,b] = {f: |a,b] — R continuous},
Kla,b] = {f € Cla,b]; f(Ax+ (1 = A)y) K Af(x) + (1 = A) £ (),
Vx,y € [a,b],V A €1]0,1]},
Stla,b] = {f € Cla,b];(f(x) — f(a)) /(x — a) is an increasing function V x > a},
Sla,b] = {f €Cla,bl; f(x) + f(y) < f(x+y—a)+ f(a), Vx,y,x+y—a€ [a,b]}.

Let us denote integral arithmetic mean of f on [a,b] and arithmetic mean of a and b
as follows:

a+b
o (1)

1 b
A(fra,b) = —— / F(x)dx and A(a,b) =
b—ala
The inequalities of Hermite-Hadamard, valid for every function f from K[a,b] are:

f(A(a,b)) <A(f;a,b) <A(f(a), f(D)). 2
For a =0 we denote by C(b), K(b), St(b) and S(b) the corresponding set of functions,
submitted also to the condition f(0) = 0.
A. M. Bruckner and E. Ostrow have proved in [1] the strict inclusions:
K(b) C St(b) C S(b).

The following results are given in Gh. Toader [7]. For positive identity function, p(x) =
x, the following inequality

/xp(t) [@—@} dt >0, Vxe[0,5] 3)
0 x t
holds for every f € S(b).
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REMARK 1.1. Of course, for f € Sz(b) the inequality (3) is valid for all posi-
tive p.

LEMMA 1.2. Forevery f € S(b), the following inequality holds

/Oxf(t)dt < xfz(x)’ Vxe0,b]. 4)
We can write (4) as:
%/Oxf(t)dt < M7 where x # 0, (5)

which is one of Hermite-Hadamard’s inequalities. In (5) we see that the inequality

A(f3a,b) <A(f(a),f (D)),
holds for all f € S(b). Since St(b) C S(b), the above inequality also holds for all
fest(b).

Gh. Toader [7] considered the above means and proved the following result.

THEOREM 1.3. Let f € St|a,b]. Then the following inequality is valid:

A(fia,b) <A(f(a),f(b)), (6)
where A(f;a,b) and A(a,b) are defined in (1).

REMARK 1.4. If (f(x)— f(a))/(x—a) is strictly increasing for x € [a,b], then
strict inequality holds in (6).

In the next section we prove two mean-value theorems. In Section 3 we con-
struct n-exponentially convex functions and exponentially convex functions by using
the functional defined as the difference of the right and the left side of inequality (6),
for different classes of functions. In the last section, we define non-symmetric Stolarsky
means using the same functional for some star-shaped functions, and the mean-value
theorem proved in Section 2.

2. Mean value theorems

To prove related mean value theorems of Lagrange and Cauchy type, we consider
the functions ¢; and ¢, defined in a following lemma.

LEMMA 2.1. Let f € C'[a,b] and denote

fW)x—a) - fx)+f(a)

(x—a)? ’

Gr(x) = where x# a. @)
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Let m,M € R be such that
m<Gr(x) <M forall xé&la,b]. (8)

Let the functions ¢ and ¢, be defined by

91 (x) = M(x—a)’ — f(x) + f(a) )
and
02(x) = f(x) ~ fla) —m(x—a)’. (10)
Then 1,9, € St[a,b].
Proof. Now
<¢1<x>—¢1(a>)’_ (M( P I —f(a))' VoG
x—a B x—a x—a B 7x) 20,

e (8-t _ (119 sto
h(X) — Pala _ x)— fla

x—a
This gives that ¢;, ¢, € St[a,b]. O
THEOREM 2.2. Let f € C'[a,b], G; € Cla,b] as defined in Lemma 2.1, A(f;a,b)

the integral arithmetic mean of f on [a,b] and A(f(a), f(D)) the arithmetic mean of
f(a) and f(b). Then there exists & € |a,b] such that

A(f(a), f(b)) —A(f;a,b) =

Proof. Since Gy is continuous on a compact set, it attains its maximum and min-
imum value on [a,b]. Let us consider

m =min{G(x)}
and
M = max{Gs(x)}.

