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In order to test if two chemically or pharmaceutically equivalent products have the same efficacy and/or toxicity, a bioequivalence
(BE) study is conducted.The 80%/125% rule is the most commonly used criteria for BE and states that BE cannot be claimed unless
the 90% CIs for the ratio of selected pharmacokinetics (PK) parameters of the tested to the reference drug are within 0.8 to 1.25.
Considering that estimates of these PK parameters are derived from the concentration-versus-time curves, a direct comparison
between these curves motivates an alternative and more flexible approach to test BE. Here, we propose to frame the BE test in
terms of an equivalence of concentration-versus-time curves which are constructed using local polynomial smoother (LPS). A
metric is presented to quantify the distance between the curves and its 90% CIs are calculated via bootstrapping. Then, we applied
the proposed procedures to data from an animal study and found that BE between a generic drug and its brand name cannot
be concluded, which was consistent with the results by applying the 80%/125% rule. However, the proposed procedure has the
advantage of testing only on a single metric, instead of all PK parameters.

1. Introduction

In order to test if two chemically or pharmaceutically equiv-
alent products, for example, a generic drug and its brand
name, have the same efficacy and/or toxicity, a bioequivalence
(BE) study is usually conducted [1–3]. The objective of

a BE trial is to determine whether the test (𝑇) and the
reference (𝑅) formulation of a pharmaceutical product are
“equivalent” with respect to blood concentration × time
profiles. In contrast to a difference test, the null hypothesis
in an equivalence test states that two agents differ in terms of
the endpoint under consideration by at least the minimum
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tolerable amount, called the equivalence margin Δ, whereas
the alternative hypothesis states that such difference is less
than the equivalence margin Δ:

𝐻0 : 𝜇 ≥ Δ,
versus 𝐻1 : 𝜇 < Δ. (1)

In aBE test, someparameters derived from the concentra-
tion-versus-time curves are evaluated. Those parameters
traditionally include the area under plasma concentration-
versus-time curves (AUC𝑡0), peak plasma concentrations
(𝐶max), and its corresponding time (𝑇max). Among them,
AUC is the most acceptedmeasure of absorption rate.𝐶max is
also of importance because, for some drugs, a certain level of
concentration needs to be reached to guarantee the desired
therapeutic effect. 𝑇max is a relevant measure for drugs such
as antibiotics that must reach the peak concentration quickly,
but it may not be an appropriate measure for drugs requiring
multiple dosage before a therapeutic effect is observed. Since
none of these three parameters are universally superior to the
others, a BE test usually considers them together. For exam-
ple, under FDA regulations, BE can be claimed only when the
90% confidence intervals (CIs) for the ratio of𝐶max, AUC(0−𝑡),
and AUC(0−∞) of the tested (e.g., generic) to the reference
drug (e.g., brand name) are within 80% to 125% [4]. This
is referred to as 80%/125% rule, corresponding to a ±0.223
rule on the logarithmic scale (of the 𝑇/𝑅 ratio). Hence, the
value of Δ is usually set to 0.223. Of note, the 90% CIs of the
BE-endpoint represent a 0.05 significance level on the equiv-
alence test since the hypothesis-testing problem in an equiva-
lence test is divided into two one-sided hypothesis tests [2,
5, 6]: one where the null hypothesis states that the difference
between two agents is less than −Δ whereas the other one
assumes such difference is larger than Δ:

𝐻01 : 𝜇 < −Δ,
versus 𝐻𝑎1 : 𝜇 ≥ −Δ,

𝐻02 : 𝜇 > Δ,
versus 𝐻𝑎2 : 𝜇 ≤ Δ.

(2)

Although the BE parameters can be easily obtained from
either one of the concentration-versus-time curves using
a suitable pharmacokinetic (PK) model such as a one-
compartment model or a nonparametric method [7], there
are many parameters to be tested, which inflates the type
I error rate, requiring the adjustment for multiple compar-
isons. Because these parameters may be highly correlated,
such an adjustment is challenging.

