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Modeling of the Vacuum
Arc Remelting Process
for Estimation and Control
of the Liquid Pool Profile
Vacuum arc remelting (VAR) is an industrial metallurgical process widely used through-
out the specialty metals industry to cast large alloy ingots. The final ingot grain structure
is strongly influenced by the molten metal pool profile, which in turn depends on the tem-
perature distribution in the ingot. A reduced-order model of the solidifying ingot was
developed specifically for dynamic control and estimation of the depth of molten liquid
pool atop the ingot in a VAR process. This model accounts only for the thermal aspects of
the system ignoring other physical domains such as fluid flow and electromagnetic effects.
Spectral methods were used to obtain a set of nonlinear dynamic equations which capture
the transient characteristics of liquid pool profile variations around a quasi-steady oper-
ating condition. These nonlinear equations are then linearized and further simplified by
suppressing fast modes. The resulting system was used to construct a linear-quadratic-
gaussian (LQG) controller which was tested in a laboratory-scale furnace showing a
good performance. A high-fidelity physics-based model is used in real-time to provide in-
formation about the solidifying ingot and potential solidification defects.
[DOI: 10.1115/1.4026319]

1 Introduction

1.1 Vacuum Arc Remelting. VAR [1,2] is a secondary melt-
ing process used to produce a variety of segregation sensitive and
reactive metal alloys (e.g., nickel-base superalloys, titanium, and
zirconium alloys). The VAR process is widely used because it is
capable of producing fully-dense homogeneous ingots with an
appropriate chemistry, physical size, and grain structure. These
ingots are free of macrosegregation, porosity, shrinkage cavities,
or any other defects associated with uncontrolled solidification
during casting. The performance of VAR processed materials
depends largely on ingot structure and chemical uniformity [3].

A schematic diagram of the VAR process is shown in Fig. 1. In
this process, a cylindrically shaped alloy electrode is loaded into
the water-cooled copper crucible of a VAR furnace, the furnace is
evacuated, and a DC arc is struck between the electrode (cathode)
and some start material (e.g., metal chips) at the bottom of the cru-
cible (anode). The arc heats both the start material and the elec-
trode tip, eventually melting both. As the electrode tip is melted
away, molten metal falls through the arc plasma and progressively
builds up the ingot in the copper crucible.

During the process, the top of the ingot remains a pool of liquid
metal that has a curved cross section. At any moment there exist
at least 3 phases: liquid, solid-liquid (mushy zone), and solid. The
solidification has to be controlled in order to obtain a sound ingot
of good structural quality.

Since the crucible diameter is larger than the electrode diame-
ter, the electrode must be translated downward toward the anode
pool to keep the average distance between the electrode tip and
pool surface constant. This average distance, called the electrode
gap, has an important effect on the heat released during the pro-
cess because the arc plasma is dependent on the electrode gap. By
affecting the distribution of energy and electric current at the

surface of the ingot pool, the behavior of the arc influences the in-
got solidification conditions, and therefore the quality of the final
product.

The impetus for the development of this process has been the
need for high-performance, high-purity materials required for
aerospace applications. The present day vacuum arc remelting
practice for superalloys involves typically, making ingots of 17 in.
to 20 in. in diameter. Even larger diameter forging stock is desira-
ble. However, beyond 17 in. ingots of superalloys are increasingly
prone to segregation defects known as “freckles” if solidification
is not adequately controlled. Kou studied the effect of mushy zone
depth and solidification rate on macrosegregation of electroslag
remelted ingots [4]. It was reported that macrosegregation
increases with increasing depth of mushy zone and decreasing sol-
idification rate (higher local solidification time). A deeper molten
metal pool always results in a deeper mushy zone. Shallow pool
profiles, on the other hand, result in a different kind of macrose-
gregation defects called white spots. Hence, it is necessary to
understand and control the factors affecting geometry of the mol-
ten metal pool and the mushy zone in order to prevent macrose-
gregation defects from occurring in VAR.

2 Derivation of the Thermal Model

Modeling of VAR has been studied extensively both in the
industrial and academic worlds at the macroscale and microscale
levels [5–8]. VAR is a multiphysics process that involves not only
heat transfer but also fluid dynamics, mass transfer, phase trans-
formations, and electromagnetics [9]. Coupled multiphysics prob-
lems tend to be cumbersome because these systems are usually
modeled via systems of coupled differential equations which are
generally too large for a direct numerical solution; instead the sys-
tem must be decomposed into a collection of smaller tractable
subsystems.

All models in the literature are, in a sense, accurate but they are
not suitable for real-time control applications due to the simplify-
ing assumptions used in their development or due to their high
computational cost. Recently, a simplified VAR model which
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accounts only for heat transfer in the ingot was reported by Kon-
drashov et al. [10]. The application of this simplified model in the
design of an automatic control system for VAR was also sug-
gested but not reported.