Applying Theorem 1.3 on functions ¢; and ¢, defined in Lemma 2.1, we get the fol-
lowing inequalities:

(b—a)’

A(f(a), f(b)) — Afia,b) SM—
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Combining both inequalities, we get

(b—a)

(b—a)’
< :

6

<A(f(a),f(b)) —A(f;a,b) <M

Since G is continuous on [a,b], there exists & € [a,b] such that

Af(a). f(b)) —A(f:a,b) = —==—G(E)

holds and the proof is completed. [

THEOREM 2.3. Let f,g € C'[a,b], G;,G, € Cla,b] as defined in Lemma 2.1,
A(f;a,b) the integral arithmetic mean of f on |a,b] and A(f(a), f(D)) the arithmetic
mean of f(a) and f(D). Then there exists & € [a,b] such that the following equality is
true:

A(f(a),f(b)) —A(fia,b) _ f(E)(E—a)—f(E)+f(a)

A(g(a),g(b)) —A(gsa,b)  g'(E)(E —a)—g(&)+g(a)’

provided that the denominators are nonzero.

Proof. Consider
k= le — (8,

where ¢ and ¢, are defined as
& :A(g(a)7g(b)) _A(g’a7b)7

(&) :A(f(a)vf(b)) _A(f;avb)'
Then k € C'[a,b] and G = ¢1G; — ¢2G, € Cla,b], so using Theorem 2.2 with f =k,

we have
—a)?
0= (c1GF(&) — 2G,(&)) {(b z ) ] (11)
Since
(b—a)?
2]
(11) gives

2 (@), (12)
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3. n-exponential convexity and exponential convexity

We start this section by giving some definitions and notions which are used fre-
quently in the results. Throughout this section / is an interval in R. The following
results for n-exponentially convex functions have been cited from [4].

DEFINITION 1. A function f:1 — R is n-exponentially convex in the Jensen

sense on /, if
n X'+X'
> ééjf( 12 j) >0

i,j=1

holds for all choices & € R and every x; €1, i =1,...,n.
A function f: I — R is n-exponentially convex if it is n-exponentially convex
in the Jensen sense and continuous on /.

REMARK 3.1. Itis clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions. Also, n-exponentially convex
functions in the Jensen sense are k-exponentially convex in the Jensen sense for every
keN, k<n.

By using some linear algebra and definition of positive semi-definite matrices, we
have the following proposition.

PROPOSITION 3.2. If f is an n-exponentially convex function in the Jensen sense

then the matrix
k
Xi+Xx;j
(7))
ij=1

is a positive semi-definite matrix for all k € N, k < n. In particular,
k
Xi+X;
det [f( : ’)} >0
2 ij=1

DEFINITION 2. A function f: 1 — R is exponentially convex in the Jensen sense
on [ if it is n-exponentially convex in the Jensen sense for all n € N.

A function f: 1 — R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous on /.

forall ke N, k< n.

LEMMA 3.3. It is known (and easy to show) that f: I — R™ is log-convex in the
Jensen sense if and only if

Pf(t) + 2Imf <t+7”> +mPf(r) =0

holds for each I,m € R and r,t € 1.
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It follows that a positive function is log-convex in the Jensen sense if and only if
it is 2-exponentially convex in the Jensen sense. Also, using basic convexity theory it
follows that a positive function is log-convex if and only if it is 2-exponentially convex.

The following lemma is equivalent to the definition of convex function [5, page 2].

LEMMA 3.4. If x1,x2,x3 € I are such that x; < x, < x3, then the function f :1 —
R is convex if and only if inequality

(x3 —x2) f (1) + (x1 —x3) f(x2) + (x2 — x1) f(x3) = 0

holds.

LEMMA 3.5. If © is a convex function on an interval I and if x; < y1, x2 < 2,
X1 # X2, y1 # V2, then the following inequality is valid

D(xz) — P(x1) < D(y2) — P(y1)
x—x . y=y

13)

If the function @ is concave then the inequality reverses.

Divided differences are found to be very handy and interesting when we have to
operate with different functions having different degree of smoothness. Let f: 1 — R
be a function. Then for distinct points u; € I, i = 0,1, the divided difference of first
order is defined as follows:

[ulvf]:f(ul) (120,1),
f(ur) = f(uo)

o, ur; f] = =——————.
up —Uup

The values of the divided difference are independent of the order of the points ug, u;
and may be extended to include the case when the points are equal, that is

[uouo: f] = lim [ug,ur; f] = f'(uo),
provided that f” exists.

REMARK 3.6. One can note that if for all ug, u; € I holds [ug,u;; f] >0, then f
is increasing on /.

We consider the functional
O(f) =A(f(a),f()) —A(f:a,b) (14)
where A(f;a,b) and A (f(a),f(b)) are defined in (1).