On the other hand, some researchers had pointed out
that the requirement of all confidence intervals falling within
the equivalence bounds might lead to a conservative result,
depending on the correlations among the PK parameters and
the study power [8, 9]. To address this, simultaneous testing of
all PK parameters had been explored and developed; see, for
example, the semiparametric Bayesian approach proposed by
Ghosh and Gönen [10]. However, such multivariate methods
are less popular than the univariate approach of testing PK

parameters, partially because of the modeling complexity
associated with multivariate methods as compared with their
univariate counterparts.

More importantly, when the confidence intervals of𝐶max,𝑇max, and AUC between two drugs all fall within the equiva-
lence boundary (such that BE is concluded), it does not imply
that the drugs are clinically equivalent since the overall shapes
of the concentration-versus-time curves may in fact differ
[11]. A falsely determined BE between two drugs when they
are not clinically equivalent may be very harmful to the pub-
lic. To alleviate these limitations and drawbacks, we propose
to make a direct comparison of the concentration-versus-
time curves that accounts for the differences between the pro-
file shapes for BE testing.Themain objective of this paper is to
present a strategy to test BE with the aid of local polynomial
smoother (LPS), which is used to construct concentration-
versus-time curves. Then, a summary statistic, whose stand-
ard error is estimated by bootstrapping, is defined.This allows
the calculation of CIs upon which decisions over equivalence
between such two curves are made.

LPS is a flexible nonparametric regression method to
model curves or surfaces. Specifically, the fitted regression
function at a covariate value 𝑥 is based only on observations
within a prespecified neighborhood of 𝑥. LPS can be traced
back to the late 19th century in actuarial sciences where it
was used to estimate the gradation of mortality rates and in
time series modeling [12]. In contrast, another popular non-
parametric regression method, locally weighted scatterplot
smoothing (LOWESS), obtained smooth fitted values by a
weighted linear least squares regression over the prespecified
spans. In this study, however, we do not emphasize their
differences and instead treat them as synonymous.

With advances in computing, the potential applications
of LPS continue to expand. For example, it has been used for
dye normalization of two-color microarray experiments [13].
Recently, Anders andHuber [14] used LPS in R’s DESeq pack-
age to estimate the mean-variance relationship in a negative
binomial model, a technique now commonly used to model
RNA-Seq data. The popularity of LPS in statistical applica-
tions may be due to its several advantages including satisfac-
tory boundary behavior and straightforward interpretability
of the nonlinear relationships [15, 16].

2. Methods and Materials

2.1. Experimental Data. The study included 24 beagle dogs
weighting 9–11 kg, and those dogs were randomly assigned to
receive either single ormultiple (every four weeks for 3 times)
administrations of either 1.4mg/kg Sandostatin or a generic
drug developed by GenSci. There were 6 dogs including
3 females and 3 males per treatment-dosage group. Blood
samples for PK were collected into tubes containing heparin
sodium and centrifuged at room temperature with 3500 rpm
for 20min to obtain plasma samples. This animal study
was conducted in accordance with the rules and regulations
of Chinese Pharmacopoeia, 2000 Edition/Version 2 and
approved by the Committee on the Ethics of Animal Exper-
iments of Jilin University. The plasma concentrations were
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determined using an Agilent 1100 liquid chromatography-
tandemmass spectrometry. In the single-dose regimen, blood
samples were collected at the initial time corresponding to
hour 0 and at the hours of 0.25, 0.5, 1, 1.5, 2, 4, 8, 24, 48, 96, 144,
192, 240, 336, 432, 528, 624, 720, 816, 912, 1008, 1104, and 1200.

Based on [7], PK parameters in this study were calculated
as follows. For each dog, themaximumplasma concentration
(𝐶max) and its corresponding time (𝑇max) were determined by
visual inspection of the profiles.The apparent terminal elimi-
nation rate constant (𝜆) was calculated by linear regression of
the natural logarithms of the terminal plasma concentrations.
The terminal half-life (𝑡1/2) was derived as 0.693/𝜆. The area
under the curve (AUC) to the last measured point (AUC𝑡0)
was calculated using the trapezoidal rule. The AUC for the
plasma concentration-versus-time function from 0 hours to
infinity (AUC0−∞) was calculated as the sum of AUC𝑡0 and𝐶𝑡/𝜆, while 𝐶𝑡 was the last quantifiable concentration.
2.2. The LPS Model. Let (𝑋1, 𝑌1), . . . , (𝑋𝑛, 𝑌𝑛) be covariate-
response pairs for 𝑛 observations. To simplify the notation,
suppose there is only one covariate. Then, the response 𝑌𝑖 is
related to the covariate𝑋𝑖 through the following model:

𝑌𝑖 = 𝑔 (𝑋𝑖) + 𝜀𝑖, 𝑖 = 1, . . . , 𝑛, (3)

where the error term 𝜀𝑖 is assumed to be independently
distributed with zero mean and variance equal to 𝜎2. The
goal of a local polynomial smoother is to estimate the smooth
function 𝑔(𝑥) = 𝐸(𝑌 | 𝑋 = 𝑥) using an approximation
provided by a local polynomial of low order in the neigh-
borhood of the point 𝑥. Usually, the model includes only
first- and second-degree polynomials, that is, either locally
linear or locally quadratic. This is because any function can
be well approximated in a small neighborhood by low-order
polynomials and the inclusion of higher order terms often
does not improve the model fit dramatically and even may
lead to overfitting instead. Specifically, for 𝑥 − ℎ ≤ 𝑥𝑖 ≤ 𝑥 + ℎ,

𝑔 (𝑥𝑖) ≈ 𝑝∑
𝑗=0

𝛽𝑗 (𝑥𝑖 − 𝑥)𝑗 . (4)

The abovementioned approximation is fitted by local
weighted least squares, where the estimated coefficients are
those that minimize the following function:

𝑛∑
𝑖=1

𝑊((𝑥𝑖 − 𝑥)ℎ )(𝑦𝑖 − 𝑝∑
𝑗=0

𝛽𝑗 (𝑥𝑖 − 𝑥)𝑗)
2

, (5)

where the weighted function 𝑊 gives greater weight to 𝑥𝑖
in the vicinity of 𝑥 and is usually specified as a symmetric
bounded function such as a normal kernel function.

There are two commonly used approaches for the selec-
tion of bandwidth ℎ in the equation above [12]. One choice is
simply to make the bandwidth a constant, which is adequate
if the regression function behaves smoothly. The other one is
to allow the bandwidth to change as a function of 𝑥. In our
applications, we chose the latter by using a nearest-neighbor
bandwidth selection method [17]. Briefly, in the nearest-
neighbor bandwidth selection method, a new parameter 𝛼

was included, which was multiplied by the sample size 𝑛
and rounded up to an integer 𝑘. Then, the bandwidth ℎ(𝑥)
was defined as the distance from 𝑥 to the 𝑘th closest 𝑥𝑖.
In this study, measurements were taken at nonuniformly
spaced time points, with more frequent measurements at the
beginning, where a larger variation of the PK dynamic was
expected among subjects. Under this condition, the nearest-
neighbor bandwidth selection approach will provide better
fit than the constant bandwidth. The nearest-neighbor band-
width parameter 𝛼was determined by a leave-one-out (LOO)
cross-validation due to the small sample size. Specifically,
for a grid of possible 𝛼 values, cross-validated mean square
error (MSE) was calculated, and the 𝛼 corresponding to the
minimumMSE was selected.

2.3. Statistical Language. The statistical analysis was carried
out in theR language version 2.15 (http://www.r-project.org/).
The R-code is available upon request.

3. Results and Discussion

3.1. Testing the Equivalence of Two Curves by Combining
LPS and Bootstrapping: The Proposed Procedure. Here, we
propose to evaluate bioequivalence between drugs by directly
comparing the plasma concentration curves PC(𝑡). Suppose
we have two treatments where 𝑛1 subjects were randomly
assigned to receive the test drug𝑇 and 𝑛2 to the reference drug𝑅. We proposed to reframe the hypothesis represented in (1)
as

