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Abstract In rigorous constrained global optimization, upper bounds on the objec-
tive function help to reduce the search space. Their construction requires finding a
narrow box around an approximately feasible solution, verified to contain a feasible
point. Approximations are easily found by local optimization, but the verification
often fails.

In this paper we show that even if the verification of an approximate feasible
point fails, the information extracted from the local optimization can still be used in
many cases to reduce the search space. This is done by a rigorous filtering technique
called constraint aggregation. It forms an aggregated redundant constraint, based
on approximate Lagrange multipliers or on a vector valued measure of constraint
violation. Using the optimality conditions, two sided linear relaxations, the Gauss-
Jordan algorithm and a directed modified Cholesky factorization, the information
in the redundant constraint is turned into powerful bounds on the feasible set. Con-
straint aggregation is especially useful since it also works in a tiny neighborhood of
the global optimizer, thereby reducing the cluster effect.

A simple introductory example demonstrates how our new method works. Ex-
tensive tests show the performance on a large benchmark.
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1 Introduction

Global optimization is the task of finding the absolutely best admissible conditions
to achieve an objective under given constraints, assuming that both are formulated
in mathematical terms. Global optima can be found by a combination of a variety
of filtering techniques usually embedded in a branch and bound scheme for complete
search (see, e.g., the survey Neumaier [26]). If the results have to be rigorous, the
calculations usually involve the use of interval arithmetic (see, e.g., Neumaier [24]).

Filtering (also called pruning) stands for reducing or discarding parts of the
search space of an optimization problem. The classical filtering algorithms are based
upon local consistencies like 2B-consistency or Box-consistency (see, e.g., Benhamou
et al. [1]), 3B-consistency (Lhomme [22]), HC4 (Benhamou et al. [2]), FBPD (Vu
et al. [34]), OCTUM (Chabert and Jaulin [3]). For quadratic problems, improved
filtering methods are discussed in Domes and Neumaier [5].

Higher order filtering methods usually include linear or convex relaxation. Rigor-
ous linear over- and underestimators for general global nonlinear programming prob-
lems involving odd and even powers, reciprocals, exponentials, logarithms, square
roots, and uncertain scalar multiples are discussed in Hongthong and Kearfott [14].
The relaxed linear program usually contains more variables and/or constraints than
the original problem, but the constraints are much easier to exploit. A classical
method by McCormick [23], extended by Sherali and Adams [33], called RLT (refor-
mulation – linearization technique), is used by Lebbah et al. [21] in the QUAD algo-
rithm and by the prize-winning (but nonrigorous) global optimization code BARON
[27, 28]. Another interesting approach was given by Kolev [20], and a selection of
additional linear relaxation techniques can be found in Domes and Neumaier [6].
Higher degree relaxations and convex relaxations are also discussed in the literature;
for example, affine and convex relaxations for non-convex multivariate polynomials
in Garloff et al. [11].
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Usually, filtering methods are very efficient at the beginning of a branch and
bound procedure, but they tend to become inefficient close to the global solution,
resulting in excessive branching until the required precision is achieved. This so-
called cluster effect was first explained by Kaisheng and Kearfott [15]. Techniques
designed to reduce or eliminate the cluster effect are discussed, e.g., by Schichl and
Neumaier [30] and Goldsztejn et al. [12].

We introduce a new rigorous filtering technique called constraint aggregation.
Based on an approximately most feasible point, an aggregated redundant constraint
is formed, using approximate Lagrange multipliers when the approximation is nearly
feasible, or a vector valued measure of constraint violation when the approximation
is sufficiently infeasible. Using the optimality conditions, two sided linear relaxations,
the Gauss-Jordan algorithm and a directed modified Cholesky factorization, the in-
formation in the redundant constraint is turned into powerful bounds on the feasible
set. Constraint aggregation is especially useful since it also works in a tiny neighbor-
hood of the global optimizer, thereby reducing the cluster effect.

The following motivating example shows that constraint aggregation may dras-
tically improve the enclosure of a feasible set. The theory developed in the present
paper then casts the tricks behind this example – in fact variations of techniques
used by Neumaier [25] to prove sufficient global optimality conditions for quadratic
programs – into a general and powerful technique.

Fig. 1 Motivating Example.

Example 1 Consider the simple two dimensional optimization problem

min x1x2
s.t. x2

1 + x2
2 ≤ 2,

x1 − x2 ≥ 0.
(1)

Suppose that a local optimizer found the optimal solution x1 = 1, x2 = −1 of (1),
and the associated multipliers ν = 1 (for the objective) and y = (−0.5, 0) (for the
constraints). The upper bound of the objective arising from the known point (namely
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the optimal solution) is x1x2 ≤ −1, resulting in the CSP

find x
s.t. x1x2 ≤ −1,

x2
1 + x2

2 ≤ 2,
x1 − x2 ≥ 0

(2)

for potentially better points (see Figure 1). In the present case (as always when
the local search happened to find the unique global minimizer), the CSP (2) has a
feasible set consisting of a single point only – the minimizer.

Constraint propagation on the constraints of (2) only results in x1, x2 ∈ [−
√

2,
√

2]
(Figure 1, box a) but if we aggregate the constraints using the multipliers ν = 1 and
y = (−0.5, 0) we obtain

x1x2 − (−0.5)(x2
1 + x2

2) + 0(x1 − x2) ≤ 1(−1)− (−0.5)2 + 0,

hence 0.5(x1+x2)2 ≤ 0. The introduction of the new variable z for x1+x2 transforms
this into the constraints

z = x1 + x2, 0.5z2 ≤ 0. (3)

Constraint propagation on (3) gives z ∈ [0, 0]. Therefore, the aggregated CSP may
be written as

x1x2 ≤ −1, x2
1 + x2

2 ≤ 2, x1 − x2 ≥ 0, z = x1 + x2, 0.5z2 ≤ 0, (4)

with additional bounds x1, x2 ∈ [−
√

2,
√

2]. The interval hull of the linear subproblem

x1 − x2 ≥ 0, z = x1 + x2, x1, x2 ∈ [−
√

2,
√

2], z ∈ [0, 0], (5)

obtainable constructively through linear bounding for the variables x1 and x2 (see
Domes and Neumaier [6, p. 17]) is x1 ∈ [0,

√
2] and x2 ∈ [−

√
2, 0] (Figure 1, box b).

With these improved bounds, constraint propagation on x1x2 ≤ −1 and z = x1 +x2
contracts the bounds to a single point, the optimal solution; cf. Figure 1.

In floating point arithmetic, the same computations should have approximately
the same results.

The paper is organized as follows. After providing basic notation and terminology
in Section 2.1, 2.2 and 2.3 we discuss a method for computing Lagrange-multipliers
in 2.4. Then we introduce uncertainties (Section 2.5) and use them in Section 2.6 to
specify of the problem class treated, namely the uncertain optimization problems.
Then we conlcude the preliminaries by discussing feasibility (Section 2.7), bounds
on the objective and verification of feasible points in Section 2.8. The second part
is concerned about the new method, in particular about filtering by constraint ag-
gregation (Section 3.1), filtering a singly-quadratic constraint satisfaction problem
(Section 3.2), and finding good aggregators (Section 4). The latter is related to com-
putable certificates of infeasibility (Subsection 4.1). We conclude the paper by giving
extensive numerical tests in Section 5.

Acknowledgments This research was supported by the Austrian Science Fund
(FWF) under the contract numbers P23554-N13 and P22239-N13.
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2 Preliminaries

2.1 Matrix notation

Rm×n denotes the vector space of all m × n matrices A with real entries Aik (i =
1, . . . ,m, k = 1, . . . , n), and Rn = Rn×1 denotes the vector space of all column
vectors of length n. For vectors and matrices, the relations =, 6=, <, >, ≤, ≥ and
the absolute value |A| of a matrix A are interpreted component-wise.

The number of nonzero entries of a matrix A is denoted by nnz(A). The n-
dimensional identity matrix is denoted by I and the n-dimensional zero matrix is
denoted by 0 . The transpose of a matrix A is denoted by AT , and A−T is short for
(AT )−1. The ith row vector of a matrix A is denoted by Ai: and the jth column
vector by A:j . For an n×n matrix A, diag(A) denotes the n-dimensional vector with
diag(A)i = Aii.

The number of elements of an index set N is denoted by |N |. The set ¬N denotes
the complement of N . Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be index sets and let
nI := |I|, nJ := |J |. For an n-dimensional vector x, xJ denotes the nJ -dimensional
vector built from the components of x selected by the index set J . For an m × n
matrix A, the expression AI: denotes the nI × n matrix built from the rows of A
selected by the index sets I. Similarly, A:J denotes the m×nJ matrix built from the
columns of A selected by the index sets J . Instead of using the index sets I and J
we also write Ai:k,j:l if I = {i, i+ 1, . . . , k} and J = {j, j + 1, . . . , l}.

2.2 Boxes

A box x = [x, x], i.e., the Cartesian product of the closed real intervals xi := [xi, xi],
represents a (bounded or unbounded) axiparallel box in Rn. IRn denotes the set of all
n-dimensional boxes. To take care of one-sided bounds on variables, the values −∞
and ∞ are allowed as lower and upper bounds of a box, respectively. The condition
x ∈ x is equivalent to the collection of simple bounds

xi ≤ xi ≤ xi (i = 1, . . . , n),

or, with inequalities on vectors and matrices interpreted component-wise, to the two-
sided vector inequality x ≤ x ≤ x. Apart from two-sided constraints, this includes
with xi = [a, a] variables xi fixed at a particular value xi = a, with xi = [a,∞] lower
bounds xi ≥ a, with xi = [−∞, a] upper bounds xi ≤ a, and with xi = [−∞,∞]
free variables.

For the notation in interval analysis we mostly follow [19]. The box

utS := [ inf(S), sup(S)]

is called the interval hull of a set S of points in Rn. We also define the minimal
point

µ(r) :=

 r if r > 0,
r if r < 0,
0 otherwise,

(6)

the mignitude
〈r〉 := |µ(r)|,



6 Ferenc Domes, Arnold Neumaier

and the magnitude
| r| := max(−r, r)

of an interval r. The notation extends componentwise to boxes.