REMARK 3.7. Under the assumptions of Theorem 1.3, if f is a starshaped func-
tion on [a,b] then ®(f) > 0.
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To define different families of functions let [a,b],J C R be intervals. For distinct
points ug,u; € [a,b], we suppose
E, = {ﬁ la,b) = R |t €J and 1 — [ug,u;; F] is n-exponentially convex

= F=la))

u—a

in the Jensen sense on J, where F;

E, = {ﬁ la,b) = R |t €J and 1 — [ug,u;; F] is exponentially convex

= F= )}

u—a

in the Jensen sense on J, where F;

E; = {ﬁ la,b) = R |t €J and 1 — [ug,u;; F] is 2-exponentially convex

_ A0 fla)y

in the Jensen sense on J, where F; ()
u—a

THEOREM 3.8. Let ©(f) be linear functional defined as in (14) and f; € Ey.
Then t — ®(f;) is an n-exponentially convex function in the Jensen sense on J. If the
Sunction t — ®(f;) is continuous on J, then it is n-exponentially convex on J.

Proof. Consider the families of functions E;, and for §; € R, i = 1,...,n, and
tieJ,i=1,...,n, define the function

W) = 3 &8t (): (15)
ij=1
We have "
[wo,ur; Hl = Y &&; {”mm;F’iﬂj} ;
ij=1 2
where H (u) = 219 ang F () = flfila),

Since ¢ +— [ug,u;; F;] is n-exponentially convex in the Jensen sense on J, right
hand side of the above expression is nonnegative, which implies by Remark 3.6, that
h—ha) §s an increasing function on [a, ]

u—a ol

Thus by Remark 3.7, we have

thus .
Y &g (fﬁ) > 0.
i,j=1 2
Hence, we conclude that the function 7 — ®(f;) is n-exponentially convex in the
Jensen sense on J.
If the function 7 — ®(f;) is also continuous on J then 7 — ®(f;) is n-exponentially
convex by definition. [J

The following corollary is an immediate consequence of the above theorem.
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COROLLARY 3.9. Ler ®(f) be linear functional defined as in (14) and f; € E,.
Then t — ®(f;) is an exponentially convex function in the Jensen sense on J. If the
Sunction t — ®(f;) is continuous on J then it is exponentially convex on J.

Proof. For any n € N, applying the same steps as in above theorem. [J

COROLLARY 3.10. Let ®(f) be linear functional defined as in (14) and f; € E3.
Then the following statements hold:

(i) If the function t — ®(f;) is continuous on J then it is 2-exponentially convex
function on J. If the function t — ®(f;) is additionally strictly positive, then it
is also log-convex on J, and for r,s,t € J such that r < s <t, we have

(@) < (R(fr))*(@(f))" " (16)

(ii) If the function t — ®(f;) is strictly positive and differentiable on J then for every
t,r,u,v €J such that t <u, r <v, we have

B(t,r;P) < B(u,v; D),

where

a7)

Proof. (i) The first part is an immediate consequence of Theorem 3.8 and in sec-
ond part log-convexity on J is a consequence of Lemma 3.3. Since 7 — D(f;) is strictly
positive, so for r,s,7 € J such that r < s <t with f(r) =log®(f;) in Lemma 3.4 gives

(= 5)log ®(f;) + (r — 1) log ®(f;) + (s — r) log ®(;) = 0.

This is equivalent to inequality (16).

(ii) By (i) the function 7 — ®(f;) is log-convex on J, that is, the function 7 —
log®(f;) is convex on J. Thus, by using Lemma 3.5 with t <u, r<v, t #r, u#v,
we get

log®(f;) —log®(f) < log®(fu)) —log®@(fy)

t—r u—v

; (18)

concluding
B(t,r;®) < B(u,v; D).

Now, if t =r < u, we apply lim,__;, concluding
B(r,1;D)) < B(u,v; D).

Other possible cases are treated similarly. [
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REMARK 3.11. The results given in Theorem 3.8, Corollary 3.9 and Corollary
3.10 are still true when the points ug, u#; € I coincide, say u; = ug, for a family of dif-
ferentiable function f; such that the function ¢ — [ug,u;; F;] is n-exponentially convex
in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense).