𝐻0 : 𝑑 (𝑔𝑇 (𝑡) , 𝑔𝑅 (𝑡)) > Δ, (6)

versus 𝐻1 : 𝑑 (𝑔𝑇 (𝑡) , 𝑔𝑅 (𝑡)) ≤ Δ, (7)

with 𝑑 representing the difference between the PK curves for𝑇 and 𝑅 drugs. For the study subjects, the plasma concen-
trations of these drugs were measured for those at a grid of
time points. Using LPS (details in Section 2), concentration-
versus-time curves for both treatments can be estimated as𝑔𝑅(𝑥) and 𝑔𝑇(𝑥). To evaluate if the differences between two
curves are within the tolerable range, we define the following
estimator of the average difference between the two curves at
a grid of prespecified time points, for example, the time points
where the concentrations were taken in this study:

ln (�̂�) = ∑𝐾𝑘=1 ln (�̂�𝑇𝑡𝑘/�̂�𝑅𝑡𝑘)𝐾 , (8)

where �̂�𝑇𝑡𝑘 and �̂�𝑅𝑡𝑘 are the fitted values of plasma concentra-
tion using LPS at time 𝑡𝑘 for the test drug 𝑇 and the reference
drug 𝑅, respectively. Here, 𝑘 = 1, 2, . . . , 𝐾, and 𝐾 is the
number of time points at which the difference between
two curves is evaluated. Note that ln(𝑟) is a measure of the
difference between the curves and when the two curves are
identical, and they should be identical at all time points and
thus the value of ln(𝑟) should be 0.

The standard error for ln(�̂�) can be estimated using boot-
strapping [18]. For each bootstrapped replicate, LPS curve
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Figure 1: The fitted local polynomial smoother (LPS) curves
for both GenSci and Sandostatin. Black triangle: the observed
concentrations for dogs using Sandostatin; red circle: the observed
concentrations for dogs using GenSci.

was fitted for 𝑇 and 𝑅 and the difference between them is
calculated using (8). The 90% CIs of 𝑟 can be obtained as

(𝑒ln(�̂�)−1.645×𝑠𝑒(ln(�̂�)), 𝑒ln(�̂�)+1.645×se(ln(�̂�))) . (9)

If the 90% CIs is within 0.8∼1.25, then the equivalence
between two curves is claimed.

3.2. Case Study. Octreotide is an octapeptide that mimics
natural somatostatin pharmacologically even though it is a
more potent inhibitor of growth hormone, glucagon, and
insulin than the natural hormone. Brand name Sandostatin
(Novartis Pharmaceuticals) of octreotide had been approved
for the treatment of several diseases, such as acromegaly and
gigantism. To evaluate the BE between a generic octreotide
developed by GenSci Pharmaceuticals (Changchun, China)
and Brand name Sandostatin, a pilot study using 24 beagle
dogs was conducted.The generic drug is referred to as GenSci
hereafter. Using this study as an example, we showcase how to
incorporate LPS seamlessly with other statistical methods to
test BE. Once concentration-versus-time curves are obtained
via LPS, testing for BE will be akin to testing if the two LPS-
derived curves are the same.

Firstly, we conducted an equivalence test using the proce-
dure described in Methods. The fitted plasma concentration
PC(𝑡) curves are shown in Figure 1. Interestingly, the curves
estimated by LPS suggested some PK differences between
the two drugs. Specifically, we observed a surge in plasma
concentration and then a steep drop in the GenSci group. In
addition, the GenSci group entered the plateau stage faster
and remained in this stage longer than the Sandostatin group,
dropping down at a sharper scope. Based on these obser-
vations, we suspected that GenSci might have a better PK
behavior than Sandostatin.

The 90% CIs for the proposed metric of GenSci against
Sandostatin were calculated as 119.02% ∼166.99%. With its
upper bound above 125%, the equivalence between the two

Table 1: The 90% CIs of PK parameters.

90% CI Single dose Combined data𝑁 = 6 𝑁 = 12𝐶max (72.23, 160.71) (82.93, 160.88)𝑇0.3 ng/nL (9.94, 382.63) (9.51, 144.60)
AUC0–1200 (71.98, 176.08) —
AUC0–720 (61.74, 169.85) (91.44, 208.50)

drugs cannot be established based on this method. As a
comparison, we also estimated the 90% CI of the ratio of
the traditionally considered PK parameters (i.e., (AUC𝑡0),𝐶max, and 𝑇max) based on the FDA guidelines [4]. The results
summarized in Table 1 show that all 90% CIs of the ratio
of (AUC𝑡0), 𝐶max, and 𝑇max of GenSci against Sandostatin
were outside 80% to 125%, the FDA-sanctioned BE criteria.
In summary, BE cannot be established using either the
FDA-criteria or our proposed procedure. Nevertheless, the
proposed procedure has the advantage of testing only a single
statistic and hence avoiding multiple hypotheses issues.