A reduced-order model developed specifically for estimation
and control purposes is presented in this paper. This model is
based on basic axisymmetric remelting (BAR) [6], a compact and
accurate explicit finite-volume code used to simulate ingot solidi-
fication during a VAR process and known to have a good agree-
ment with experimental results for different ingot sizes and
materials [11,12]. BAR is a high-fidelity axisymmetric model that
solves conservation equations for charge, mass, momentum, and
energy. BAR employs sophisticated electromagnetic and thermal
boundary conditions which are intended to capture the effect of
the temperature-dependent contact of the VAR ingot with the
walls of the crucible.

The approximate thermal model developed in this paper seeks
to predict pool profile dynamically when input current and melt
efficiency are known. This model has almost the same thermal
boundary conditions as in BAR, except for heat fluxes with small
overall contributions which have been neglected. The model does
not include fluid flow, Joule heating or a temperature-dependent
diffusivity in the analysis. Joule heating is known to have a negli-
gible effect in the solidification process, as found with computa-
tional simulation. The validity of the simplification of fluid
dynamics and electromagnetic processes relies on thermal proc-
esses being the slowest, and therefore dictating the dominant dy-
namics of the overall process. However, by not including
convection in the solidifying ingot, an anisotropic phenomenon is
being modeled with an isotropic approach.

In this model, only two phases are included: solid and liquid.
Melting is assumed to occur at a single average melting tempera-
ture (i.e., liquidus temperature is assumed to be equal to solidus
temperature), rather than in a broad mushy zone. Densities of

solid and liquid phases are assumed equal. Also, thermal diffusiv-
ity is assumed to be constant both for the solid and liquid phases.
Thermal diffusivity in the liquid is enhanced to account for con-
vective effects that cannot be modeled through the diffusion equa-
tion. In this case, it is assumed that the enhanced liquid thermal
diffusivity is 3.0 times greater than that of the alloy at the liquidus
temperature.

A schematic of the solidifying ingot is shown in Fig. 2. The sol-
idification dynamics can be modeled using conservation of mass
and energy, as described in the following set of equations:

_H ¼ Vi (1)

Vi ¼
_me

qAi
(2)

@h

@t
¼ r � arhð Þ (3)

The system of equations will be solved for the enthalpy distri-
bution in the ingot, h(z,r,t), subject to the boundary conditions

� a
@h

@z
H; r; tð Þ ¼ qbottom (4)

� a
@h

@r
z;R; tð Þ ¼ qwall (5)

� a
@h

@r
z; 0; tð Þ ¼ 0 (6)

� a
@h

@z
0; r; tð Þ ¼ qtop (7)

Fig. 2 Schematic of the solidifying ingot

Fig. 1 Schematic diagram of VAR process (courtesy ATI
Allvac)
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where H is the height of the ingot, Vi is the speed at which the in-
got grows, _me is the casting rate, Ai is the cross sectional area of
the ingot, h is the enthalpy per unit mass, and a is the thermal
diffusivity.

The given boundary conditions define the heat fluxes on the dif-
ferent surfaces of the ingot. In the case of the top boundary condi-
tion, the total flux is the sum of the heat due to advection from
molten metal inflow, direct plasma arc heat and radiative
exchange with the surroundings. The heat transfer to the wall is
the sum of contact heat transfer, helium cooling, and radiation
exchange. Kinetic theory of rarefied gases is used to compute the
heat transfer coefficient in the gap between the ingot and the cru-
cible when helium is used as a coolant [13]. In the bottom of the
ingot a uniform heat flux is applied. The last boundary condition
applied is the symmetry with respect to the axis.

The heat equation in cylindrical coordinates, for a system that
is symmetric with respect to its axis, when no convection is
included, has the following form:

@h

@t
¼ @

@z
a
@h

@z

� �
þ 1

r

@

@r
ra
@h

@r

� �
(8)

The solution to this transient heat conduction equation can be
split into two regions: one for the solid and one for the liquid.
Each region is governed by the same equation, and the differences
lie in the diffusivity, a, and in the boundary conditions applied to
each domain.

2.1 Thermal Conduction in the Solid and Liquid Regions.
Assuming as for the constant thermal diffusivity of the solid phase
and c for the constant-volume specific heat, the heat conduction
equation in this region can be expressed in terms of enthalpy,
which is evaluated with respect to a reference temperature T0.

T ¼ T0 þ
1

c
h; for h < hs (9)

@h

@t
¼ as

@2h

@z2
þ 1

r

@h

@r
þ @

2h

@r2

� �
(10)

A similar procedure is performed in the liquid region, where a
constant thermal diffusivity al and the same c for the constant-
volume specific heat are used to evaluate enthalpy as a function of
temperature, taking the enthalpy at the liquidus temperature, hl, as
a reference

T ¼ Tm þ
1

c
ðh� hlÞ; for h > hl (11)

@h

@t
¼ al

@2h

@z2
þ 1

r

@h

@r
þ @

2h

@r2

� �
(12)

The thermal model is described by a two-dimensional moving-
boundary problem, because the location of the interface Spool(r,t)
changes with time. As a result, the solid and liquid regions change
their size. This problem can be simplified by transforming the
moving-boundary problem to a fixed-boundary problem with the
transformation described in Eqs. (13) and (14) [14]. The radial
and time variables are nondimensionalized too.

xsðz; r; tÞ ¼
z� Spool

S
¼ z� Spool

H � Spool

(13)

xlðz; r; tÞ ¼
�zþ Spool

Spool

(14)

gðrÞ ¼ r

ri
(15)

sðtÞ ¼ ast

r2
i

(16)

2.2 Heat Transfer in the Interface Region. The governing
equation can be derived from a power balance at the liquid-solid
interface. Along this interface the temperature, Tm, is constant and
the enthalpy is constant on each side (hl on the liquid side and hs

on the solid side); and as a consequence, there is no heat transfer
along the interface and all heat transfer must be normal to it. This
power balance, shown in Fig. 3, can be expressed by

VNhf ¼ qNs
� qNl

(17)

where N indicates velocity and heat flow normal to the interface
and hf is enthalpy of fusion per unit volume.

