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The accelerated failure time (AFT) model is an important regression tool to study
the association between survival time and covariates. Semiparametric inference
procedures have been proposed extensively in the literature. Recently, Zhou (2005a)
proposed to use a model-based empirical likelihood approach to interval estimation
for the AFT model. However, comparison was not made with more standard
approaches based on score test and Wald-type test. In this article, we conduct
extensive simulation studies to evaluate their relative performance in small samples.
In addition to these methods, we also devise and consider model-free empirical
likelihood approach for the comparisons. Our simulation results suggest that these
empirical likelihood-based methods are not better than the standard approach based
on the score test.
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1. Introduction

In survival analysis, the accelerated failure time (AFT) model is an important
alternative to the popular proportional hazards model of Cox (1972). The AFT
model relates the logarithm of the failure time linearly to the covariates, with the
model error distribution unspecified. One standard inference procedure is based
on the class of weighted log-rank estimating functions (Tsiatis, 1990). As shown
by Ying (1993), among others, there exists a zero-crossing to a weighted log-rank
estimating function that is consistent and asymptotically normal. Note that Ritov
(1990) extended the estimating function of Buckley and James (1979) and showed
his class is asymptotically equivalent to that of Tsiatis (1990).
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However, weighted log-rank estimating functions are neither monotone in
general nor continuous, which gives rise to difficulty with root-finding and
variance estimation. As an exception, the Gehan estimating function is monotone
(Fygenson and Ritov, 1994) and its root-finding can be carried out with the linear
programming technique (Lin et al., 1998). Recently, Jin et al. (2003) developed a
broad class of monotone estimating functions and the resulting estimators represent
the consistent roots of the weighted log-rank estimating functions. The difficulty
with variance estimation is due to the fact that the weighted log-rank estimating
functions are not differentiable. Therefore, the sandwich variance estimation does
not apply. To address this issue, Parzen et al. (1994) developed a resampling
approach and Huang (2002) proposed a computationally more efficient sample-
based method. Nevertheless, standard approaches to confidence region by inverting
the score andWald-type tests still apply to the weighted log-rank estimating functions.

Empirical likelihood (EL) method is a powerful nonparametric method.
In general, EL has unique features, such as range respecting, transformation-
preserving, asymmetric confidence interval, and Bartlett correctability (Owen, 2001).
The EL approach does not require to estimate the limiting covariance matrices.
Moreover, the confidence region is adapted to the data set and not necessarily
symmetric. Thus, it reflects the nature of the underlying data and hence gives a more
representative way to make inferences about the parameter of interest. In analysis
of censored survival times, for example, empirical likelihood was used to derived
pointwise confidence intervals for survival function with right-censored data as early
as 1975 (Thomas and Grunkemeier, 1975).

In linear regression analysis via EL for right-censored survival data, recent
work includes Qin and Jing (2001) and Li and Wang (2003), among others. More
recently, Zhou and Li (2004) and Zhou (2005a) developed model-based empirical
likelihood confidence regions for regression parameter based on Buckley–James
and rank-based estimating equations. They do not need to estimate the variance
matrix when building confidence region. However, the constrained maximization
of the EL has no closed form and involves n nonlinear equations, where n is a
sample size. Since the computation is demanding, they applied the modified EM
algorithm (cf. Zhou, 2005b) to obtain it. Moreover, the comparison was not made
with standard approached based on score test and Wald-type test.

In this article, we build alternative confidence regions for regression parameter
and conduct a comparison study. The rest of the article is organized as follows. In
Sec. 2, we first introduce standard confidence regions for regression parameter using
score test and Wald-type test. Then, we construct model-free empirical likelihood
confidence regions for the regression parameter. The corresponding constrained
maximization of the empirical likelihood can be done reliably by Newton–Raphson
method. In Sec. 3, we conduct extensive simulation studies to compare the relative
performance with other methods. The proof is presented in the Appendix.