2.3 Optimization problems

With the notation introduced, the traditional continuous, single-objective optimiza-
tion problem consisting of smooth equality and inequality constraints may be writ-
ten in the compact interval form

min f(x)
s.t. F (x) ∈ F, x ∈ x, (7)

where f : x→ R and F : x→ Rm are functions defined on the box x, and F ∈ IRm

is a box defining two-sided constraints for the components of F (x); again, equality
constraints and one-sided inequality constraints are included. A point x ∈ x is called
a feasible point of (7) if F (x) ∈ F is satisfied. If F (x) /∈ F for all x ∈ x the
constraints are called inconsistent and the problem is called infeasible.

For reasons of efficiency, we shall consider in place of (7) the slightly more complex
formulation

min aTF (x)
s.t. BF (x) ∈ b, x ∈ x, (8)

F : x→ Rw, and a ∈ Rw, b ∈ Rm, B ∈ Rm×w. This is both a special case of (7) and
a generalization of it, as the traditional formulation (7) is obtained from (8) if we
take w = m+ 1,

(
f
F

)
in place of F , u = 1, a =

(1
0
)
, B = (0 I) and b = F. From the

point of view of solvability, (7) and (8) are therefore equivalent, as one can redefine
f̃(x) := aTF (x) and F̃ (x) := BF (x). However, from a computational point of view,
the form (8) has advantages that typically lead to improved linear relaxations once(
a
B

)
has more than one entry in some column. As we shall see in Section 2.6, this

form also allows a natural formulation of problems with uncertain coefficients.
If the objective function is missing or it is constant then (7) and (8) take the

form
find x ∈ x
s.t. F (x) ∈ F, (9)

find x ∈ x
s.t. BF (x) ∈ b, (10)

respectively, of a constraint satisfaction problem (CSP).

2.4 Lagrange multipliers

We now consider the first order optimality conditions for a minimizer x̂ of an opti-
mization problem of the form (8), where f(x) and F (x) are continuously differen-
tiable. We put

Lb := {i | xi = x̂i < xi},
U b := {i | xi < x̂i = xi},
N b := {i | xi < x̂i < xi},

(11)
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Ec := {j | bj = bi},
Lc := {j | bj = BFj(x̂) < bj},
U c := {j | bj < BFj(x̂) = bj},

(12)

and write y and z for the interval vectors with components

zi :=


[0,∞] if i ∈ Lb,
[−∞, 0] if i ∈ U b,
0 if i ∈ N b,

yj :=


[−∞,∞] if j ∈ Ec,
[0,∞] if j ∈ Lc,
[−∞, 0] if j ∈ U c,
0 otherwise.

(13)

The necessary optimality conditions say that there are multipliers ν ∈ R and y ∈ y,
not both zero, such that

Z(ν, x, y) := F ′(x)T (νa−BT y) ∈ z, (14)

and the complementarity conditions

max((BFj(x)− bj)yj , (BFj(x)− bj)yj) = 0 (15)

hold for j = 1, . . . ,m.
These conditions comprise the Karush-John optimality conditions for the

problem (8); cf. the derivation and discussion of the history in Schichl and Neumaier
[31].

If ν 6= 0 we may rescale the multipliers to have ν = 1, leading to the Kuhn-
Tucker optimality conditions. We normalize instead by rescaling so that

max(ν, ‖y‖∞) = 1,

which is possible even when ν = 0 and leads to bounded multipliers. This is achieved
by

ν ← 1
max(1, ‖y‖∞) , y ← νy. (16)

The following result suggests a way to define Lagrange multipliers y ∈ Rm (for
the constraints) and ν ∈ R (for the objective) at an arbitrary point x (intended to
be an approximate local minimizer).

Theorem 1 If, for some x̂ ∈ Rn, the constrained optimization problem

min g(y) := ‖µ(Z(1, x̂, y)− z)‖2
2

s.t. y ∈ y (17)

(with Z from (14) and µ from (6)) has a solution ŷ with g(ŷ) = 0 then (x̂, ŷ) sat-
isfies the Kuhn-Tucker conditions for (8), and (16) defines associated normalized
multipliers satisfying the Karush-John conditions.

Proof From g(ŷ) = 0 follows that µ(Z(1, x̂, y) − z) = 0 implying Z(1, x̂, y) ∈ z
therefore (14) is satisfied. Since ŷ ∈ y, the definition (13) of y implies that the
complementary conditions (15)

max(c1, c2) = 0, c1 := (BFj(x̂)− bj)ŷj , c2 := (BFj(x̂)− bj)ŷj),
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are satisfied:
If BFj(x̂) = bj < bj then ŷj ≥ 0 therefore c1 = 0 and c2 ≤ 0.
If BFj(x̂) = bj > bj then ŷj ≤ 0 therefore c1 ≤ 0 and c2 = 0.
If BFj(x̂) = bj = bj then ŷj is arbitrary and c1 = 0, c2 = 0.
If bj < BFj(x̂) < bj then ŷj = 0 therefore c1 = 0 and c2 = 0.
In each case, max(c1, c2) = 0. Therefore the Kuhn-Tucker conditions are satisfied
and x̂ must be a critical point of (8). ut

Note that if x̂ is a Kuhn–Tucker point then the (possibly underdetermined) sys-
tem of equations

F ′(x̂)TNb:B
T
:V yV = F ′Nb (x̂)T a, y¬V = 0, V = Ec ∪ Lc ∪ U c, (18)

must have a solution ŷ. If, in addition to this, ŷ ∈ y, and the inequalities

Z(1, x̂, ŷ)i ≥ 0 for i ∈ Lb, Z(1, x̂, ŷ)i ≤ 0 for i ∈ U b, (19)

are satisfied then ŷ is a Lagrange multiplier corresponding to x̂, and (16) defines the
associated normalized multipliers. If it works, this method gives a cheaper alternative
for computing ŷ; otherwise the more expensive constrained non-linear optimization
problem (17) must be solved.

Algorithm 1: Computing the Lagrange multipliers
Input: A point x̂ ∈ Rn approximately satisfying the bound constraint x ∈ x of (8) and

a small tolerance δ � 1 (e.g., δ := 10−9).
Output: The Lagrange multipliers: ν̂ for the objective and ŷ for the constraints.

1 Compute δb
i = min(δ,wid(xi)/10) for i = 1, . . . ,m;

2 if x̂i < min(xi + δb
i , xi) then x̂i ← xi;

3 if max(xi, xi − δb
i ) < x̂i then x̂i ← xi;

4 Form the index sets Lb, Ub and Nb as defined in (11);
5 Compute δc

j = min(δ,wid(bj)/10) for j = 1, . . . ,m;
6 Form the index sets from (12) by

Ec := {j | bj − bj ≤ δ}, Lc := {j /∈ Ec | BFj(x̂) ≤ min(bj + δc
j , bj)},

Uc := {j /∈ Ec | BFj(x̂) ≥ max(bj , bj − δc
j )}.

(20)

;
7 Construct the boxes z and y as given by (13);
8 Solve the linear system of equations (18) in order to obtain ŷ;
9 if ŷ /∈ y or one of the conditions (19) is not satisfied then

10 Solve the problem (17) by using a bound constrained solver;
11 if the solver found the solution ỹ with g(ỹ) = 0 then set ŷ ← ỹ;
12 else x̂ cannot satisfy the Kuhn-Tucker conditions, therefore signal failure;
13 end
14 Compute and return ν̂ and ŷ according to (16);

In floating point arithmetic, the equalities and inequalities from above are often
not satisfied exactly but only by a small tolerance δ. Algorithm 1 describes the
solution process suitable for numerical computations.
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2.5 Uncertain vectors and matrices

To rigorously account for inaccuracies in computed entries of a matrix, we use interval
matrices, standing for uncertain real matrices whose coefficients are between given
lower and upper bounds. Note that all boxes may be considered as interval vectors,
i.,e., column vectors (n × 1 matrices) with uncertain components, whose values are
known only to lie withing given intervals. The midpoint, width and the radius of an
interval matrix A are the noninterval matrices defined by

mid(A) := (A+A)/2, wid(A) := A−A, rad(A) := wid(A)/2,

respectively. An interval, interval vector, or interval matrix is called thin or de-
generate if its width is zero, and thick if its width is positive. A real matrix A is
identified with the thin interval matrix with A = A = A.

The expression A := [A,A] ∈ IRm×n denotes an m × n interval matrix with
lower bound A and upper bound A. A ∈ IRn×n is symmetric if Aik = Aki for all
i, k ∈ {1, . . . , n}. The comparison matrix 〈A〉 of a square interval matrix A is defined
by

〈A〉ij :=
{
−|Aij | for i 6= j,
〈Aij〉 for i = j.

Given an expression p(x) in x = (x1, . . . , xn)T such that the evaluation at any x ∈ x
is a real number, there are a number of methods for defining an interval enclosure
of p(x), i.e., a box p(x) such that p(x) ∈ p(x) holds for all x ∈ x. The simplest is
the interval evaluation, where one substitutes xi for each occurrence of xi in p(x).
More sophisticated (and often, but not always, better) possibilities include centered
forms (for details, see, e.g., [24]).

2.6 Uncertain optimization problems

Traditionally, the coefficients of f(x) and F (x) are taken to be exactly known. To
be able to rigorously account for uncertainties due to one of the following sources:

– measurements of limited accuracy,
– conversion errors from an original representation to our normal form,
– rounding errors when creating new constraints by relaxation techniques,

we allow the coefficients to vary in narrow intervals. All uncertainties can be con-
veniently expressed if we formulate an arbitrary optimization problem with uncer-
tain coefficients as an instance of the following uncertain optimization problem
(UOP)

min aTF (x)
s.t. BF (x) ∈ b, x ∈ x,
for some a ∈ a, B ∈ B.

(21)

Here F : x → Rw is defined on the box x ∈ IRn, and a ∈ a ∈ IRu, b ∈ IRm, B ∈
B ∈ IRm×w. The entries of a and B are not variables but uncertain constants, whose
precise values within the bounds a ∈ a and B ∈ B are not known. Thus whether
a particular vector x is a solution of the UOP may depend on which a ∈ a and
B ∈ B is the true value. This ambiguity makes working with uncertain constraints
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nontrivial. It requires great care in the derivation of methods to ensure the validity
of an enclosure no matter which value a ∈ a and B ∈ B is the true value.

