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Abstract

Leafy spurge (Euphorbia esula L.) is an invasive plant species in the north central and western U.S. and southern Canada. Idaho has

established populations in the north and southeastern regions which are spreading into new sites. This study demonstrates the ability of high

resolution hyperspectral imagery to provide high quality data and consistent methods to locate small and low percent canopy cover

occurrences of leafy spurge. Locating leafy spurge in its early stages of invasion is critical for land managers in order to prioritize treatment,

conservation, and restoration activities. Hyperspectral data were collected in 2002 and 2003 for the study area in southeastern Idaho. The

imagery was classified with the Mixture Tuned Matched Filtering (MTMF) algorithm. Although classifications from single date images

provided discrimination of leafy spurge at approximately 10% cover in one 3.5 m pixel, for repeatability and consistency purposes, the

threshold for leafy spurge discrimination is approximately 40% cover. We hypothesize that georegistration errors, small differences in leafy

spurge reflectance, training endmember selection, and image processing and field validation biases between years influence multi-date

detection limits. Although hyperspectral imagery is costly, in some situations, the advantages of having reliable and repeatable mapping

abilities for discrimination of economically damaging invasive species such as leafy spurge outweigh the image and processing costs.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Background

Invasive plant species are an economic and biologic

detriment to rangeland and riparian ecosystems across the

western United States and Canada. In the State of Idaho, $10

million per year is spent in control measures alone (North-

west Natural Resource Group, 2003). This estimate does not

include economic impacts of invasive plants to regional

industries such as agriculture and livestock, which cost over
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$137 billion per year in the U.S. (Pimentel et al., 2000).

Leafy spurge (Euphorbia esula L.) is a Eurasian exotic

species first introduced to the U.S. in about 1827 (Whitson,

1999). Leafy spurge is listed as a noxious weed in the State

of Idaho and in all western and north central states and

southern Canada. Large infestations in Montana, Nebraska,

North and South Dakota, and Wyoming have resulted in an

annual economic impact on grazing and wildlands of

approximately $129 million (BLM, 1998; Leitch et al.,

1994). Further, leafy spurge contains a milky latex that can

produce blisters and dermatitis in humans, cattle, and horses

(Lajeunesse et al., 1999). This unpalatable aspect of leafy

spurge has been demonstrated to reduce the forage

utilization for cattle and wintering wildlife (Hein & Miller,

1992).
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Leafy spurge can spread up to approximately 10 m per

year through root and seed propagation in environments

with limited competition (Lajeunesse et al., 1999; Whitson,

1999). As small infestations grow larger, biodiversity is

reduced and subsequently range site productivity and

wildlife habitat are compromised (Belcher & Wilson,

1989). Land managers need tools to help them identify

small infestations of leafy spurge because of its potential to

spread rapidly into larger infestations. Identification of

small infestations is complicated by the large land areas

that land managers in Idaho and other western states are

responsible for.

The main goal of this study was to identify small

infestations (percent canopy cover) of leafy spurge using

high spatial resolution hyperspectral remote sensing and to

demonstrate the repeatability of these methods over 2 years.

The study also explored explanations for differences

between the data sets from both years. Successful discrim-

ination of leafy spurge in this context assists managers in

prioritization of treatment sites to reduce or prevent the

impacts from leafy spurge invasion. Our research site was
Fig. 1. Location of Swan Valley, Idaho, with locations o
located along the flanks of the South Fork of the Snake

River in the Swan Valley in southeastern Idaho, U.S., where

leafy spurge is in preliminary stages of invasion (Fig. 1).

This study is part of a NASA-funded initiative to bring

science research and technology applications into an opera-

tional context for land managers such as county weed

managers, Bureau of Land Management (BLM), and USDA

US Forest Service (USFS).