2. Confidence Regions

2.1. Standard Confidence Regions

Let T1� � � � � Tn be a sequence of positive random variables, usually representing
survival (failure) times of n patients (items) in a medical study. Let Z1� � � � � Zn be
their corresponding �p× 1� covariates sequence. The AFT model is to relate the
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logarithms of survival times, log Ti, to their covariates through a system of linear
regression equations.

log Ti = �TZi + �i� i = 1� � � � � n� (1)

where � is a p× 1 parameter vector and �i are independent error terms with a
common, but completely unspecified, distribution. There exist censoring times Ci,
such that we can only observe Xi = Ti ∧ Ci, �i = I�Ti ≤ Ci� and Zi� i = 1� � � � � n.

Considering the model (1), the following conditional independent censoring is
assumed: Conditional on Zi, Ci is independent of Ti, i = 1� � � � � n� We define ei��� =
logXi − �TZi� Ni��� t� = �iI�ei��� ≤ t�, and Ri��� t� = I�ei��� ≥ t�� Write

S�0���� t� = n−1
n∑

i=1

Ri��� t��

S�1���� t� = n−1
n∑

i=1

Ri��� t�Zi�

The weighted log-rank estimating function for � is

U��� =
n∑

i=1

∫ �

−�
	��� t��Zi − Z��� t�dNi��� t�� (2)

where Z��� t� = S�1���� t�/S�0���� t�� and 	 is a possibly data-dependent weight
function satisfying Condition 5 of Ying (1993, p. 90). The choice of 	 = 1 and
	 = S�0� corresponds to the log-rank (Mantel, 1966) and Gehan (1965) statistics,
respectively.

Write �̂	 and �0 as the estimated and true values of �, respectively. Then as
shown in Ying (1993), under the regularity conditions, the random vector

n1/2��̂	 − �0�
�−→N�0� D−1

	 V	D
−1
	 ��

where D	 = limn→� D̂	��̂	� and V	 = limn→� V̂	��̂	�; here,

D̂	��̂	� =
1
n

n∑
i=1

∫ �

−�
	��̂	� t�
Zi − Z��̂	� t��

⊗2
�′�t�/��t��dNi��̂	� t��

V̂	��̂	� =
1
n

n∑
i=1

∫ �

−�
	2��̂	� t�
Zi − Z��̂	� t��

⊗2dNi��̂	� t��

respectively, where ��·� is the common hazard function of the error terms. Thus
using the test-based approach (cf. Wei et al., 1990), an asymptotic 100�1− �%
Wald-type confidence region for � is given by

�1 = 
� � n−1U���TV̂−1
	 ��̂	�U��� ≤ �2p���� (3)

where �2p�� is the upper -quantile of the chi-square distribution with degrees
of freedom p. Apparently the coverage accuracy of �1 mainly depends on the
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large-sample normal approximation, which might be affected by sample size and
censoring rate.

In (3) for the V̂	��̂	�, we substitute �̂	 with �. Thus, an asymptotic 100�1− �%
score test based confidence region for � is given by

�2 = 
� � n−1U���TV̂−1
	 ���U��� ≤ �2p���� (4)

where �2p�� is defined as before.

2.2. Model-Free EL Confidence Region

Zhou (2005a) proposed a model-based empirical likelihood testing procedure
for the rank-based estimator where the likelihood is defined as the censored
empirical likelihood of the error variables ei���, i = 1� � � � � n, used by Thomas
and Grunkemeier (1975) and Li (1995), among others. He showed the limiting
distribution of the log empirical likelihood ratio at the true value of regression
parameter is a chi-squared distribution. Based on the result, he builded confidence
region for the regression parameter.