If a and B contain only a single matrix, (21) reduces to the exact optimization
problem ((UOP) (8).

If a = 0 then (21) becomes the uncertain constraint satisfaction problem
(UCSP)

find x ∈ x
s.t. BF (x) ∈ b
for some a ∈ a, B ∈ B.

(22)

If, in addition, a and B contain only a single matrix, (21) reduces to the exact
constraint satisfaction problem (ECSP) (10).

Any optimization problem with uncertain coefficients can be brought into the
UOP form (21) by introducing new variables for every subexpression composed of a
product with an uncertain coefficient or a linear combination in which a coefficient
is uncertain. The transformation to this form is done automatically in the upcoming
version of GloptLab (Domes [4]).

As an example we consider the nonlinear, exact optimization problem

min x1 + x2
s.t. x1 + e0.1x1+0.2x2

2 ≤ 1, x1 ∈ [−1, 1], x2 ∈ [−2, 0]. (23)

Since the decimal numbers occuring in the problem are not exactly representable as
floating-point numbers, (23) must be represented internally as an UOP by introduc-
ing the intermediate variable x3 = 0.1x1 + 0.2x2

2. Thus we have

min x1 + x2
s.t. 0.1x1 − x3 + 0.2x2

2 = 0, x1 + ex3 ≤ 1,
x1 ∈ [−1, 1], x2 ∈ [−2, 0], x3 ∈ [−∞,∞],

ending up in
min aTF (x)
s.t. BF (x) ∈ b, x ∈ x, (24)

where
F (x) := (x1, x2, x3, x

2
2, e

x3 )T,

aT := (1 1 0 0 0), B :=
(

0.1 0 −1 0.2 0
1 0 0 0 1

)
,

x := ([−1, 1] [− 2, 0] [−∞,∞])T, b :=
(

[0, 0]
[−∞, 1]

)
.

In binary floating point arithmetic, the coefficient 0.1 cannot be represented. To
ensure that the problem can be solved rigorously even in floating point arithmetic,
we rewrite the unrepresentable exact problem (24) as the representable uncertain
problem

min aTF (x)
s.t. BF (x) ∈ b, x ∈ x,
for some B ∈ B,

(25)

where a and F (x) are as before, and

x :=
(

[− 1, 1] [− 2, 0] [−∞,∞]
)T
,
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B :=
(

[∇0.1, ∆0.1] [0, 0] [− 1,−1] [∇0.2, ∆0.2] [0, 0]
[1, 1] [0, 0] [0, 0] [0, 0] [1, 1]

)
,

where ∇x denotes the largest vector of floating point numbers with ∇x ≤ x, and ∆x
denotes the smallest vector of floating point number with ∆x ≥ x.

2.7 Feasibility

The traditional definition of feasibility for an optimization problem does not make
sense for the uncertain constraint satisfaction problem (21). For example, in the UOP

min x1 + x2
s.t. x1 + ax2 = 1, x1 ∈ [0, 2], x2 ∈ [0, 2]
for some a ∈ [0.79, 0.81],

(26)

no single point can be feasible since it cannot satisfy (26) for all B ∈ B. But the
problem should not be classified as infeasible since, e.g., x1 = 1−a, x2 = 1 should be
considered as a coefficient-dependent solution. Since a is uncertain, this ”solution”
comprises the set {x ∈ R2 | x1 ∈ [0.19, 0.21], x2 = 1}. Therefore we must generalize
the definition:

A set Z ⊆ x is called feasible for the uncertain optimization problem (21) if for
all B ∈ B there is an x ∈ Z with BF (x) ∈ F, infeasible if BF (x) /∈ F for all B ∈ B
and x ∈ Z, and partially feasible otherwise. The problem (7) is called feasible
(infeasible) if x is feasible (infeasible). The feasible set of (21) is the set

Ẑ := {x ∈ x | BF (x) ∈ b for some B ∈ B}

of all feasible or partially feasible points of (21).
The definition implies that if the set Z is feasible then all sets Z ′ ⊆ x containing

Z are also feasible. In particular, the definition applies to boxes Z = z, and a feasible
set exists iff the box x is feasible, i.e., iff the problem itself is feasible. The solution
set is nonempty iff x is feasible or partially feasible.

For example (26), the box z1 := ([1.2, 1.27] [0, 0])T is feasible, the box z2 :=
([0.9, 0.95] [0, 0])T is infeasible and the box z3 := ([1.25, 1.25] [0, 0])T is partially
feasible. The problem (26) is feasible since z1 is feasible, z1 ⊂ x and thus the box x
is feasible.

Given the uncertain constraint satisfaction or optimization problem (21), we use
the minimal point (6) to define the vector-valued feasibility measure

d(x) := µ(BF (x)− b) (27)

of a point x ∈ Rn. For a given positive definite, diagonal scaling matrix D, the
number ‖d(x)‖2

D is called the feasibility distance of x for the problem (21).
A point x is called δ-feasible if x ∈ x and ‖d(x)‖2

D ≤ δ, where δ > 0 is a
feasibility tolerance. In particular, feasible points are δ-feasible for every δ >
0, and in an UCSP, a point is 0-feasible iff it is feasible for some choice of the
uncertainties.
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2.8 Bounds on the objective and verification of feasible points

To take account of the best known upper and lower bound in the objective function
of an UOP we define

min aTF (x) ∈ r
s.t. BF (x) ∈ b, x ∈ x,
for some a ∈ a, B ∈ B,

(28)

as shorthand for

min aTF (x)
s.t. aTF (x) ∈ r, BF (x) ∈ b, x ∈ x,
for some a ∈ a, B ∈ B,

and similarly
min aTF (x) ∈ r
s.t. BF (x) ∈ b, x ∈ x, (29)

as shorthand for
min aTF (x)
s.t. aTF (x) ∈ r, BF (x) ∈ b, x ∈ x.

Finding a valid upper bound on the optimal objective function value is essential
for efficiently solving global optimization problems. Using an upper bound from a
feasible (and ideally nearly optimal) point eliminates most of the search space –
leaving a CSP with a tiny feasible region only – and therefore usually saves a large
amount of time by speeding up the branch and bound process.

To find a rigorously valid upper bound requires the verification of feasible points.
Verification techniques usually consist of finding a narrow box centered at a given
approximately feasible point, for which it was verified that it contains a feasible
point. An upper bound on the function value over this box, computed by interval
evaluation, then gives arigorous upper bound on the objective function value. Of
course, there may be no close feasible point, in which case a verification attempt will
return without a result.

Various verification techniques are discussed by Hansen [13, Section 12] and
Kearfott [16–18]; they where summarized and improved by Domes and Neumaier
[7]. These verification techniques do not require to have an approximate local solution
of the UOP (21) or the EOP (8); in principle, an arbitrary approximately feasible
point suffices. But although finding a local optimizer takes more time, it is usually
preferable over just finding an arbitrary approximately feasible point.

3 Constraint aggregation

In this section we present a novel and efficient filtering method called constraint ag-
gregation. It consists of taking a suitable linear combination of constraints (including
constraints on the objective) and applying a strong filtering method to the resulting
constraint and a box defining bound constraints. The aggregator, i.e., the vector of
coefficients of the linear combination, can in favorable cases be determined such that
the resulting constraint intersects the box in a point or even not at all. The filtering
method used on the aggregated constraint should therefore be designed so that it
reduces the box in these cases to a very narrow box or to the empty set. We achieve
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this in the case of a quadratic constraint, so that the aggregation technique is di-
rectly applicable to quadratically constrained quadratic programs. Using quadratic
underestimation techniques such as those discussed in Schichl and Markót [29, page
13], it could be extended to work for general nonlinear programs.

As demonstrated by our later numerical results, the resulting aggregation filtering
method often leads to far better improvements than traditional filtering based on a
quadratic constraint and bound constraints only.

3.1 Filtering by constraint aggregation

An aggregator of the constraint satisfaction problem (22) is a nonzero vector y ∈
Rm. The corresponding constraint aggregation of (22) is the uncertain constraint

uTF (x) ∈ v := yTb for some u ∈ u := BT y. (30)

Let Ex ≤ d a linear relaxation of the constraints of (22) over the box x and let P
be a pruning method. The vector y is a certificate of infeasibility if P applied to
the constraint (30), the polyhedron defined by Ex ∈ d, and the bound constraints
x ∈ x results in the elimination of x.

Using centered form the two sided inequality (30) with interval coefficients can
be transformed into a single scalar inequality

s(x) ≤ γ, s(x) := ûTF (x), γ := sup{v − (u− û)TF (x) | u ∈ u, x ∈ x}. (31)

(A lower bound on s(x) could also be considered, but by construction of the aggre-
gator, usually only the upper bound will have a significant effect.) Note that if B is
the identity matrix then γ = v. Now (30) together with Ex ∈ d and x ∈ x defines a
singly-nonlinear constraint satisfaction problem as in (34).

If a valid bound on the objective of an uncertain optimization problem is known,
the problem can be represented as in (28). An aggregator of the uncertain op-
timization problem (28) is a pair (ν, y) with ν ∈ R, y ∈ Rm. The corresponding
constraint aggregation of (28) is the uncertain constraint

wf(x) + uTF (x) ∈ v := νr + yTb for some w ∈ w := aT ν, u ∈ u := BT y, (32)

and (31) changes to

s(x) ≤ γ, s(x) := ŵf(x) + ûTF (x),
γ := sup{v − (w − ŵ)f(x)− (u− û)TF (x) | w ∈ w, u ∈ u, x ∈ x}. (33)

Using rigorous filtering methods (e.g., constraint propagation [5] or linear relaxations
[6]) on (33) may yield tighter bounds x ∈ x̂ ⊆ x. Since each solution of the original
problem is also a solution of (33) and x̂ was obtained by rigorous methods, x ∈ x̂
can be used as improved bound constraints without losing feasible points. This gives
a cheap filtering method that reuses the information obtained from the local search
procedure.

If the above method resulted in a ’significant’ bound improvement the point x̃
may now lie outside the new box x̂. In this case it may be worth to start a new local
search in order to find a feasible point or to further improve the bounds. In this case
the x̃ could be projected into the new box and taken as the starting point of the
local search.
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3.2 Filtering a singly-quadratic constraint satisfaction problem

We now introduce a new method for enclosing the feasible set of constraint satis-
faction problems with linear constraints and a single quadratic constraint. In par-
ticular, it can be applied to an aggregated constraint if it is quadratic (or, if not, to
a quadratic relaxation of it). In this case, the linear constraints will be those of a
linear relaxation of all constraints.