The sample size of 6 dogs per group raisesmajor concerns
in light of the failure to establish BE between GenSci and
Sandostatin. To explore the impact of the sample size in
this pilot study, we combined the data from this single-dose
cohort with additional data from a multiple-dose cohort, but
including only data collected in the first 720 hours where no
boosts were given and the experimental methods\conditions
were exactly the same as in the single-dose cohorts. Interested
readers may see Section 2 for more information on how
the experiments were conducted. Analysis on the combined
cohorts including 12 dogs per group led to similar results.
Given that this application represents a pilot study, as pre-
liminary work for larger studies, no confirmative conclusions
were drawn here. By presenting this study, our intent is
to illustrate the LPS-based BE test as an alternative to the
classical univariate tests on PK parameters.

3.3. Simulation Study. We conducted a simulation study to
characterize our BE-testing procedure. Here, we used the PK
model presented in [11] where the concentration function is
represented by

𝑐 (𝑡) ∝ 𝐾𝑎𝐾𝑎 − 𝐾𝑒 (𝑒−𝑘𝑒𝑡 − 𝑒−𝑘𝑎𝑡) , (10)

where 𝑘𝑎 and 𝑘𝑒 are the absorption and the elimination
rate constants. The concentration-versus-time curves for the
reference drug and test drug were simulated as

log (𝑌𝑅) = log (𝑐 (𝑡)) + 𝜀,
log (𝑌𝑇) = log (𝑐 (𝑡)) + ∇ + 𝜀,

𝜀 ∼ MVN (0𝑝, Σ𝑝×𝑝) ,
(11)

where the correlation between two measures, on the log-
arithm scale, from the same subject 𝑘 (𝑘 = 1, 2, . . . , 2𝑛)
was specified as a positive constant; that is, corr(𝜀𝑖𝑘, 𝜀𝑗𝑘) =
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Table 2: The exact coverage of the 90% CIs for ln(𝑟) (the proposed measure of the difference between two curves) using simulations.

𝑛 = 12 𝑛 = 18 𝑛 = 24 𝑛 = 30 𝑛 = 50∇ = 0, 𝑘𝑎𝑇/𝑘𝑎𝑅 = 1 (two curves are identical)𝜌 = 0 100 100 100 100 100𝜌 = 0.2 100 100 100 100 100𝜌 = 0.5 99.9 100 100 100 100𝜌 = 0.8 97.8 99.6 100 100 100∇ = 0.223, 𝑘𝑎𝑇/𝑘𝑎𝑅 = 1 (the difference is within the equivalence bound)𝜌 = 0 100 100 100 100 100𝜌 = 0.2 100 100 100 100 100𝜌 = 0.5 98.7 99.7 100 100 100𝜌 = 0.8 95.5 97.2 99.1 99.7 100∇ = 1, 𝑘𝑎𝑇/𝑘𝑎𝑅 = 1 (the difference is beyond the equivalence bound)𝜌 = 0 0 0 0 0 0𝜌 = 0.2 3.3 0.7 0.3 0 0𝜌 = 0.5 11.6 6.6 3.7 3.2 0.7𝜌 = 0.8 18 11.2 7.9 5.8 2.6𝑘𝑎𝑇/𝑘𝑎𝑅 = 1.25, ∇ = 0 (the difference is within the equivalence bound)𝜌 = 0 100 100 100 100 100𝜌 = 0.2 99.9 100 100 100 100𝜌 = 0.5 97.7 99.1 99.7 100 100𝜌 = 0.8 95 97.5 98.8 99.3 100𝑘𝑎𝑇/𝑘𝑎𝑅 = 3, ∇ = 0 (the difference is beyond the equivalence bound)𝜌 = 0 0 0 0 0 0𝜌 = 0.2 5 1.5 0.6 0.4 0𝜌 = 0.5 13.2 8.2 5.4 3.8 0.7𝜌 = 0.8 17.7 15.8 10.2 6.5 2.7
Note: 𝑘𝑎𝑇 represents the absorption rate for the generic drug and 𝑘𝑎𝑅 represents the absorption rate for the reference drug; 𝑛 represents the sample size of each
group; ∇ represents a constant difference between the concentrations of two drugs on the logarithm scale; 𝜌 is the correlation coefficient between measures
over time from the same subject; its influence on the estimation is expected to be bigger when its value is larger.