Now consider an alternative approach based on EL. Let �̂�t� be the Nelson–
Aalen estimator of cumulative hazard function ��t� = ∫ t

−� ��s�ds of �i. Denote

M̂i��0� t� = Ni��0� t�−
∫ t

−�
Ri��0� s�d�̂�s�� (5)

By simple algebra, we have

U��0� =
n∑

i=1

∫ �

−�
	��0� t��Zi − Z��0� t�dM̂i��0� t�� (6)

Assume the covariates Zi are uniformly bounded. For i = 1� 2� � � � � n, we define

Wi =
∫ �

−�
	��0� t�
Zi − Z��0� t��dM̂i��0� t��

and summarize the following results as a lemma.

Lemma 2.1. Under regularity conditions, i) n−1/2 ∑n
i=1 Wi

�−→N�0� V	�, and (ii)
n−1 ∑n

i=1 WiW
T
i →V	 in probability.

Thus, the empirical likelihood at true value �0 is given

L��0� = sup
{ n∏

i=1

pi �
∑

pi = 1�
n∑

i=1

piWi = 0� pi ≥ 0� i = 1� � � � � n
}
�

Let p = �p1� � � � � pn�
T be a vector of probabilities such that

∑n
i=1 pi = 1, where

pi ≥ 0, i = 1� 2� � � � � n. Since
∏n

i=1 pi attains its maximum at pi = 1/n, the empirical
likelihood ratio at the true value �0 is then

R��0� = sup
{ n∏

i=1

npi �
∑

pi = 1�
n∑

i=1

piWi = 0� pi ≥ 0� i = 1� � � � � n
}
�
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By using Lagrange multipliers, we know that R��0� is maximized when

pi =
1
n

1+ �TWi�

−1� i = 1� � � � � n�

where � = ��1� � � � � �p�
T satisfies the equation

1
n

n∑
i=1

Wi

1+ �TWi

= 0� (7)

The value of � may be found by numerical search (e.g., Newton–Raphson
method), see the discussion in Owen (2001). Thus combining above equalities, we
have

−2 logR��0� = 2
n∑

i=1

log
{
1+ �TWi

}
� (8)

where � satisfies Eq. (7).
Hence, we establish the following theorem.

Theorem 2.1. Assume the above conditions hold. Then −2 logR��0� converges in
distribution to �2p, where �2p is a chi-squared distribution with degrees of freedom p.

According to this theorem, an asymptotic 100�1− �% empirical likelihood
confidence region for � is

�3 = 
� � −2 logR��� ≤ �2p���� (9)

where �2p�� is defined before.

3. Simulation Study

An extensive simulation is conducted to compare the relative performance of
score test based procedure (SCORE), Wald-type procedure (WALD), model-
based empirical likelihood procedure (MBEL), and model-free empirical likelihood
procedure (MFEL). The SCORE is based on (4). The WALD is based on (3). The
MBEL is based on Zhou (2005a). The MFEL is based on (9). We consider the
extreme value distribution for error term. The covariate is uniformly distributed in
�−1� 1�, and the censoring time is Uniform[0, c], where c controls the censoring rate
(CR). Corresponding to �0 = 2, the censoring rates are approximately 15%, 30%,
45%, and 60%, respectively, which represent light censoring, moderate censoring,
and heavy censoring rates, respectively. First, we choose 	 = 1 corresponding to
the log-rank statistics. Second, we choose 	 = S�0� corresponding to the Gehan
statistics. Simulations are carried out with a Fortran program that is available from
the authors.

3.1. Size Comparison

We compare the four methods in terms of coverage probability. The sample size is
set to be 10, 30, 50, 75, and 100, respectively. The simulation results for log-rank
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and Gehan estimating functions are tabulated in Tables 1 and 2, respectively. Each
entry of the table is based on 10,000 simulated data sets. Note that “NA” in the
table means the result is not applicable because of the failure of EM algorithm in
the simulation.