We consider the uncertain singly-quadratic constraint satisfaction prob-
lem (SQCSP)

find x ∈ x
s.t. cTx+ 1

2x
TGx ≤ γ,

Ex ∈ d
for some G ∈ G, E ∈ E, c ∈ c,

(34)

where x ∈ IRn is a bounded box, G ∈ IRn×n is symmetric, E ∈ IRm×n, c ∈ IRn,
and d ∈ IRm. Intersecting d with Ex if necessary, we may assume without loss of
generality that d ⊆ Ex is bounded, too.

We compute an approximate local minimizer x̃ of the quadratic program

min cTx+ 1
2x

TGx
s.t. Ex = d, x ∈ x, (35)

whereG, E, c and d are approximate midpoints of G, E, c and d. If γ is close to or less
than the associated objective function value, one expects that the feasible domain
of (34) is tiny or empty. Our goal is to transform the problem into an uncertain
CSP where the single quadratic constraint becomes separable, in such a way that it
becomes obvious that under the stated conditions constraint propagation will reduce
the box to a narrow or empty domain.

To handle the equality constraint, we construct a rigorous null space represen-
tation as follows. We use x̃ to find an estimate N of the set of indices of variables
that are free at the exact minimizer of (35). We fix the variables estimated active
(with indices in the complement ¬N) at the values determined by x̃, and consider
the remaining uncertain linear system

E:NxN = e for some E ∈ E, e ∈ e := d−E:¬N x̃¬N .

Later we require |N | ≥ m which is only possible if the index set ¬N of estimated
active variables has size at most n−m. Since the minimizer x̃ and thus the associated
bound activities are only approximative, we can build the index set of the active
variables

N0 := {i | x̃i ≤ xi or x̃i ≥ xi},

and the index set N1 ⊆ ¬N0 of the most approximately active variables such that
|N1| ≤ n−m− |N0|. Then we define ¬N := N0 ∪N1 which satisfies |¬N | ≤ n−m
and therefore we have |N | ≥ m. We then redefine x̃ to respect these activities exactly.

The Gauss-Jordan algorithm from Domes and Neumaier [6, pp. 13-16] is applied
to an approximate midpoint of E:N , with scaling factors

δ =
√
ε, U = diag(u), V = diag(v) (36)
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determined such that the equations matching the constraints with tighter bounds
are preferred as pivot rows, and columns of E matching the variables with tighter
bounds are preferred as pivot columns. Here ε denotes the machine precision and

u = (e− e) + δ|e−E:NxN |, w := max{−xi, xj | i, j ∈ N},
w = xN ∩ [−w,w]|N |, v = (w − w)/max{wk − wk | k = 1, . . . , |N |}.

This produces an index list P ⊆ N of size p := |P | and a matrix C ∈ Rp×m such
that

CE:P ≈ I ∈ Rp×p.

By construction, E:P is likely to be invertible, and we compute enclosures X, S of

X := E−1
:P ∈ Rp×p, S := XE:Q ∈ Rp×(n−p),

where Q := {1, . . . , n} \ P is the complementary index list of size |Q| = n− p. This
may be done, e.g., by computing

X := (CE:P )GC, S := XE:Q, (37)

where AGB is the interval matrix obtained by applying interval Gauss elimination
(see e.g., Neumaier [24, pp. 152-166]) to the uncertain linear equation AX = B
for some A ∈ A and some B ∈ B. Note that in the present case, the coefficient
matrix is nearly the identity, so that interval Gauss elimination should not suffer
from excessive overestimation. If interval Gauss elimination fails, the problem is
considered degenerate, and no relaxation is computed.

The columns of the matrix Z ∈ Rn×(n−p) defined by ZP : = −S and ZQ: = I
form a basis of the null space of the matrix E; indeed, we have

XEZ = XE:P (−S) +XE:QI = −S + S = 0,

hence EZ = 0. Assuming for the moment that the P indices are sorted before the Q
indices, we have Z =

(−S
I

)
, and the reduced Hessian Gred ∈ R(n−p)×(n−p) takes the

form
Gred := ZTGZ = (−ST I)

(
GPP GPQ
GQP GQQ

)(
−S
I

)
.

It is easily seen that the resulting equation

Gred = STGPPS − STGPQ −GQPS +GQQ

remains valid even when the indices are not sorted. From a directed modified Cholesky
factorization (cf. Domes and Neumaier [9]) of the enclosure

Gred = ST (GPPS−GPQ)−GQPS + GQQ (38)

of Gred with M := {i | Qi ∈ N} and ζ = 10−6, we may obtain a nonsingular matrix
R ∈ R(n−p)×(n−p) and a diagonal matrix D ∈ R(n−p)×(n−p) such that the residual
matrix

∆ := Gred +D −RTR (39)

is positive semidefinite and tiny. Note that the bracketing in (38) improves the enclo-
sure, which can be improved further by intersecting Gred with its transpose, which
is valid since Gred is symmetric.
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With the approximate solution x̃ found by a local solver, we form

d̃ := Ex− Ex̃ ∈ d̃ := d−Ex̃ ≈ 0. (40)

The for any feasible x, the correction vector

s := x− x̃

satisfies
Es = d̃ ∈ d̃, s ∈ s := x− x̃. (41)

Moreover, since sP + SsQ = X(E:P sP + E:QsQ) = XEs = Xd̃, we have

(ZsQ)P = ZP :sQ = −SsQ = sP −Xd̃, (ZsQ)Q = ZQ:sQ = sQ,

hence
r := s− ZsQ ∈ r ≈ 0,

where
rP := Xd̃, rQ := [0, 0]. (42)

Thus x = x̃+ s = x′ + ZsQ, where

x′ = x̃+ r ∈ x′ := x̃+ r, (43)

and
σ̃ := 2cTx+ xTGx− (2cTx′ + x′TGx′)

= 2gTZsQ + (ZsQ)TGZsQ
= hT sQ + sTQGredsQ,

where
g := c+Gx′ ∈ g := c + Gx′, (44)

h := 2ZT g = 2(gQ − ST g′P ) ∈ h := 2(gQ − STgP ). (45)

Since

sTQGredsQ + sTQ(RTR−D)sQ + sTQ∆sQ ≥ (RsQ)T (RsQ)− sTQDsQ,

we may introduce
z := RsQ ∈ z := RsQ, (46)

and find the separable quadratic relaxation

zT z − sTQDsQ + hT sQ ≤ σ := sup
(

2γ − (c + g)Tx′
)
, (47)

where σ bounds σ̃, and the linear constraints

Es ∈ d̃, sP + SsQ ∈ rP , RsQ − z = 0, s ∈ s, z ∈ z. (48)

With an approximate constraint multiplier y for (34) at x̃ (computed by Algo-
rithm 1, or simply y = 0), we may introduce

h′ := 2(g − ET y) ∈ h′ := 2(g−ET y), (49)
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and rewrite the linear term hT sQ in (47) as

hT sQ = 2gTZsQ = (h′T + yTE)ZsQ = h′TZsQ = h′T (s− r)

since EZ = 0. This gives the alternative separable quadratic relaxation

zT z − sTQDsQ + h′T s ≤ σ′ := σ + sup(h′T r). (50)

Therefore s and z are solutions of the uncertain quadratic constraint satisfaction
problem

find s ∈ s, z ∈ z,
s.t. zT z − sTQDsQ + hT sQ ≤ σ,

zT z − sTQDsQ + h′T s ≤ σ′,
Es ∈ d̃, (CE)s ∈ Cd̃,
sP + SsQ ∈ rP , RsQ − z = 0,

for some E ∈ E, h ∈ h, h′ ∈ h′, S ∈ S.

(51)

depending on the n + (n − p) variables x and z and consisting of two separable
quadratic inequality constraints andm+p+(n−p) = m+n linear equality constraints.

Algorithm 2: Quadratic Filtering (QuadFil)
Input: An SQCSP given by (34) , the local solver precision δ � 1 and an arbitrary

starting point x0 ∈ x.
Output: A reduced box xnew ⊆ x (or the empty set), containing all solutions of (34).

1 Solve the quadratic program (35) by an approximate local solver starting from the
point x0, to precision δ, and obtain the optimizer x̃ ∈ Rn;

2 if x̃i < min(xi + δ, xi) then x̃i ← xi;
3 if max(xi, xi − δ) < x̃i then x̃i ← xi;
4 Form the index set N := {i | xi < x̃i < xi} and compute e := d−E:¬N x̃¬N ;
5 Use the Gauss-Jordan algorithm for mid(E:N ), with scaling factors U , V and δ

determined as in (36). This results in the index list P ⊆ N and the matrix C;
6 Use the interval Gauss elimination on the interval system of equations (CE:P )X = C

to find the solution set X ∈ IRp×p;
7 Compute Q := {1, . . . , n} \ P and S := XE:Q;
8 Partition G and compute the enclosure Gred for the reduced Hessian as given by (38);
9 Improve the enclosure Gred by computing Gred ← Gred ∩GT

red;
10 Use the directed modified Cholesky factorization (Domes and Neumaier [9, Algorithm

ModDirChol]) with M := {i | Qi ∈ N} and ζ = 10−6 to find a matrices R and D such
that the residual matrix defined by (39) is positive semidefinite for all Gred ∈ Gred;

11 if the directed modified Cholesky factorization failed then return signaling failure;
12 else
13 Compute d̃ by (40), s by (41), r by (42), x′ by (43), g by (44), h by (45), z by (46)

and δ by (47);
14 Find the approximate constraint multiplier y for (34) at x̃ by using Algorithm 1

and compute h′ by (49) and δ′ by (50);
15 Create the uncertain quadratic constraint satisfaction problem (51);
16 Use a rigorous filtering method (e.g., quadratic separable constraint propagation)

on (51) in order to obtain tighter bounds snew and znew for the variables s and z;
17 if snew or znew is empty then return that x contains no solution of (34);
18 else return the box xnew := x̃+ snew;
19 end
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Note that (as as discussed in Domes and Neumaier [6, Section 3]) adding the re-
dundant constraint (CE)s ∈ Cd̃ in (51) sometimes significantly improves the quality
of the enclosure, though the main effect of the filtering by aggregation is due to the
other constraints.