A model of displacement of the solidification front is shown in
Fig. 4(a). Also, a blow up of a small region of this interface is
shown in Fig. 4(b). The length of the element is such that the

Fig. 3 Analysis of the interface

Fig. 4 Power balance at the interface
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curvature of the interface can be neglected. Useful relations can
be derived from the geometry of similar triangles

lim
dr!0

Sðr þ dr; tÞ � Sðr; tÞ
dr

¼ @S

@r
¼ qrs

qzs

¼ qrl

qzl

(18)

qNs
¼ qzs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @S

@r

� �2
s

(19)

qNl
¼ qzl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @S

@r

� �2
s

(20)

The velocity Vn at which the interface is moving can be obtained
from the geometry of similar triangles as well

Vn ¼
@S

@t
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @S

@r

� �2
s

(21)

Substituting Eqs. (19)–(21) and applying Fourier’s Law to
Eq. (17) returns a new expression dependent only on enthalpy and
isenthalpic line S(r,t). The superscripts þ and – are used to indicate
that the solid region and liquid region are used to evaluate the de-
rivative, respectively.

@S

@t
hf ¼ 1þ @S

@r

� �2
" #

�as
@h

@z
j

Sþ
pool

;r;t
� ��

þ al
@h

@z
j

S�
pool

;r;t
� �� (22)

3 Spectral Methods Solution

Spectral methods are numerical techniques used in applied
mathematics to solve partial differential equations. Unlike finite
element methods, spectral methods generate algebraic equations
with full matrices, but in compensation, the high order of the basis
functions gives higher accuracy. Use of global functions results in
a geometric convergence rate instead of the algebraic one
obtained with local basis functions. This property is particularly
appealing when an accurate low-order approximation is required
[15].

The partial differential equations are solved in a “weak form”,
for test functions Ws and Wl, using the Galerkin method. A weak
form consists on multiplying a function, which is known to be
equal to zero, by a test function, integrating the result over the
physical domain and setting the integral as equal to zero. The
weak form of the heat equation for the solid and liquid regions
takes the formðð

Xs;l

Ws;l
@h

@t
�r � ðas;lrhÞ

� �
dXs;l ¼ 0

ðð
Xs;l

Ws;l
@h

@t
þ as;lrWs;l � rh

	 

dXs;l

�
ð

Cs;l

Ws;las;lrh � n̂dCs;l ¼ 0 (23)

The accuracy of the spectral method depends on the set of basis
functions and the order selected for the approximation. Legendre
polynomials, P�n, are suggested in Ref. [15] for symbolic calcula-
tions. However, due to the nonsymmetric nature of the boundary
conditions of this problem, shifted Legendre polynomials in the
domain xs;l 2 ½0; 1� are more convenient for these heat transfer
equations.

3.1 Enthalpy Distribution in the Solid Region. The bound-
ary conditions for the energy equation in the solid region are non-
homogeneous. For convenience, the solution of this equation can

be split into two parts, a inhomogeneous term, hs, and a homoge-
neous one, hf u

hsolid ¼ hs þ hf uðxs; g; sÞ (24)

where the Dirichlet boundary condition is defined by

hsolidð0; g; sÞ ¼ hs (25)

The homogeneous solution u is then approximated by the prod-
uct series defined in terms of the basis functions /nðxsÞ and P�mðgÞ

u ¼
XNs

n¼0

XMs

m¼0

bnmðsÞ/nðxsÞP�mðgÞ (26)

The order of the finite-dimensional expansion is given by
Ns¼ 2 and Ms¼ 1, which correspond to the minimum order
required to mimic the thermal dynamics of the solidifying ingot.
The basis functions must satisfy the Dirichlet boundary condition,
therefore /nð0Þ ¼ 0. In this case, /n is defined as

/n ¼
P�n � P�0; n ¼ 0; 2; 4;…

P�n þ P�0; n ¼ 1; 3; 5;…

(

while P�m denotes the standard shifted Legendre polynomials. The
test function is defined as Wsnm

¼ /nðxsÞP�mðgÞ. The weak form of
the heat equation now takes the form shown in below equation:

ðR

0

ðHðtÞ

Spðr;tÞ
Ws

@h

@t
þ as

@Ws

@z

@h

@z
þ @Ws

@r

@h

@r

� �	 

2prdzdr

þ
ðHðtÞ

Spðr;tÞ
Wsqwalljr¼R2pRdz ¼ 0 (27)

The dimensionless variables are substituted into the integro-
differential equation, and the numerical expansions for the
trial and basis functions are substituted too. The integrals in the
equation can be solved symbolically, except for the last one which
has to be done numerically due to the nonlinear boundary condi-
tions, to obtain a system of ordinary differential equations for
dbnm=ds. The resulting system of ordinary differential equations
is equivalent to having a nonlinear dynamic system with state
variables bnm.