From Tables 1 and 2, we find that at each nominal confidence level, the
accuracy of coverage probabilities for all methods increases as the sample size
n increases. As shown in the tables, all the methods work reasonably well with
right coverage probabilities of 90%, 95%, and 99% when sample size is relatively
large. The MFEL, MBEL, Wald-type, and score-based coverage probabilities tend
to achieve the nominal levels with moderate sample sizes (n = 50� 75� 100). All the
methods work well under censoring rates 15%, 30%, 45%, and 60%, respectively, for
moderate sample.

Now, we compare the relative performance of two EL-related methods.
Corresponding to log-rank statistics, from Table 1 we see that for small sample
(n= 10, 30) the coverage probability of MBEL is more accurate than that of MFEL
when censoring rate is 15% and 30%, and the coverage probability of MBEL is close
to that of MFEL when censoring rate is 45% and 60%. That is, the advantage of
MBEL disappears when censoring rate is high. Corresponding to Gehan statistics,
from Table 2 we see that for small sample (n = 10, 30) the coverage probability of
MFEL is more accurate than that of MBEL. Thus, the coverage probabilities for
MFEL and MBEL are comparable in general.

For small sample size (n = 10� 30), the model-free empirical likelihood method
apparently has relatively larger under-coverage, while the Wald-type method has
better coverage for nominal level 90%, 95%. Note for nominal level 99%, when
censoring rate increases the empirical likelihood becomes relatively better than Wald-
type method. In particular, for higher censoring rate 60%, the empirical likelihood
method has better coverage than the Wald-type method for nominal level 99%.

From Tables 1 and 2, we see that the coverage probability of the score test-
based confidence region �2 based on (4) is the best among all the four methods.
The score-based method outperforms EL-based methods remarkably. Its good
performance may be expected from the fact the estimating function is rank based
which is quite robust, stable, and is not sensitive to the outliers.

3.2. Power Analysis

Now, we do some power comparison for these tests. The null hypothesis is that �
is 0.9, 1.4, 2.6, and 3.1, respectively, i.e., H0 � �0 = 0�9, or H0 � �0 = 1�4, or H0 � �0 =
2�6, or H0 � �0 = 3�1. The alternative hypothesis is Ha � �0 �= 0�9, or Ha � �0 �= 1�4, or
Ha � �0 �= 2�6, or Ha � �0 �= 3�1. Let sample size n be 30, 50, and 100, respectively. The
censoring rate is chosen to be approximately 15%, 30%, 45%, and 60%, respectively.
In each case the powers are based on 10,000 samples and exact critical value 1�962

at nominal level  = 0�05 is used. Data sets are simulated with �0 = 2�0 and that
the test H0 is carried out, thus by counting the number of rejection of H0. The
corresponding power for these tests is given in Tables 3 and 4, respectively.

From the tables, the power decreases when censoring rate increases and the
power increases when sample size increases. When the value of � is far away
from �0 = 2, the power increases and it is much easy to detect the Ha. Since from
Tables 3 and 4, the power of test for � = 0�9 is the largest and the power of test for
� = 2�6 is the smallest among the four values for fixed sample size n and censoring
rate.
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The power comparison of four tests are interesting. The powers for MBEL and
MFEL tests are close in each case. For H0 � �0 = 2�6, or H0 � �0 = 3�1, the power
for SCORE test is smaller than those for MBEL and MFEL tests when sample size
n is 30, 50 and censoring rate is 45%, 60% and the power for the Wald-type test is
the smallest among the four methods. In particular, when sample size is small or the
censoring rate is heavy, the difference is very large. For H0 � �0 = 0�9, or H0 � �0 =
1�4, the power for the SCORE test is the smallest among the four methods when
sample size is very small (n = 30) and the censoring rate is very heavy �CR = 60%�.

3.3. Conclusion

Note that all these confidence intervals are test-based, i.e., constructed through the
inversion of a test. We know that the shorter the average length of confidence
interval, the better the confidence interval. Since Newton–Raphson algorithm does
not work due to non-differentiable property of estimating equation with respect
to � (cf. Huang, 2002), we could apply grid search to find confidence intervals for
the four methods. We are not doing it in this article, largely due to the fact that
the power analysis serves the same purpose. Thus, it is equivalent to do the power
analysis for these four tests in Sec. 3.2. The larger the power of test, the better the
test and more sensitive to detect the alternative hypothesis.