A constraint propagator that optimally handles single linear and separable quadratic
constraints (see Domes and Neumaier [5]) produces an improved enclosure snew for
s or proves that (51) and therefore (34) is infeasible. In the first case one recovers
an improved enclosure xnew := x̃+ snew of solution set of (34).

Algorithm 2 turns the above considerations into a precise prescription.

4 Choosing the aggregator

It remains to discuss the choice of aggregators. Clearly, an arbitrary chice is unlikely
to be beneficial; for example if we take as aggregator a (0, 1) unit vector, we just
recover the original constraints, without any advantage.

In this section, we discuss two sensible choices. The first choice is based on the
solution of an auxiliary least squares problem and gives under suitable conditions
an aggregator that provides a certificate of infeasibility, reducing the box defining
the bound constraints to the empty set. The second choice utilizes the Lagrange
multipliers of an approximately optimal point.

4.1 Certificates of infeasibility

If for the uncertain optimization or constraint satisfaction problem (21) a local search
yields no (weakly) feasible point but an infeasible x̃ ∈ x, the nonzero, signed feasi-
bility measure vector (27) can be used as an aggregator.

The following theorem gives sufficient conditions under which an appropriate
aggregator may serve as a certificate of infeasibility, proving that the aggregated
constraint is trivially infeasible. If these conditions are not satisfied by a limited
margin only, one may expect that the aggregated constraint, while usually not suf-
ficient to prove infeasibility, will still be strong enough to reduce the box when the
reduction technique described above is applied.

Theorem 2 Let F be continuously differentiable, and let D be a scaling matrix. Let
x̂ be a stationary point of

min f(x) := 1
2 ||µ(BF (x)− b)||2D

s.t. x ∈ x (52)

and let
y := Dµ(BF (x̂)− b), u := BT y. (53)

(i) f(x) is continuously differentiable with

∂f(x)
∂xk

= F ′(x)TBTDd(x) (54)
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and g := F ′(x̂)Tu satisfies
gi ≥ 0 if xi = x̂i < xi,

gi ≤ 0 if xi < x̂i = xi,

gi = 0 if xi < x̂i < xi.

(55)

(ii) The inequality
uTF (x) ∈ yTb < uTF (x̂) (56)

holds for all feasible x, with equality only if y = 0.
(iii) If y = 0 then x̂ is feasible.
(iv) If y 6= 0 and u = 0 then there is no feasible point.
(v) If y 6= 0 and F is linear then y is a certificate of infeasibility.

Proof (iii) D is nonsingular and y = 0; therefore µ(BF (x̂)− b) = 0, giving

0 ∈ BF (x̂)− b =⇒ BF (x̂) ∈ b.

Since x̂ ∈ x by construction x̂ must be feasible.
(i) Write d(x) := µ(BF (x)− b). Then

∂di(x)
∂xk

=
{

(BF ′(x))ik if di(x) 6= 0,
0 otherwise,

is a continuous partial derivate except when (BF (x))i ∈ {bi, bi}. Since

f(x) = 1
2 ||d(x)||2D = 1

2d(x)TDd(x)

vanishes at each point of discontinuity, the derivative

∂f(x)
∂xk

= ∂d(x)T

∂xk
Dd(x) =

∑
i

Dii
∂di(x)
∂xk

di

is continuous. (54) follows from

∂f(x)
∂xk

=
∑
i

∂di(x)
∂xk

Diidi(x) =
∑
i

[BF ′(x)]ikDiidi(x)

= [BF ′(x)]T:kDd(x) = [F ′(x)TBTDd(x)]:k.

Since y = Dd(x̂) and u = BT y, we have

∂f(x̂)
∂x

= F ′(x)TBTDd(x) = F ′(x̂)Tu = g. (57)

The first order necessary conditions for optimality now give

∂f(x̂)
∂xk

≥ 0 if xi = x̂i < xi

∂f(x̂)
∂xk

≤ 0 if xi < x̂i = xi

∂f(x̂)
∂xk

= 0 if xi < x̂i < xi,
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and using (57), we find (55).
(ii) Let y 6= 0. Then the constraints can be aggregated, resulting in uTF (x) ∈

yTb. By construction of y we have

(BF (x̂))i > bi if yi > 0,
(BF (x̂))i < bi if yi < 0,
(BF (x̂))i ∈ bi if yi = 0.

From this it follows that yi(BF (x̂))i ≥ sup(yibi), with equality only if yi = 0. We
conclude that

uTF (x̂) = yTBF (x̂) =
∑

yi(BF (x̂))i ≥ sup
∑

yibi = sup(yTb), (58)

with equality only if all yi = 0. However y = 0 leads to a contradiction. Therefore
(58) holds with strict inequality, proving (ii).

(iv) is an immediate consequence of (ii).
(v) If F is linear then F (x) = F0 +F ′0x, F ′(x) = F ′0 and g = F ′(x̂)Tu = (F ′0)Tu,

leading to

uT (F (x̂)− F (x)) = uT (F0 + F ′0x̂− (F0 + F ′0x)) = uTF ′0(x̂− x)
= gT (x̂− x) =

∑
i gi(x̂i − xi).

(59)

By (55),
x̂i = xi =⇒ x̂i − xi = xi − xi ≤ 0, gi ≥ 0,
x̂i = xi =⇒ x̂i − xi = xi − xi ≥ 0, gi ≤ 0,
x̂i ∈

∫∫
xi =⇒ gi = 0,

x̂i = xi = xi =⇒ x̂i − xi = 0.

In all cases, gi(x̂i − xi) ≤ 0, and by (59) we conclude that uT (F (x̂) − F (x)) ≤ 0.
On the other hand, (56) gives the inequality 0 ≤ uT (F (x̂)− F (x)) for all feasible x,
with equality only if y = 0. Therefore y = 0 for all feasible x. ut

4.2 Aggregation heuristics

Theorem 2 suggests that we use the feasibility violation vector as an aggregator.
Indeed, we found it suitable in the case when a box is unlike to contain a nearly
feasible point. On the other hand, if we know a nearly feasible point, the feasibility
violation vector typically consists of noise only, and we need a different aggregator.
The introductory example suggests that we use in this case a Lagrange multiplier.
Uncertainties can be ignored in the computation of the multipliers, thus we use
approximate midpoints to define the problem passed to Algorithm 1.
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Algorithm 3: Aggregator chooser (AggrCh)
Input: An uncertain optimization problem given by (28), the point x ∈ x and the

feasibility tolerance δ ≥ 0.
Output: An objective and constraints aggregator (ν, y) as well as the aggregator type

aggrt ∈ { feas, mult}.
1 Compute the feasibility violation vector y := µ(BF (x)− b) and the objective violation
ν := µ(aT f(x)− r);

2 if ‖(ν, y)‖2
D ≤ δ then

3 Recompute (ν, y) by applying Algorithm 1 to x and the midpoint approximation of
(28). Also put aggrt=mult;

4 else put aggrt=feas;
5 return (ν, y) and aggrt;

5 Numerical results

In this section we present numerical results for the new constraint aggregation
method on a large set of test problems. Our tests simulate the situation in a branch
and bound scheme when a narrow box containing the global solution is processed.
This case is especially interesting since this is the point where the traditional filter-
ing methods usually lose their efficiency, resulting in excessive splitting due to the
cluster effect.

5.1 Testing procedure

We selected from the Coconut Environment Testset ([32]) all constrained quadratic
optimization problems with no more than 300 variables and no more than 300 con-
straints, resulting in 135 problems. The Test Environment [10] provides for each
problem an approximate (global) solution x∗, the best approximation among those
found by a number of solvers applied to the problem.

We performed two kinds of tests, one to test the contraction properties when a
box contains the global minimizer, and one to test the elimination properties when a
box is close to the global minimizer but does not contain it. Both cases are important
to assess the degree to which the cluster effect can be reduced by our new method.

The first test therefore tests the case of aggregation by multiplier, given an ap-
proximate minimizer x∗ (which we take as the best point provided by the Test
Environment). For each problem, we construct a box with tiny start box radius
r around x∗ and intersect it with the original bound constraints to get the test box
x∗. We impose on the objective function the upper bound

f(x) ≤ f := f(x∗) + fε, fε := max(ea, er|f(x∗)|),

where 0 < ea � 1 is an absolute and 0 < er � 1 a relative error factor. These factors
have to be chosen carefully since choosing them to small may result in an infeasible
problem (since x∗ is usually only approximately feasible), and choosing them to large
may prevent the contraction of x∗. In this test we first choose them as ea = er = 0
then increase them (to ea = er = 10−14 and then by successively multiplication with
10) until the problem becomes feasible for the constructed box x∗. The fε used for
each problem can be found in the objsh column of the detailed results table.
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Each test problem is represented in the form (28) with r := [−∞, f ], x := x∗. We
first apply constraint propagation to the problem in order to eliminate the dominant
effects of a contraction obtained by traditional zero order filtering methods. Then
a local solver is used to find an approximately feasible point x̂ ∈ x∗. If x̂ is not
δ-feasible, the nonzero, signed feasibility distance vector (27) is used to aggregate as
in (31). If x̂ is δ-feasible, a local search is started from x̂ to obtain a local minimum
of (28) and x̂ is replaced by the local minimum found. In this case, the multipliers
(ν, y) at the local minimum were used to aggregate as in (33). This step is referred
as the constraint aggregation (AG). Then the constraints are linearly relaxed around
x̂ inside the box x∗, and the new system is solved by linear constraint propagation
(LR). Finally the quadratic filtering Algorithm 2 (QF) is applied.

In the second test we assess the quality of aggregation by feasibility violation,
applied to boxes that are very close to the solution but contain no feasible point. For
each problem we consider the small box x′ around the solution obtained in the first
test and construct 2n (n = problem dimension) boxes

x(k) with x(k)
i :=

 [x′i − κ− 2r, x′i − κ] if k ≤ n and k = i
[x′i + κ, x′i + κ+ 2r] if k > n and k − n = i
x′i otherwise,

where κ is a small infeasible box shift and r is again the start box radius.
Then we apply AG, LR and QF to each box and count how often they prove that
the box contains no feasible point. We define the elimination factor elim:= e/n,
where e denotes the number of eliminated boxes.