3.2 Enthalpy Distribution in the Liquid Region. The
boundary conditions for the energy equation in the liquid region
are nonhomogeneous as well, and the solution can be split con-
veniently into two parts too

hliquid ¼ hl þ hf vðxl; g; sÞ (28)

with a Dirichlet boundary condition

hliquidð1; g; sÞ ¼ hl (29)

A similar approximation is constructed for the homogeneous
solution

v ¼
XNl

n¼0

XMl

m¼0

anmðsÞwnðxlÞP�mðgÞ (30)

The orders used for finite-dimensional expansion are Nl¼ 2 and
Ml¼ 2. The boundary conditions used for this region must, once
again, satisfy the Dirichlet boundary condition given in the form
of wnð1Þ ¼ 0. As a result, wn is defined as
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wn ¼ P�n � P�0

The test function is defined as the product of the radial and axial
basis function, similarly to what was done in the solid region. The
weak form of the heat equation in the liquid region is shown in
Eq. (31). Similarly to the previous case, dimensionless variables
and finite-dimensional approximations are substituted into the
equation to solve the integrals and derivatives. Symbolic manipu-
lation can be performed for the first term, but the last two have to
be computed numerically because of the nonlinear boundary
conditions.

ðR

0

ðSpðr;tÞ

0

Wl
@h

@t
þ al

@Wl

@z

@h

@z
þ @Wl

@r

@h

@r

� �	 

2prdzdr

�
ðR

0

Wlqtopjz¼02prdr þ
ðSpðr;tÞ

0

Wlqwalljr¼R2pRdz ¼ 0 (31)

Numerical manipulation results in a dynamic system with state
variables anm.

3.3 Geometry of the Interface Region. The energy equation
that describes the power balance in the interface region has only
homogeneous boundary conditions and an approximate solution is
sought in the form

Spool ¼ R
XM

m¼0

cmðtÞP�mðrÞ (32)

The order used for the finite-dimensional expansion is M¼ 2.
The weak form of the partial differential equation, evaluated with
a test function c, can then be expressed as

ðR

0

c hf
@Sp

@t
� Vihf � 1þ @Sp

@r

� �2
" #

as
@h

@z
ðSþp ; r; tÞ

�(

�al
@h

@z
ðS�p ; r; tÞ

�

2prdr ¼ 0

Evaluation of the integrals results in a system of ordinary dif-
ferential equations for the time-dependent coefficients cm, which
define the geometry of the liquid pool profile.

3.4 Construction of a State Vector. The state vector of the
nonlinear system, x, is defined by the spectral coefficients, which
when multiplied by the basis functions expand the approximate
solutions for enthalpy distributions and liquid pool profile, and the
electrode thermal boundary layer, which links the system to the
electrode melting process by providing information about the tem-
perature distribution in the electrode as described by Beaman
et al. [16] This new variable is introduced to model the complete
VAR process by analyzing not only the ingot solidification but
also the electrode melting.

x ¼

c; pool depth coefficients

a; liquid coefficients

b; solid coefficients

D; electrode thermal boundary layer

2
66664

3
77775 (33)

4 Linearization and Order Reduction

The dynamic equations obtained using spectral methods are
nonlinear and have the classic state space form

_x ¼ f ðx; uÞ (34)

y ¼ hðx; uÞ (35)

where x is the state vector, and u is the input vector consisting of
the current and the melt efficiency. The melt efficiency, defined as
the ratio between the melt power (Pmelt) and the total power, is a
variable used to link the melting process (in the electrode) to the
solidification process (in the ingot) by defining the amount of
power that goes in melting the electrode. The reason why it is con-
sidered an input in this linearized system is because it is not de-
pendent on the state variables. This value, however, cannot be
modified externally, so l is an uncontrolled disturbance input.

l ¼ Pmelt

VI
(36)

The output y shown in Eq. (35) is the array containing pool
depth measurements at different radii. These are the values that
will be monitored to control the solidification process.

The dynamic equations are simplified when the set of nonlinear
differential equations are linearized about nominal conditions.

d _x ¼ Adxþ Bdu (37)

dy ¼ Cdx (38)

Once the system is linearized, their perturbations from nominal
conditions are the ones that will appear in the system of linear
equations. The nominal operating point is defined by the user
based on typical values of melting current and melt rate. These
perturbations are defined as

dx ¼ x� x0 (39)

du ¼ u� u0 ¼
dI

dl

" #
(40)

dy ¼ y� yref (41)