𝜌 for 𝑖 ̸= 𝑗. The curves above differ only by a constant ∇ on
the logarithm scale. In the second set of simulations, the two
concentration curves for the test drug and the reference drug
were set to have different absorption rates (i.e., 𝑘𝑎𝑇 and 𝑘𝑎𝑅)
instead of ∇ ̸= 0.

By varying the values for 𝜌,∇, and 𝑘𝑎𝑇/𝑘𝑎𝑅 and the sample
size, we simulated 100 different scenarios in total. The empir-
ical coverage of the 90% CIs for each scenario was calculated
via simulating 1000 bootstrap replicates. The simulation
results are presented in Table 2, from which we found that
a sample size of 24 per group is large enough to provide an
adequate statistical power for the proposed testing procedure.
Furthermore, the empirical coverage of the 90% CIs when
two curves are equivalent is approximately 95%or above, sug-
gesting the 80/125% rule is applicable for the proposedmetric.

3.4. Our Extension to the Superiority Test between Curves. It
is worth pointing out that by virtue of being coupled with a
permutation test [19, 20] to calculate an overall 𝑝 value, LPS
can also be used to evaluate if two curves are different. In this
case, the hypothesis tested is

𝐻0 : 𝑑 (𝑔𝐴 (𝑥) , 𝑔𝐵 (𝑥)) = 0,
versus 𝐻1 : 𝑑 (𝑔𝐴 (𝑥) , 𝑔𝐵 (𝑥)) ̸= 0, (12)

with 𝑑 representing the difference between the two curves. As
shown on the simulation studies (in Supplementary Material
available online at http://dx.doi.org/10.1155/2016/4680642),
the permutation-based test provides a valid means for testing
the difference of two curves, achieving the desired type I error
rate. We applied this procedure to longitudinal data collected
by Orange et al. [21] and showed that the results obtained
were consistent with those obtained by using a generalized
estimating equation model [22, 23]. Therefore, the proposed
procedure to test the difference between curves using LPS can
be employed in a wide range of applications in longitudinal
data analysis.

4. Conclusions

In this study, we presented a framework which directly
compares the concentration-versus-time curves constructed
using LPS to test BE. This approach avoids multiple testing
by evaluating the equivalence between curves with one single
metric, instead of multiple PK parameters. Furthermore,
since LPS can be viewed as an extension of linear weighted
regression and can be easily implemented in any standard
statistical software, our proposed procedure can be easily
utilized in other applications.
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van derMeersch et al. [24] have argued that the objectives
and methodology of bioequivalence trials differ greatly from
those of noninferiority and equivalence trials due to the
decision criteria and study design. In our opinion, their
claims are not persuasive. In terms of decision criteria, it is
difficult to define an equivalence margin in a longitudinal
sense because themeasures such as plasma concentrations are
collected over time. It might represent one major reason why
the FDA and other regulatory agencies have defined BE by
using confidence limits for a grid of PK parameters instead
of a single hypothesis testing. Regarding the study design,
van der Meersch et al. [24] deemed a crossover design to be
suitable and appropriate. In practice, however, there aremany
BE studies using a parallel design that the FDA reports [4]
explicitly listed the cases where a parallel design is considered
more suitable than a crossover design. Given that a BE test
is a longitudinal equivalence test by nature, we believe that
the use of nonparametric smoothers such as LPS as a basis
to construct the concentration-versus-time curves for direct
comparisons warrants additional attention and research.
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