5.2 Test results

We applied the above test procedures to the 135 test problems selected, with the
following test settings:

start box radius = 1·10−2

feasibility tolerance = 1·10−6

infeasible box shift = 1·10−6

minimal gain = 1·10−1

maximum iteration = 5
aggregator selection type = Multipliers
solver accuracy = 1·10−10

solver maximum iteration = 200
use ehull = on
adjust reference solutions = on
forced use of reference solutions = on
use the first separable constraint = on
use the multipliers at x̃ instead of y = 0 = on
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The results are given in a large table, using the following abbreviations:

n − number of variables (n),
m − number of constraints (m),
objsh − objective upper bound shift,
start box − start box parameters,
final box − final box parameters,
s − number of steps,
ag − aggregator type: multipliers, feasibility or none,
AG − constraint aggregation,
LR − linear relaxation,
QF − quadratic filtering,
ratio − reduction ratio, values between 0 (full reduction) and 1 (-)(no gain),
wid − maximal-width measure (maxni=1 width(xi)),
cub − cube measure ( n

√∏n
i=1 width(xi)),

elim − the infeasible box elimination factor (e/n).

Due to the poor reference solutions for 6 problems we could not create a box around
them which contained any feasible points. For these problems, no infeasible boxes
were constructed.

5.3 Discussion

The following table summarizes the test results.

Test Result Summary (135 problems) AG LR QF
First step; arithmetic mean cube-ratio 0.42 0.83 0.33
First step; arithmetic mean max-width-ratio 0.67 0.98 0.57
First step; geometric mean cube-ratio 0.19 - 0.31
First step; geometric mean max-width-ratio 0.11 0.55 0.14
First step; one component width reduced below 1·10−8 21 2 16
First step; all component widths reduced below 1·10−8 9 1 8
Additional steps; arithmetic mean cube-ratio 0.99 0.99 0.98
Additional steps; arithmetic mean max-width-ratio 1 1 1
Infeasible problems 6
Elimination test success ratio; arithmetic mean 0.82
Elimination test success ratio; geometric mean 0.78

The summary table shows that the method – and especially the aggregation (AG)
and the quadratic filter (QF) part – strongly contracts most boxes containing the
solution. Performing more than one step of the method does not improve the quality
anymore. Since the boxes to be contracted and the used objective upper bound
depend on the approximate reference solution used (which sometimes was not very
accurate), we did not expect contraction to a single point; however for 18 problems,
all component widths were reduced below 1·10−8).

The elimination test shows that for each problem, most of the 2n boxes created
near to the solution were eliminated, hence proved to contain no feasible point. Since
the tests focus on the most difficult problem of filtering boxes very close to the global
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solution, this shows that our method is indeed a powerful tool for eliminating the
cluster effect.

The performance of the new techniques within a framework for global optimiza-
tion depends on how these techniques are combined with other, more traditional
methods. We intend to report on this in a separate paper [8] describing the Java
implementation JGloptLab of our earlier GloptLab constraint satisfaction package
[4].

A Appendix: Detailed test results
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problem n m objsh s ag start box AG ratio LR ratio QF ratio final box elim
cub wid cub wid cub wid cub wid cub wid

abel 28 14 0 1 mul 1.95·10−2 2·10−2 0 0.03 1 - 0.3 - 2.31·10−4 5.05·10−4 0.68
aircrftb 15 10 0 1 mul 1.22·10−2 2·10−2 1 - 0.31 - 0 5·10−3 8.45·10−6 9.73·10−5 0.87

1 mul 8.45·10−6 9.73·10−5 - - 1 - 0.99 1 8.44·10−6 9.73·10−5

airport 84 42 4.8·10−4 1 mul 1.64·10−2 2·10−2 1 - - - 0 0.15 6.19·10−4 2.93·10−3 0.98
1 mul 6.19·10−4 2.93·10−3 - - - - 0.98 1 6.19·10−4 2.93·10−3

aljazzaf 3 1 0 1 mul 3.05·10−3 1·10−2 0 6·10−5 - - 0.13 0.77 3.79·10−10 9.77·10−8 1
biggsc4 4 7 2.5·10−6 1 mul 2·10−2 2·10−2 - - - - 7·10−6 0.05 1.04·10−3 1.05·10−3 1
bt1 2 1 0 1 mul 1·10−3 2·10−2 3·10−13 6·10−5 - - - - 5.01·10−10 1.26·10−6 1
bt12 5 3 0 1 mul 1.27·10−2 2·10−2 0 1·10−5 0.99 - 0.98 1 1.33·10−7 2.77·10−7 1

1 mul 1.33·10−7 2.77·10−7 1 - 1 - 1 - 1.33·10−7 2.77·10−7

bt13 5 1 0 1 mul 4.37·10−2 2·10−2 - - - - 0 - 0 0 0.8
bt3 5 3 0 1 mul 1.29·10−2 2·10−2 - - - - 0 1·10−5 1.24·10−7 2.2·10−7 1
bt8 5 2 0 1 mul 8.39·10−3 2·10−2 4·10−12 - - - 1 - 4.51·10−5 2·10−2 0.6
congigmz 3 5 2.8·10−6 1 mul 1.45·10−2 1.75·10−2 0.02 - 1 - 1·10−4 0.41 1.89·10−4 9.59·10−4 0.67

1 mul 1.89·10−4 9.59·10−4 1 - 1 - 1 - 1.89·10−4 9.59·10−4

degenlpa 20 14 0 No feasible box found!
demymalo 3 3 3·10−6 1 mul 9.65·10−3 1.5·10−2 5·10−11 6·10−4 - - 0.17 - 1.93·10−6 3·10−6 0.67
discs 33 66 1.2·10−7 1 mul 1.5·10−2 2·10−2 1 - 0.41 - 0 0.03 1.39·10−5 5.92·10−4 0.8

1 mul 1.39·10−5 5.92·10−4 - - 1 - 1 - 1.39·10−5 5.92·10−4

dispatch 4 2 3.2·10−5 1 mul 1.14·10−2 2·10−2 - - 0.95 - 2·10−3 - 2.47·10−3 2·10−2 0.62
dual1 85 1 0 1 mul 1.46·10−2 2·10−2 - - - - 0 0.14 2.87·10−4 1.98·10−3 0.86

1 mul 2.87·10−4 1.98·10−3 - - - - 1 - 2.87·10−4 1.98·10−3

dual2 96 1 1·10−9 1 mul 1.64·10−2 2·10−2 - - - - 0 0.01 0 1.94·10−4 0.92
dual3 111 1 0 1 mul 1.55·10−2 2·10−2 - - - - 0 0.04 0 7.07·10−4 0.91

1 mul 0 7.07·10−4 - - - - - 1 0 7.04·10−4

dual4 75 1 0 1 mul 1.68·10−2 2·10−2 - - - - 0 0.03 7.47·10−5 4.69·10−4 0.91
1 mul 7.47·10−5 4.69·10−4 - - - - 1 1 7.47·10−5 4.69·10−4
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cub wid cub wid cub wid cub wid cub wid
dualc1 9 13 0 1 mul 1.26·10−2 2·10−2 7·10−5 - 0.98 - 0 0.03 4.32·10−7 6.26·10−4 0.67
dualc2 7 9 0 1 mul 1.35·10−2 2·10−2 0.2 - - - 0 0.02 7.77·10−7 4.64·10−4 0.71

1 mul 7.77·10−7 4.64·10−4 - - - - 1 - 7.77·10−7 4.64·10−4

eigmaxa 101 101 0 1 mul 1.96·10−2 2·10−2 0.46 - 0 - - 1·10−9 0 1.14·10−13 1
eigmaxb 101 101 0 1 mul 2·10−2 2·10−2 - - - - 0 3·10−12 0 5.35·10−14 1
eigmaxc 22 22 0 1 mul 3.38·10−3 2·10−2 0.03 - 0 - 0 0.08 3.13·10−6 1.56·10−3 1

1 mul 3.13·10−6 1.56·10−3 1 - 0.11 - 0.36 - 2.7·10−6 1.56·10−3

eigminb 101 101 0 1 mul 1.89·10−2 2·10−2 0.56 - 0.39 - 0 2·10−11 0 4.68·10−13 0.99
eigminc 22 22 0 No feasible box found!
ex14-1-6 9 15 1·10−8 1 mul 1.14·10−2 2·10−2 0 - 7·10−3 - 0 1 2.98·10−10 1.22·10−9 0.89
ex2-1-1 5 1 0 1 mul 1·10−2 1·10−2 0 2·10−13 0.88 - 0.58 0.94 1.43·10−15 1.78·10−15 0.5
ex2-1-10 20 10 0 1 mul 1.04·10−2 2·10−2 0 7·10−6 0.64 - 0.54 - 2.71·10−9 7.64·10−8 0.8

1 mul 2.71·10−9 7.64·10−8 1 - - - 0.32 - 2.56·10−9 4.39·10−8

ex2-1-2 6 2 2.1·10−5 1 mul 4.64·10−3 1·10−2 0 7·10−4 - - 0.37 - 1.3·10−6 6.92·10−6 0.58
ex2-1-3 13 6 1.5·10−7 1 mul 8.52·10−3 1·10−2 0 7·10−6 - - 0.12 - 1.28·10−8 3.01·10−8 0.62
ex2-1-4 6 4 1.1·10−6 1 mul 1.07·10−2 2·10−2 0 4·10−4 - - 0.71 - 7.51·10−7 5.5·10−6 0.58
ex2-1-6 10 5 0 1 mul 1·10−2 1·10−2 0 4·10−13 0.6 - 0.68 - 3.14·10−15 3.33·10−15 0.5
ex2-1-7 20 10 4.2·10−4 1 mul 1.23·10−2 2·10−2 0 - - - 0 0.07 3.17·10−6 4.15·10−5 0.45