1.2. Previous work

The use of remote sensing for the detection of noxious

weeds and other vegetation has become a common tool to

map large landscapes efficiently (Everitt et al., 1995b;

Everitt & Yang, 2004; Lamb & Brown, 2001; Lewis et al.,

2000). The use of multispectral imagery has been demon-

strated to effectively map the distribution of ecosystem

types and vegetative systems (Everitt et al., 2002; Lamb &

Brown, 2001); however, the low spectral resolution of

multispectral imagery is a major limitation. Imagery with

higher spectral resolutions (e.g., hyperspectral) can provide
f hyperspectral flightlines and validation samples.
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increased species discrimination and biochemical differ-

entiation (Aspinall et al., 2002; Lass & Prather, 2004; Lass

et al., 2002; Lewis, 2003; Root et al., 2004; Underwood et

al., 2003; Ustin et al., 2004; Vane & Goetz, 1993).

Leafy spurge is a good candidate for remote sensing

detection because of its distinctive yellow green bracts when

in bloom (Everitt et al., 1995a). This distinct bloom, coupled

with the increased availability of remotely sensed imagery,

has resulted in several recent remote sensing studies of leafy

spurge (Anderson et al., 1999; Everitt et al., 1995a; O’Neill

& Ustin, 2000; Williams & Hunt, 2002, 2004).

Everitt et al. (1995a) used color infrared photography and

color video imagery to detect leafy spurge in North Dakota

and Montana. This study found that the yellow green bracts

are distinct in multispectral images and color photography.

Imagery used in this analysis had very high spatial

resolution (between 0.1 m and 0.5 m per pixel). Although

no formal accuracy assessment was presented, the authors

cite high performance accuracy of leafy spurge classifica-

tions with N25% canopy cover within a pixel. The methods

provide a manual interpretation approach to large scale

mapping of leafy spurge in imagery. Semi-automated

processing of hyperspectral and other digital imagery

provide an alternative to manual interpretation. Further-

more, the use of hyperspectral versus multispectral imagery

has the potential to map percent cover as low as 10%.

Recently, a USDA-ARS sponsored research and demon-

stration program, The Ecological Area-wide Management

(TEAM) Leafy Spurge, has concluded several years of

research related to remote sensing of leafy spurge (TEAM

Leafy Spurge, 2004). Anderson et al. (1999) used aerial

photography for a change detection study in Theodore

Roosevelt National Park between the years of 1993 and

1998. Results from the aerial photography classifications and

geographic information systems (GIS) analysis indicated that

over the 5-year period, leafy spurge infestations doubled,

even under an aggressive weed management program.

O’Neill and Ustin (2000) presented hyperspectral (AVI-

RIS, 20 m pixels) detection of leafy spurge in Theodore

Roosevelt National Park. This study illustrated methods in

hyperspectral discrimination of leafy spurge, and found that

the weed was best detected using a Minimum Noise

Fraction (MNF) transform as input to the Spectral Angle

Mapper (SAM) algorithm. Due to geometric errors, a

statistical accuracy assessment was not presented; however,

the authors cite good results based on a qualitative accuracy

assessment.

Williams and Hunt (2002, 2004) applied the Mixture

Tuned Matched Filtering (MTMF) classification algorithm

(Boardman, 1998) to AVIRIS hyperspectral imagery to

discriminate leafy spurge. They found hyperspectral imagery

capable of discriminating leafy spurge with a Matched Filter

score of 0.1, which roughly corresponded to 10% canopy

cover of leafy spurge (Williams & Hunt, 2002). Williams and

Hunt (2004) determined overall single classification accu-

racies between 75% and 97% for locating leafy spurge in a
region dominated by large and high density infestations. This

study demonstrated that hyperspectral data analysis is an

effective tool for the automated mapping of leafy spurge.

Dudek et al. (2004) used AVIRIS hyperspectral imagery

from 1999 and 2001 for change detection in Theodore

Roosevelt National Park. Accuracies varied from 35% to

70%, though these results were influenced by georegistra-

tion issues. A qualitative analysis was performed and results

indicated that percent cover was accurately represented by

map classifications. Furthermore, this study identified a

40% decrease in leafy spurge cover between 1999 and 2001.

Kokaly et al. (2004) used Compact Airborne Spectrographic

Imager (CASI) data to investigate a decrease in overall leafy

spurge cover between 2000 and 2001 in Theodore Roose-

velt National Park. Overall accuracies were 74% using the

USGS Tetracorder system (spectral feature comparison

algorithm).