Solidification processes usually have eigenvalues with a very
slow response because they are associated with diffusion proc-
esses, which are very slow. These slow modes will be the ones
that will dominate the response of the system. The linear model is
transformed into its diagonal form, where the transformed state
vector contains modal state variables which can be partitioned
into a set of reduced states x1, the dominant modes to be consid-
ered in the reduced-order model; and remaining states x2, which
are fast modes to be suppressed. If the dynamics of the states x2

are much faster than those of the reduced states x1, then x2 will
have settled in steady state much sooner than the reduced-order
states x1. As long as this relationship holds, the reduced-order
model shown in Eq. (42) will have the same dynamic characteris-
tics as the original full-order model in the primary control
bandwidth.

d _x1 ¼ Ardx1 þ Brdu (42)

dy ¼ Crdx1 (43)

The corner time constant ðsfastÞ used to reduce the order of the
dynamic system was set equal to 40 s, so any mode with a time
constant faster than 40 s was suppressed. Once modal reduction
had been applied the order of the system was reduced from 14 to
6. From here on the subindex 1 will be dropped from the state
space equations of the reduced-order model but it should be clear
that the fast modes have already been removed from the system.

5 Comparison With BAR

The reduced-order model, whose dynamic equations are much
simpler than the ones of BAR, is simple enough to be used in real-
time estimation and control. However, before the model is imple-
mented we need to be sure that the response of the reduced-order
model resembles that of the high-fidelity model. In order to verify
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that the reduced-order model effectively resembles the response
of BAR, simulations have been run considering both deviations in
current and melt rate from nominal conditions and how they
would affect the total liquid pool volume. Results are shown in
Fig. 5. For this comparisons, both systems were run using nominal
operating conditions until quasi-steady state was reached, and
then only one of the inputs was increased by 10% with a ramp in a
20 min interval, to then be decreased to 90% of the original value
in a second 20 min interval, and finally be taken back to nominal
conditions in a third 20 min long ramp, while the other input was
kept constant. In the first case it was the value of the current that
was changed, while in the second one it was the melt rate (propor-
tional to melt efficiency).

It can be seen that the reduced-order model shows a response
that is similar to one of the high-fidelity model, except for the
high-frequency modes. The geometry of the predicted pool shape
for both models was compared as well and the result is shown in
Fig. 6. Both the deepest and the most shallow pool profiles pre-
dicted for the simulation shown in Fig. 5 are plotted, showing that
not only the total volume of liquid predicted with both models is
similar but also the shape of the predicted liquid pools. The pool
shapes are similar but the one predicted with the reduced-order
model is slightly shallower.

6 Pool Profile Control

Ingot solidification is the crucial part of the process that defines
the microstructural properties of the material. Nonetheless, ingot
solidification is not directly controlled in industrial practice of
VAR. It was common for remelting companies to control the DC

current sent to the furnace and assume that, by doing so, the solid-
ification front will be controlled. Modern day VAR practice usu-
ally calls for some form of melt rate control using load cell
feedback. Current control is still employed at the beginning and
end of melting where melt rate control using load cell feedback is
difficult. Extensive testing was used for companies to develop
what is called a melt recipe, which defined how melt rate and cur-
rent should be changed during the melt in order to obtain a defect-
free microstructure. Such an approach lacks robustness and treats
the whole process as a black box.

In the past years, a new generation of model-based controllers
was developed to control solidification in vacuum arc remelting
by controlling melt rate or the total amount of power flowing into
the liquid pool. These controllers were seen as significant
improvements in the industry of remelting processes but there was
still no way to control solidification. The main impediment came
from the lack of an appropriate ingot solidification model that
could be used for estimation and control of VAR.

The reduced-order thermal model proposed in this paper can be
used to design a model-based controller for the liquid pool profile
in vacuum arc remelting. In this case, electrode gap is controlled
by changing the ram speed in the furnace [17]. However, control
of ingot solidification involves using the new reduced-order model
to invert the dynamic equations of the system and compute the
required value of current that would drive the system to desired
conditions. The model used for control is only an approximation
of the highly complex dynamics of VAR and all measurements in
this process are known to be noisy. Therefore, uncertainty will

Fig. 5 Comparison between the high-fidelity model (BAR) and
the reduced-order one for sfast ¼ 40s

Fig. 6 Comparison of predicted pool profiles
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play an important role in the design of the process controller for
this multivariable plant. A linear-quadratic-gaussian strategy is
proposed to design an optimal controller solving the linear quad-
ratic regulator equations, and a Kalman Filter for optimal state
estimation. The LQG controller, described in the block diagram
given in Fig. 7, will return the required optimal input even under
model uncertainty and noisy measurements (Fig. 7).

Current corrections are computed to make liquid pool depth
coincide with the desired values at m radii ri as shown

I ¼ I0 þ dI

dI ¼ �Kxdx� Kldl� Krefdyref

dyref ¼

dSpoolref
ðr1; tÞ

� � �

dSpoolref
ðrm; tÞ

2
664

3
775

where the control gains matrices Kx, Kl, and Kref are chosen to
minimize the cost function shown in Eq. (44) in a linear quadratic
regulator problem. As a first approach, only one radial location
will be controlled (m¼ 1). The weighting matrices Q and R are
defined as diagonal positive-definite matrices and their values
were adjusted based on the desired time in which state perturba-
tions are reduced to small values and the desired speed for the
controller [18].