1 mul 3.17·10−6 4.15·10−5 - - - - 1 1 3.17·10−6 4.15·10−5

ex2-1-8 24 10 1.6·10−4 1 mul 1.12·10−2 2·10−2 0 2·10−4 1 - 0.75 1 4.05·10−7 3.04·10−6 0.94
1 mul 4.05·10−7 3.04·10−6 - - - - 1 - 4.05·10−7 3.04·10−6

ex3-1-1 8 6 0 1 mul 2·10−2 2·10−2 - - 7·10−4 - 0.09 - 5.99·10−3 2·10−2 0.69
ex3-1-2 5 6 3.1·10−4 1 mul 1.32·10−2 2·10−2 - - 0.75 - 0 6·10−4 3.59·10−6 8.3·10−6 0.7

1 mul 3.59·10−6 8.3·10−6 - - 0.95 - 0.95 1 3.52·10−6 7.89·10−6

ex3-1-4 3 3 4·10−7 1 mul 1.26·10−2 2·10−2 - - 0.65 - 2·10−14 5·10−5 2.97·10−7 5.4·10−7 0.67
1 mul 2.97·10−7 5.4·10−7 - - 1 - 1 - 2.97·10−7 5.4·10−7

ex5-2-2-c2 9 6 0 1 mul 1.32·10−2 2·10−2 - - 0.01 - 4·10−12 - 4.34·10−4 2·10−2 0.72
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problem n m objsh s ag start box AG ratio LR ratio QF ratio final box elim
cub wid cub wid cub wid cub wid cub wid

ex5-2-4 7 6 4.5·10−6 1 mul 1.49·10−2 2·10−2 - - 0.2 - 0 0.07 9.01·10−6 1.43·10−3 0.71
1 mul 9.01·10−6 1.43·10−3 - - 1 - - - 9.01·10−6 1.43·10−3

ex5-2-5 32 19 0 1 mul 1.42·10−2 2·10−2 - - 0.65 - - - 1.4·10−2 2·10−2 0.22
ex5-3-3 62 53 3.2·10−8 1 mul 1.67·10−2 2·10−2 - - 0 - 0 3·10−3 0 6.35·10−5 0.85
ex7-3-3 5 8 1·10−7 1 mul 1.38·10−2 2·10−2 0.27 - 5·10−5 0.98 0 2·10−4 1.32·10−7 6.16·10−7 0.8

1 mul 1.32·10−7 6.16·10−7 - - 1 - 1 - 1.32·10−7 6.16·10−7

ex8-3-5 110 76 0 No feasible box found!
ex9-1-1 13 12 0 1 mul 3.18·10−5 2·10−2 0 - 0.86 - 0.46 - 1.24·10−6 2·10−2 0.92
ex9-1-10 14 12 3.3·10−8 1 mul 4.01·10−3 1.12·10−2 1·10−7 - 1 - 0 - 5.41·10−5 1.12·10−2 0.86
ex9-1-2 10 9 0 1 mul 5.3·10−5 2·10−2 0 - - - 0.77 - 9.23·10−7 2·10−2 1
ex9-1-4 10 9 0 1 mul 1.47·10−2 2·10−2 1·10−9 - 0 - 5·10−12 - 2.17·10−6 2·10−2 1
ex9-1-5 13 12 0 1 mul 5.14·10−6 2·10−2 - - - - - - 5.14·10−6 2·10−2 1
ex9-1-8 14 12 3.3·10−8 1 mul 4.01·10−3 1.12·10−2 1·10−7 - 1 - 0 - 5.41·10−5 1.12·10−2 0.86
ex9-2-1 10 9 0 1 mul 3.75·10−2 2·10−2 0 - 1 - 4·10−11 - 9.66·10−8 1·10−2 1
ex9-2-2 10 9 1·10−3 1 mul 4.07·10−2 2·10−2 0.81 - 0.95 - 8·10−4 - 1.95·10−2 2·10−2 0.85
ex9-2-4 8 7 0 1 mul 5.08·10−7 2·10−2 2·10−15 - - - 0.56 - 6.96·10−9 2.15·10−7 1
ex9-2-5 8 7 5·10−14 1 mul 6.69·10−2 2·10−2 0 - 0.83 - 1 - 1.04·10−4 7.37·10−7 1
ex9-2-6 16 12 0 1 mul 1.87·10−2 1.5·10−2 8·10−4 - 1 - 1 - 1.2·10−2 1.02·10−2 0.69
ex9-2-7 10 9 0 1 mul 3.75·10−2 2·10−2 0 - 1 - 4·10−11 - 9.66·10−8 1·10−2 1
ex9-2-8 3 2 0 1 mul 1·10−2 1·10−2 0 6·10−14 - - 0 0.8 0 4.44·10−16 1
extrasim 2 1 0 1 mul 7.07·10−3 1·10−2 0 1·10−13 - - 0 0.8 0 4.44·10−16 1
genhs28 10 8 0 1 mul 2·10−2 2·10−2 - - - - 0 2·10−5 3.04·10−8 3·10−7 1
gigomez1 3 3 3·10−6 1 mul 9.65·10−3 1.5·10−2 5·10−11 6·10−4 - - 0.17 - 1.93·10−6 3·10−6 0.67
goffin 51 50 0 1 mul 1.97·10−2 2·10−2 - - - - - - 1.97·10−2 2·10−2 0.36
grouping 100 125 0 1 mul 6.44·10−4 1.11·10−16 - - - - - - 6.44·10−4 1.11·10−16 1
hanging 288 180 0 No feasible box found!
hatfldh 4 7 2.5·10−6 1 mul 2·10−2 2·10−2 - - - - 7·10−6 0.05 1.04·10−3 1.05·10−3 1
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cub wid cub wid cub wid cub wid cub wid
himmel11 9 3 3.1·10−3 1 mul 8.56·10−3 2·10−2 0.93 - 0.43 - 0 9·10−3 1.52·10−5 1.02·10−4 0.67

1 mul 1.52·10−5 1.02·10−4 - - 1 - 1 - 1.52·10−5 1.02·10−4

himmelbk 24 14 0 1 mul 1.09·10−2 2·10−2 - - 1·10−3 - 1·10−3 - 6.19·10−3 2·10−2 0.85
hs006 2 1 0 1 mul 1.41·10−2 2·10−2 6·10−11 8·10−6 - - - - 1.07·10−7 1.52·10−7 1
hs011 2 1 8.5·10−8 1 mul 1.68·10−2 2·10−2 3·10−4 0.02 - - 0.6 0.78 2.3·10−4 3.62·10−4 1

1 mul 2.3·10−4 3.62·10−4 - - - - 1 1 2.3·10−4 3.62·10−4

hs012 2 1 3·10−7 1 mul 1.66·10−2 2·10−2 0.02 0.21 - - 0.02 0.13 3.43·10−4 5.61·10−4 1
1 mul 3.43·10−4 5.61·10−4 - - - - 1 1 3.43·10−4 5.61·10−4

hs021 2 1 0 1 mul 1.41·10−2 2·10−2 2·10−15 2·10−5 0.45 0.77 0.17 0.55 1.59·10−10 1.58·10−7 0.75
hs022 2 2 1·10−7 1 mul 1.73·10−2 2·10−2 4·10−9 7·10−5 0.08 0.32 0.05 0.32 6.93·10−8 1.2·10−7 1
hs028 3 1 0 1 mul 2·10−2 2·10−2 - - - - 1·10−16 7·10−6 1.09·10−7 1.42·10−7 1
hs030 3 1 0 1 mul 7.35·10−9 2·10−2 4·10−6 - - - 0.37 - 8.39·10−11 2.98·10−8 0.83
hs035 3 1 1·10−8 1 mul 2·10−2 2·10−2 2·10−4 0.08 - - 5·10−4 0.1 1.01·10−4 1.16·10−4 1
hs042 3 1 0 1 mul 1.82·10−2 2·10−2 3·10−15 2·10−5 - - 1 - 2.6·10−7 4.37·10−7 1

1 mul 2.6·10−7 4.37·10−7 - - - - 1 - 2.6·10−7 4.37·10−7

hs043 4 3 4.4·10−7 1 mul 2·10−2 2·10−2 4·10−7 0.04 1 - 0.45 0.97 4.22·10−4 4.93·10−4 1
1 mul 4.22·10−4 4.93·10−4 - - - - 1 1 4.22·10−4 4.93·10−4

hs044 4 6 0 1 mul 1·10−2 1·10−2 - - - - 0 2·10−12 1.03·10−14 2·10−14 0.75
hs048 5 2 0 1 mul 2·10−2 2·10−2 - - - - 0 1·10−5 2.1·10−7 2.53·10−7 1
hs051 5 3 0 1 mul 1.29·10−2 2·10−2 - - - - 0 2·10−5 1.69·10−7 3.57·10−7 1
hs052 5 3 0 1 mul 1.29·10−2 2·10−2 - - - - 0 8·10−6 4.74·10−8 1.63·10−7 1

1 mul 4.74·10−8 1.63·10−7 - - - - 1 1 4.74·10−8 1.63·10−7

hs053 5 3 0 1 mul 1.29·10−2 2·10−2 - - - - 0 1·10−5 1.28·10−7 2.28·10−7 1
hs054 6 1 0 1 mul 1.78·10−2 2·10−2 2·10−4 0.52 - - 4·10−10 0.12 1.15·10−4 1.31·10−4 1
hs061 3 2 0 1 mul 1.21·10−2 2·10−2 3·10−14 3·10−5 - - 1 1 3.75·10−7 6.21·10−7 1

1 mul 3.75·10−7 6.21·10−7 - - - - 1 1 3.75·10−7 6.21·10−7
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problem n m objsh s ag start box AG ratio LR ratio QF ratio final box elim
cub wid cub wid cub wid cub wid cub wid

hs065 3 1 1·10−7 1 mul 2·10−2 2·10−2 0.3 - - - 4·10−5 0.04 4.45·10−4 6.04·10−4 1
1 mul 4.45·10−4 6.04·10−4 - - - - 1 1 4.45·10−4 6.04·10−4

hs076 4 3 4.7·10−8 1 mul 1.68·10−2 2·10−2 9·10−12 0.02 - - 0.49 - 2.44·10−5 3.58·10−4 0.87
hs083 5 3 3.1·10−4 1 mul 1.32·10−2 2·10−2 - - 0.75 - 0 6·10−4 3.59·10−6 8.3·10−6 0.7