Before we summarize the comparison results of the methods, it is good to have
in mind that for the best interval, the coverage probability needs to be as close
as possible to the nominal confidence level while the average length needs to be
the shortest. When coverage probabilities of two methods have close accuracies,
we recommend the method which has shorter length, i.e., larger power. Based on
coverage probability and power analysis, the model-based EL method and the
model-free EL method are competitive methods. Overall, our simulation results
suggest that these EL-based methods are not better than the standard approach
based on the score test. The Wald-type method is the least favorable due to the
small power.

4. Appendix

Proof of Theorem 1. Denote

Mi��0� t� = Ni��0� t�−
∫ t

−�
Ri��0� s���s�ds�

We define

Vi =
∫ �

−�
	̄��0� t�
Zi − �Z��0� t��dMi��0� t��

where �Z��0� t� is the limit of Z��0� t� as n → � and 	̄��0� t� is the limit of 	��0� t��
Then, it is clear that E	Vi	2 < �. According to the proof of Lemma 3 in Owen
(1990), we have max1≤i≤n	Vi	 = op�n

1/2�. By the martingale representation of Vi and
Wi, we can prove that max1≤i≤n 	Vi −Wi	 = op�n

1/2�. Then, we have

max
1≤i≤n

	Wi	 = op�n
1/2�� and (10)

1
n

n∑
i=1

	Wi	3 = op�n
1/2�� (11)
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Let � = ��, where � ≥ 0 and 	�	 = 1. Recall �n = 1/n
∑n

i=1 WiW
T
i = V	 + op�1�,

where V	 is the limit of 1/n
∑n

i=1 WiW
T
i . Let �1 > 0 be the smallest eigenvalue of V	.

Then, ��n� ≥ �1 + op�1�. According to Lemma 2.1, 1/n
∣∣∑n

i=1 Wi

∣∣ = Op�n
−1/2�.

By (10), the equations in (7) and the argument used in Owen (1990), we know
that

	�	 = Op�n
−1/2�� (12)

Consider a Taylor expansion to the right-hand side of (8),

−2 logR��0� = 2
n∑

i=1

{
�TWi −

1
2
��TWi�

2

}
+ rn� (13)

where 	rn	 = Op�1�
∑n

i=1	�TWi	3. Hence, by (11), 	rn	 = Op�1�	�	3
∑n

i=1	Wi	3 = op�1��
Furthermore, since

1
n

n∑
i=1

Wi

1+ �TWi

= 1
n

n∑
i=1

Wi

(
1− �TWi +

��TWi�
2

1+ �TWi

)

= 1
n

n∑
i=1

Wi −
(
1
n

n∑
i=1

WiW
T
i

)
�+ 1

n

n∑
i=1

Wi��
TWi�

2

1+ �TWi

= 0�

it follows that

� =
( n∑

i=1

WiW
T
i

)−1 n∑
i=1

Wi + op�1�� (14)

Similarly, we have

n∑
i=1

�TWi

1+ �TWi

=
n∑

i=1

��TWi�−
n∑

i=1

��TWi�
2 +

n∑
i=1

��TWi�
3

1+ �TWi

= 0� (15)

Since

n∑
i=1

��TWi�
3

1+ �TWi

= op�1�� (16)

we know that
∑n

i=1��
TWi�

2 = ∑n
i=1 �

TWi + op�1�. Thus, the following is true:

−2 logR��0� =
n∑

i=1

�TWi + op�1�

=
(
n−1/2

n∑
i=1

Wi

)T(
n−1

n∑
i=1

WiW
T
i

)−1(
n−1/2

n∑
i=1

Wi

)
+ op�1�

�→ �2p�
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