J ¼
ð1

0

dyTQdyþ dITRdIdt (44)

7 Pool Profile Estimation

So far, the controller has been designed under the assumption
that both the model and measurements are perfect, i.e., process
and measurement noises are zero. Given precise measurements of
all the state variables, the control law defined in Sec. 6 could give
an excellent steady-state control. However, electrode gap meas-
urements, based on voltage or drip-short frequency, are inherently
noisy and uncertain, and there is no way to measure the liquid
pool depth directly.

A Kalman filter is used to estimate, on the basis of noisy meas-
urements, the values of the state variables of a system subject to
stochastic input disturbances. The computation of the Kalman
gains in a time-invariant system, such as this one, converges to
steady-state if the system is completely observable. It is often sat-
isfactory to use a simplified time-invariant filter, based on the
assumption of time-invariant statistics of the noise terms, to obtain
a constant gain matrix.

In the Kalman filter, everything is developed under the assump-
tion that all random variables are modeled as white noise proc-
esses. However, the change in melt efficiency is better described
by a random walk process, so a way to express perturbation in
melt efficiency as a white noise is required. The increments in a
random walk are Gaussian random variables. Heuristically, one
can generate a random walk by passing white noise through an in-
tegrator [19]. Hence, although we cannot model melt efficiency as
a white noise sequence we can still do so with its increments.
Since the derivative of l will have to appear in the continuous-
time equation shown in Eq. (42) it would be convenient to aug-
ment the state vector with an extra variable: perturbation in melt
efficiency.

In this case, it is assumed that process uncertainty comes only
from inaccuracies in the values of I and l, therefore the process
noise vector w will only have two components.

For simplicity, the dynamic system is transformed into a
discrete-time process, for a time step of Dt ¼ 2s, because most
measurements are available only at discrete times and the thermal
behavior of the system changes slowly. The continuous-time
equations are transformed into the discrete-time dynamic equa-
tions of the augmented system

dx

dl

" #
nþ1

¼
dx

dl

" #
n

þ
A Bl

0 0

" #
Dt

dx

dl

" #
n

þ
BI

0

" #
DtdIn þ

BI 0

0 1

" #
wIDt

wl

" #
n

U ¼ I þ
A Bl

0 0

" #
Dt

K ¼
BI

0

" #
Dt

C ¼
BI 0

0 1

" #

dx

dl

" #
nþ1

¼ U
dx

dl

" #
n

þKdIn þ C
wIDt

wl

" #
n

xnþ1 ¼ Uxn þ Kun þ Cwn

(45)

The measurement equation is modified as well to include melt
efficiency, which is now a state that can be “measured” from the
electrode estimator designed in Ref. [17]. Uncertainty caused by
noisy measurements, both for pool depth and melt efficiency, is
included in the form of the vector v.

dy

dl

" #
n

¼
C 0

0 1

" #
dx

dl

" #
n

þ
vPD

vl

" #
n

zn ¼ Hxn þ vn

(46)

One more set of matrices are required to derive the Kalman
gain matrix, namely, the covariance matrices corresponding to the
process and measurement noise vectors wn and vn. Noise terms
are modeled as zero-mean white-noise random sequences. As a
result they are defined completely by their covariance matrices.
The process covariance, usually denoted Q, is given by

Q ¼
ðrIDtÞ2 0

0 r2
l

" #
(47)

Fig. 7 Pool depth control of VAR
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where r denotes the standard deviation of every noise term: one
for current and another one for melt efficiency. In the case of the
measurement covariance, usually denoted R

R ¼

r2
PD1

… 0 0

..

. . .
. ..

. ..
.

0 … r2
PDm

0

0 … 0 r2
l

2
6666664

3
7777775

(48)

contains the uncertainties related to the pool depth measurements
at m radii and the estimated melt efficiency, that is estimated by
an electrode estimator as described in Ref. [16].

Note the matrices are diagonal, that is, we are specifying that
there are no interaction terms. Also, it is implicitly specified that
the process and measurement noise terms are independent of each
other. Therefore, there is no cross-covariance matrix. The noise
covariance, including both process and measurement noise terms,
takes the following form:

E
Kwn

vn

" #
wT

n KT vT
n

� �( )
¼

KQKT 0

0 R

" #

The state residuals are defined as

eð�Þ ¼ xn � x̂ð�Þn

eðþÞ ¼ xn � x̂ðþÞn

where

x̂ð�Þn ¼ Ux̂
ðþÞ
n�1 þ Kun�1

x̂ðþÞn ¼ x̂ð�Þn þK zn �Hx̂ð�Þn

h i

x̂ð�Þn is the state estimate prior to the measurement update (predic-
tion), and x̂ðþÞn is the state estimate after the measurement update.
The steady-state gains, K, are used in this semi-optimal approach.

The levels of process noise and measurement noise used for the
design of the Kalman filter are shown in Tables 1 and 2. The noise
strengths are the standard deviation of the parameters. Some of
these standard deviations were obtained from experiments, as in
the case of the current. Melt efficiency noise strength was
obtained from computer simulation, and the others were defined
based on empirically realistic values.