1 mul 3.59·10−6 8.3·10−6 - - 0.95 - 0.95 - 3.52·10−6 7.89·10−6

hs084 5 3 0 1 mul 1.15·10−2 2·10−2 - - - - - - 1.15·10−2 2·10−2 0.3
hs097 6 4 0 1 mul 1.04·10−2 2·10−2 0.71 - 0.53 - 0.97 - 8.84·10−3 2·10−2 0.42
hs098 6 4 0 1 mul 1.04·10−2 2·10−2 0.71 - 0.53 - 0.97 - 8.84·10−3 2·10−2 0.42
hs113 10 8 2.4·10−6 1 mul 1.9·10−2 2·10−2 7·10−3 - 0.72 - 2·10−14 0.06 4.67·10−4 9.9·10−4 1

1 mul 4.67·10−4 9.9·10−4 - - - - 1 1 4.67·10−4 9.9·10−4

hs118 15 17 0 1 mul 1.66·10−2 2·10−2 0 8·10−9 - - 2·10−8 0.32 7.65·10−12 4.91·10−11 1
1 mul 7.65·10−12 4.91·10−11 0.16 - 0.84 - 1 - 6.68·10−12 4.8·10−11

hs21mod 7 1 0 1 mul 1.35·10−2 2·10−2 0 3·10−3 0.99 1 0.99 1 3.97·10−7 6.31·10−5 0.71
hs268 5 5 0 1 mul 2·10−2 2·10−2 0.13 - - - 4·10−13 6·10−3 4.5·10−5 1.29·10−4 0.5
hs35mod 2 1 0 1 mul 1.73·10−2 2·10−2 5·10−9 8·10−5 - - 0.03 0.26 2.21·10−7 2.21·10−7 1
hs44new 4 5 0 1 mul 1·10−2 1·10−2 - - - - 0 2·10−12 1.1·10−14 2.13·10−14 0.75
immun 19 6 0 1 mul 1.9·10−2 2·10−2 0.86 - - - 0.01 - 1.49·10−2 2·10−2 0.42
linspanh 72 32 7.7·10−11 1 mul 1.28·10−3 2·10−2 0.69 - - - 1 - 1.28·10−3 2·10−2 0.29
lotschd 12 7 2.4·10−6 1 mul 1.14·10−2 2·10−2 0 0.45 1 - 0 1 1.04·10−7 5.76·10−6 0.92
lsqfit 2 1 1·10−8 1 mul 2·10−2 2·10−2 3·10−3 0.06 - - 0.03 0.17 1.92·10−4 1.92·10−4 1
makela3 21 20 1·10−14 1 mul 5.19·10−3 2·10−2 0 - - - - - 8.98·10−8 2·10−7 0.95
makela4 21 40 1·10−8 1 mul 1.94·10−2 2·10−2 0 8·10−8 - - 0.5 - 7.74·10−10 8·10−10 0.95
maratos 2 1 0 1 mul 1·10−3 2·10−2 1·10−16 4·10−6 - - 0.82 - 1.16·10−11 8.69·10−8 1
matrix2 6 2 0 1 mul 1.26·10−2 2·10−2 - - - - 0 0 0 0 1
meanvar 7 2 0 1 mul 1.49·10−2 2·10−2 - - - - 0 0.02 1.22·10−5 3.26·10−4 0.79

1 mul 1.22·10−5 3.26·10−4 - - - - 1 - 1.22·10−5 3.26·10−4
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problem n m objsh s ag start box AG ratio LR ratio QF ratio final box elim

cub wid cub wid cub wid cub wid cub wid
mifflin2 3 2 1·10−7 1 mul 5.62·10−3 2·10−2 9·10−11 0.04 - - - - 2.47·10−6 8.39·10−4 0.67
minmaxrb 3 4 1·10−8 1 mul 1.06·10−2 2·10−2 0 1·10−8 - - 0.5 1 8.14·10−11 1.68·10−10 0.67

1 mul 8.14·10−11 1.68·10−10 - - - - 1 - 8.14·10−11 1.68·10−10

model 60 32 0 1 mul 1.16·10−2 2·10−2 9·10−3 - 0.97 - 0 - 3.55·10−3 2·10−2 0.92
optcntrl 28 19 0 No feasible box found!
optctrl3 118 80 0 1 mul 1.76·10−2 2·10−2 0 0.02 - 1 - - 0 2.04·10−5 0.97
optctrl6 118 80 0 1 mul 1.76·10−2 2·10−2 0 0.02 - 1 - - 0 2.04·10−5 0.97
polak4 3 3 1·10−7 1 mul 1.82·10−4 2·10−2 2·10−7 0.99 - - 1 1 1.05·10−6 4.24·10−4 0.67
portfl1 12 1 0 1 mul 1.41·10−2 2·10−2 - - - - 0 1·10−4 4·10−10 2.52·10−6 0.75

1 mul 4·10−10 2.52·10−6 - - - - 1 1 4·10−10 2.52·10−6

portfl2 12 1 0 1 mul 1.33·10−2 2·10−2 - - - - 0 0.04 3.34·10−6 7.48·10−4 0.62
1 mul 3.34·10−6 7.48·10−4 - - - - 1 1 3.34·10−6 7.48·10−4

portfl3 12 1 0 1 mul 1.4·10−2 2·10−2 - - - - 0 0.06 6.93·10−6 1.11·10−3 0.75
1 mul 6.93·10−6 1.11·10−3 - - - - 1 1 6.93·10−6 1.11·10−3

portfl4 12 1 1·10−9 1 mul 1.41·10−2 2·10−2 - - - - 0 0.06 1.05·10−5 1.23·10−3 0.75
1 mul 1.05·10−5 1.23·10−3 - - - - 1 - 1.05·10−5 1.23·10−3

portfl6 12 1 0 1 mul 1.41·10−2 2·10−2 - - - - 0 0.04 5.76·10−6 8·10−4 0.58
1 mul 5.76·10−6 8·10−4 - - - - 1 - 5.76·10−6 8·10−4

prodpl0 60 29 6.1·10−5 1 mul 1.35·10−2 2·10−2 - - - - 0 0.01 2.73·10−5 2.42·10−4 0.67
1 mul 2.73·10−5 2.42·10−4 - - 0.8 - 1 1 2.72·10−5 2.21·10−4

prolog 20 22 0 1 mul 1.66·10−2 2·10−2 6·10−7 - 2·10−6 - 1 - 4.25·10−3 2·10−2 0.2
qp1 50 2 0 1 mul 1.22·10−2 2·10−2 - - - - 0 0.51 2.16·10−6 1.03·10−2 0.65

1 mul 2.16·10−6 1.03·10−2 - - - - 1 1 2.16·10−6 1.03·10−2

qp2 50 2 0 1 mul 1.22·10−2 2·10−2 - - - - 0 0.51 2.15·10−6 1.03·10−2 0.65
1 mul 2.15·10−6 1.03·10−2 - - - - 1 1 2.15·10−6 1.03·10−2

qp3 100 52 1·10−9 1 mul 1.4·10−2 2·10−2 - - - - 0 - 0 2·10−2 0.83
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probl n m objsh s ag start box AG ratio LR ratio QF ratio final box eli
cub wid cub wid cub wid cub wid cub wid

qp4 79 31 0 1 mul 1.46·10−2 2·10−2 0 - - - - 0.88 0 9.07·10−4 0.66
1 mul 0 9.07·10−4 - - - - - 1 0 9.07·10−4

qp5 108 31 0 1 mul 1.17·10−2 2·10−2 0 - - - - 5·10−5 0 9.66·10−7 1
rosenmx 5 4 4.4·10−7 1 mul 1.74·10−2 2·10−2 3·10−7 0.67 1 - 1·10−4 1 1.5·10−4 4.88·10−4 0.8

1 mul 1.5·10−4 4.88·10−4 - - - - 1 1 1.5·10−4 4.88·10−4

simpllpa 2 2 1·10−12 1 mul 1.41·10−2 2·10−2 0 5·10−11 - - 1 1 6.97·10−13 9.86·10−13 1
1 mul 6.97·10−13 9.86·10−13 - - 1 1 1 - 6.97·10−13 9.86·10−13

simpllpb 2 3 1.1·10−8 1 mul 1.73·10−2 2·10−2 3·10−6 2·10−3 6·10−10 3·10−5 0.89 0.95 6.76·10−10 8.28·10−10 1
1 mul 6.76·10−10 8.28·10−10 1 1 1 - 1 1 6.76·10−10 8.28·10−10

sseblin 192 72 0 No feasible box found!
ssebnln 192 96 1.6 1 mul 2.25·10−2 2·10−2 0 - - - - - 0 2·10−2 0.14
supersim 2 2 0 1 mul 1.91·10−8 1.91·10−8 5·10−13 1·10−6 0.29 - 0.02 0.2 1.11·10−15 1.11·10−15 0.5
swopf 82 91 0 1 mul 1.53·10−2 2·10−2 1 - 0.81 - 0 0.16 1.85·10−4 3.27·10−3 0.97

1 mul 1.85·10−4 3.27·10−3 1 - 1 - 0.95 - 1.85·10−4 3.27·10−3

tame 2 1 0 1 mul 2·10−2 2·10−2 - - - - 2·10−12 2·10−6 3.16·10−8 3.16·10−8 1
try-b 2 1 0 1 mul 1·10−3 2·10−2 2·10−14 4·10−6 - - - - 1.56·10−10 7.6·10−8 1
zecevic2 2 2 4.1·10−8 1 mul 2·10−2 2·10−2 6·10−6 3·10−3 - - 1 1 5.02·10−5 5.02·10−5 1

1 mul 5.02·10−5 5.02·10−5 - - - - 1 1 5.02·10−5 5.02·10−5

zecevic3 2 2 9.7·10−7 1 mul 1.67·10−2 2·10−2 1·10−4 0.02 - - 0.83 0.91 1.71·10−4 2.75·10−4 1
1 mul 1.71·10−4 2.75·10−4 - - - - 1 1 1.71·10−4 2.75·10−4

zecevic4 2 2 7.6·10−8 1 mul 2·10−2 2·10−2 0.31 0.61 0.03 0.6 8·10−4 0.03 5.15·10−5 2.04·10−4 1
1 mul 5.15·10−5 2.04·10−4 - - 1 - - - 5.15·10−5 2.04·10−4
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