4. Means

Let r,s € R and let a,b > 0. The Stolarsky mean E(a,b;r,s) of order (r,s) of a
and b with a # b are defined as

1
E(a,b;r,s) = {%}54, forr#s, rs #0;

r_q” 1/r
E(a,b;1,0) = E(a,b;0,r) = {m} , for r #0;

L g\ M=)
E(a,b;r,r) =e (b”') , forr#£0;

E(a,b;0,0) = Vab.

Stolarsky [6] in 1975 (see also [5, page 120]) introduced these means. He also proved
that the function E(r,s;a,b) is increasing in both r and s. One can note that these
means are symmetric with respect to the variable @ and b. In [3] and [4], new classes
of symmetric means of Stolarsky type are introduced. In this section we consider a
class of starshaped functions to introduce means of Stolarsky type with functional due
to the difference of Hermite-Hadamard inequality.

Forall t € R, let f; : (0,00) — R be the function defined as

(x—a)x! .
fx)=4 71 o t #0;
(x—a)logx, t=0.

Then F(x) := (f;(x) — fi(a))/(x — a) is strictly increasing for x € (0,e) and for each
t € R. One can note that 7 — [ug,uo; F;] is log-convex for all 7 € R and hence ¢ +— ®(f;)
is log-convex. Also for r < s <t, where r,s,r € R, we have

(@(f))" < (@(f,)) " (@(f,) " (19)
From Corollary 3.10, we can define, for  # r and ¢,r #0,—1,-2,

1
Bt D) = r(r+1)(r+2) (Bi? +(By—a®)t +2a%) b —2d"2 \ ™ 20)
DT\ DG+ 2) (Bt + (B —a®)r+2a2) b7 — 2a 2

where B| = (b—a)? and By = (b—2a)?, and for t = r and t #0,—1,-2,

B (1,6:0) = exp | — 3246142 n (2Byt+B3—a?)b' + (B 1>+ (B, —a?)t+2a° )b logh—2a' 2 loga
BRI =P T i) (B112+(By—a?)1+2a2 )b —2a! 2 )
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However, to get the continuous extension of (20) in order to cover all choices of r and
t, we consider the following.
Fort#0,—1,-2,

1
. _ . _ 2 (3112+(32*a2)t+2a2)b’72a’+2 g
B (1,0;0) =B (0,1;®) = <z(t+1)(t+2) By (1_2loghi 2loga) :

1
. - . o b (Blt2+(Bzfa2)t+2a2)b’72u’+2 +1
B, -1®) =B(-1,50) = (r(z+1)(z+2) (logh—2)B1 +(1—logh)By—a?(1—3logh)—2abloga )

L

. _ . - 2p2 (Bltz+(327u2)t+2u2)b’72a’+2 1+2
B(1,-2;@) = B(-2,1,@) = <z(r+1)(z+2) 4(logh—1)B1+(1—2logh)By—a?(1—4logh)—2b2loga

_ 205 2 2
% (0,0:P) = exp <2Bl+(210gb 3)By+a? (3-8logh+6loga+2(logh)’ ~2(loga) )) 7

2(By—a?(1+2loga—2logh))

B(-1,-1;®) =exp ( 2[(logh—2)B;+(1-logh)B; —a?(1-3logh)—2abloga]
B (—2,—-2:D)

ox 2(—5+2logh+2(logh)*) By +(3—4logh—2(logh)* ) By +a> (—3+10logh+4(logh)?) —2b>(3-+loga) loga
P 2(4(logh—1)By+(1—2logh)By+a>(—1+4logh)—2b2 loga) :

(2—4logb+(logh)? ) By +(2—logh)B; logb-+a((3logh—2)alogh—2b(loga)?) )
b

Also note that if the function 7 — ®(¢,) is positive and differentiable on R then
for every t,r,u,v € R such that r <u, r <v, we have

B(t,r;P) < B(u,v; D). (21)

If we apply Theorem 2.3 on functions f = f; and g = f,, where 7 # r, we get
that there exists some & € [a,b] such that

Afi(a), /i (b)) = A(fia,b)

AU@) 1 B) —AUfmah) °

Since the function & +— &'~ is invertible for 7 # r, we then have

A(fi(a) (b)) ~ Afiab) \ ™7
“s <A(fr(a),fr(b))—A(fr;a7b)) < b,

that is
a<B(t,r;®) < b,
which together with the fact that B(z,r;®) is continuous and monotonous with respect

to its both arguments 7 and r, shows that B(z,r;®) are means of a and b for all
t,r € R. These means are non-symmetric with respect to its variable a and b.
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