8 Liquid Pool Depth Virtual Measurements

An obvious inconvenience with the proposed controller and es-
timator is that no direct measurements are available for the liquid

pool profile of the ingot in the furnace. If no measurements are
available from the furnace then the system is unobservable and,
therefore, accurate process control is not possible. Although
today’s technology does not provide with an accurate way of
measuring the pool profile or the temperature distribution in the
ingot, a high-fidelity computational model such as BAR could be
used to improve the observability of the system and the overall
performance of the controller. BAR, which is the closest approxi-
mation available to the actual melt, would be used as a noninva-
sive method to provide virtual measurements of the parameters
that cannot be measured in any other way. Because liquid pool
profile is known to be related to defect formation in VAR, it will
be monitored and controlled throughout the melt. If other parame-
ters are reported to be related to other solidification defects, they
would be included in the high-fidelity model and the control sys-
tem in a similar way.

BAR was not intended to be used in process control systems
but to study the physical conditions that would lead to the forma-
tion of defects in remelting processes [6]. The structure of the
model had to be modified so that it could be run in parallel to the
actual melt. BAR is run with the same inputs that are sent to the
actual furnace (i.e., current, voltage, melt rate, and helium pres-
sure) to ensure that the model and the furnace are synchronized.
BAR is used to provide a measurement of the temperature distri-
bution in the solidifying ingot. These temperature measurements
can be used to get an estimate of the liquid pool profile using a lin-
ear interpolation to find the location where the liquidus tempera-
ture occurs. The pool depth measurements can be obtained for as
many radial locations as required.

In the case presented in this paper, only two virtual measure-
ments were used to improve the observability of the control sys-
tem. The locations where the measurements are taken are
carefully chosen to get measurements that are representative to
describe the liquid pool profile. The centerline pool depth and that
of r¼ 0.7 ri are used. The centerline pool depth provides informa-
tion about the maximum liquid pool depth in the ingot, and 0.7 ri

is a representative mean radius for which the internal cross-
sectional area is the same as the external cross-sectional area. The
two virtual measurements are not treated with the same uncer-
tainty, as shown in Table 2. The physical properties used for the
thermal model were calibrated to match BAR liquid pool depth
predictions at 0.7 ri in steady-state, but the same properties result
in an offset for the pool depth predictions at the centerline. In
order to follow closely the prediction at the mean radius, a very
small uncertainty is used for this virtual measurement compared
to the one of the centerline.

BAR is based on finite volume methods, which discretize the
ingot. As a consequence, there is a small oscillation in the pool
depth measurement every time the estimated pool profile jumps
from one grid element to another one. Although the oscillation is
small, it is undesired since if it is not attenuated it can cause the
controller to oscillate as well. In order to obtain a more stable
response a prefilter is used for the pool depth measurements. The
prefilter attenuates any fast dynamics with an infinite impulse
response digital Butterworth low pass filter [20].

9 Implementation of the Pool Depth Controller

The LQG pool depth controller was successfully implemented
in a laboratory-scale furnace in Los Alamos National Laboratory
using Alloy 718 in July 2011. Information about the furnace and
the material used for the test are given in Tables 3 and 4.

Only one pool depth was monitored and controlled in the
implementation of the proposed controller. The pool depth at 0.7
ri was chosen as the most representative pool depth because it is
an average value. Although only one pool depth will be monitored
in the controller, two measurements will be used in the estimator.

The experiment was started with constant current control mode.
The exact moment when pool depth control mode started is
marked with the pool depth control mode turned ON note in

Table 1 Process noise levels

Parameter Noise strength

Current (wI) 120 A
Melt efficiency rate (wl) 0.01 l0

Table 2 Measurement noise levels

Parameter Noise strength

Pool depth at 0.0 ri (nPD) 6.0 cm
Pool depth at 0.7 ri (nPD) 0.2 cm
Estimated melt efficiency (nl) 2.33� 10�5
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Fig. 8. Virtual pool depth measurements are recorded from the be-
ginning of the melt. However, they are included for estimation only
when the measurements are close to the estimated pool shape, as
marked by the BAR feedback turned ON note in Fig. 8. The reason
for this is that the reduced-order model is based on a steady-state
approximation so it is valid only close to steady-state. In the begin-
ning of the melt the ingot is very small and just starting to solidify,
so controlling the pool profile would not make much sense.

Experimental results, see Fig. 8, show that once the virtual
measurements have been included in the estimator, the measured
pool depth for the mean radius and the estimated one match. Even
though these values coincide there is a difference in the centerline
pool depth. This is an indicator that there is a mismatch between
the dynamics predicted with the reduced-order model and that of
BAR at the centerline. The differences between these two models
can cause significant problems if pool profile is controlled at a
wide range of radial locations.

The pool profile controller was tested for several liquid pool
depths under step changes in the reference, showing a good tran-
sient response. A small amount of steady state error can be seen,
but its value is negligible compared to the desired liquid pool
depths. Small oscillations are shown after step changes in pool
depth reference but they disappear quickly.

Table 4 Thermophysical properties of Alloy 718

Property Value

Melt temperature 1623 K
Density 7.75 g/cm3

Heat capacity 0.65 J/g K
Latent heat 210 J/g
Solidus enthalpy 762.4 J/g
Liquidus enthalpy 1070.0 J/g
Thermal diffusivity (solid phase) 0.0637 cm2/s
Thermal diffusivity (liquid phase) 0.0676 cm2/s

Table 3 Furnace parameters

Parameter Value

Electrode radius 7.62 cm
Ingot radius 10.8 cm
Nominal current 2800 A
Nominal voltage 23.5 V
Nominal melt rate 34 g/s
Nominal electrode gap 1.0 cm

Fig. 8 Experimental results

Fig. 9 Comparisons between liquid pool depths predicted with
BAR and those measured experimentally

Journal of Dynamic Systems, Measurement, and Control MAY 2014, Vol. 136 / 031007-9

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 07/01/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



In a real melt the desired liquid pool shape will, most likely, be
kept a constant value in order to prevent macrosegregation. The
case of a constant reference pool depth of 12.6 cm, a case of
potential interest to industry applications, was tested. In this part
of the experiment the controller showed a good performance and
was able to maintain the predicted liquid pool depth close to the
desired value. The current required to stabilize the system at the
desired pool depth was approximately 3300 A.

A detailed analysis of the ingot including pool shape, solidifica-
tion rate, and approximate thermal gradient is reported in Ref.
[21]. However, the most important study is whether the pool pro-
files measured experimentally compare favorably to those pre-
dicted by the computational model. Liquid pool profiles were
manually measured by tracking dark bands along the expected
pool profile, attributed to channels or similar dark-etching regions.
This technique is a common practice in the production of superal-
loys. It can be seen that in the central part of the ingot, in which
melting conditions were close to steady state, pool depths
observed experimentally compare well to those predicted with
BAR, as shown in Fig. 9. Therefore, when close to steady state
(which occurs for most of the melt) accurate control of the liquid
pool profile predicted by BAR is expected to result in accurate
control of the geometry of the solidification front.

The thermal gradient G, shown in Fig. 10, is a very important
variable in the solidification of the metal ingot [22] and can be
monitored in real-time with BAR. The thermal gradient in the
mushy zone affects the dendrite arm spacing, which affects the
tendency to create freckles. It can be seen that the value of the
thermal gradient was just starting to converge to steady-state at
the end of the experiment. The process controller was designed
based on a model linearized about steady-state conditions, which
were never met in the experiment. Such a behavior is expected for
very small furnaces, were melts last for a few hours, but it would
not happen in a full-size furnace, where the melts last longer and
the ingot solidification often reaches quasi-steady conditions. The
controller presented in this paper would make a better job if used
in an industrial-sized furnace where most of the melt occurs in
quasi-steady conditions. A transient controller would be required
for cases in which quasi-steady conditions are never reached, i.e.,
small furnaces and when melting Titanium alloys.

10 Conclusions

A new generation of process controllers for vacuum arc remelt-
ing is proposed in this paper. For the first time, the liquid pool pro-
file was controlled in order to prevent macrosegregation defects.
This is a significant improvement from previous controllers which

focus on the melting of the electrode and treat the ingot as a black
box. An accurate real-time description of the solidification dy-
namics is obtained from BAR, a high-fidelity model run in parallel
to the furnace. The model was incorporated in a CPU to provide
virtual measurements of liquid pool profile in real time. These
measurements, just like the ones coming from sensors, are subject
to bias and noise. All measurements are combined optimally by
using a Kalman filter.

The proposed controller was successfully implemented in a
laboratory-scale furnace in Los Alamos National Laboratory in
July 2011. Some general comments that can be drawn from the
experimental results are that the reduced-order model, suitable
and convenient for control and estimation, is not very precise on
describing the solidification of the whole ingot. It can be seen that
the estimated pool depth at 0.7 ri matches the one predicted by
BAR, but the centerline pool depth does not agree with BAR. The
authors think that the difference between the pool depths pre-
dicted by the two models is caused by the attempt to model an ani-
sotropic phenomenon, such as fluid flow in the liquid region, with
an isotropic model that includes diffusion only.

It should also be noted that both the high-fidelity and the
reduced-order models are two-dimensional but they are being
used to prevent defects that are three-dimensional in nature. A
three-dimensional model could be required for a better description
of solidification defects and their sources.
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Nomenclature

c ¼ specific heat
E½�� ¼ expectation

G ¼ thermal gradient
h ¼ enthalpy per unit mass
H ¼ ingot height
hf ¼ enthalpy of fusion per unit volume
I ¼ melting current

_me ¼ electrode melt rate
PD ¼ pool depth

qbottom ¼ heat flux at the bottom of the ingot
qtop ¼ total heat flux atop the ingot

qwall ¼ total sidewall heat flux
re ¼ electrode radius
ri ¼ ingot radius

Spool ¼ liquid pool depth measured from the ingot top
Tm ¼ melting temperature
Vi ¼ velocity at which the ingot grows
a ¼ thermal diffusivity
d ¼ perturbation from nominal conditions
D ¼ electrode thermal boundary layer
l ¼ melt efficiency
�̂ ¼ estimate
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