The study presented here builds upon the above cited

work, focusing on the detection of small infestations (low

percent canopy cover) of leafy spurge with hyperspectral

imagery and on the repeatability of such methods for use in

a long-term management strategy for Swan Valley and other

similar sagebrush steppe ecosystems.
2. Methods

2.1. Study site

The Swan Valley (latitude 438 20V to 438 40V North and

longitude 1118 5V to 1118 35V West) is located in Bonneville

County, Idaho, approximately 60 km west of Jackson Hole,

Wyoming. Palisades Reservoir is at the southeastern end of

the valley and a hydroelectric dam controls the flow of the

Snake River. The South Fork of the Snake River runs

through the length of the valley (approximately 30 km),

providing irrigation for farming and feeding riparian zones

with abundant flora and fauna. The mountains bounding the

Swan Valley are semi-arid, typified by native sagebrush-

steppe vegetation. Agriculture and livestock grazing are the

two main economies in the area.

The region provides an ideal environment for the spread

of leafy spurge seed through water, anthropogenic, and

animal transportation vectors. Leafy spurge was first found

in the Swan Valley in the mid-1980s, and new infestations

have been found annually since then. Many infestations of

leafy spurge in Idaho are smaller than in surrounding western

and Midwestern states (e.g., less than one-half hectare versus

thousands of continuous hectares). In the Swan Valley, there

are a few large (N1 ha) infestations; however, approximately

50% of infestations are smaller than 75 m2. Leafy spurge

infestations in the study area have an average cover of

approximately 40% (oblique field cover estimation). Small

infestations in the Swan Valley are in the early stages of

invasion and have the potential for spreading through the

region, as demonstrated by the few large infestations.
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Aggressive control measures by landowners and county

weed personnel coupled with competitive native vegetation

have somewhat restricted the spread. Delineating leafy

spurge infestations in the Swan Valley requires higher spatial

resolution imagery than previous studies using AVIRIS

(approximately 20 m pixels) because of the low spectral

component that the small, low cover infestations contribute.

2.2. Image acquisition

HyMap hyperspectral data were collected by the HyVista

over the study area on June 30th, 2002, at 18:47 UTC and

again on June 29th, 2003, at 17:01 UTC. Solar noon on

these dates was approximately 19:27 UTC. The HyMap data

consist of 126 bands between 0.45 Am and 2.5 Am with a

pixel size of 3.5 m�3.5 m. Bandwidths ranged from 15 Am
in the visible and near infrared to 20 Am in the shortwave

infrared. In 2002, three 1.8 km wide hyperspectral flight-

lines (totaling approximately 40 km in length) were

collected. In 2003, similar areas were collected, as well as

an additional data flightline approximately 1.8 km wide and

20 km long. The flightlines were modified slightly in 2003

to expand the area of the study (Fig. 1).

The geographic locations of the flightlines were designed

to include a training area with one of the highest known

percent canopy cover (hereafter referred to as percent cover)

of leafy spurge in the Swan Valley, as well as to include a

suite of known infestations of varying sizes and cover of

leafy spurge. The training area is approximately 4300 m2

with leafy spurge cover approaching 100% (Fig. 2). In order

to evaluate the accuracy of the georegistration and spectral

quality of the imagery, two control targets (approximately

50 m2 each) were painted, one with ultra-flat black paint,
Fig. 2. Subset of the 2002 and 2003 classifications showing the location of the tra
and the other with ultra-flat white paint, and placed

proximal to the training area. A Trimble GeoXT Global

Positioning System (GPS) unit was used to determine the

geographic location of the targets. The GPS data were

differentially corrected. Similarly, an Analytical Spectral

Device (ASD) hand-held FieldSpec Pro field spectroradi-

ometer was used to determine the controls’ spectral

signatures. In addition, field spectral data for leafy spurge

and other proximal vegetation were collected concurrent

with image acquisition.

2.3. Image processing

The 2002 and 2003 imagery were preprocessed by

HyVista, utilizing the HyCorr algorithm for atmospheric

correction and conversion of radiance to reflectance data.

This study used the reflectance data for analysis. Previous

studies (Williams & Hunt, 2002) used the visible and near-

infrared portions of the electromagnetic spectrum for

classifications. However, after iterative processing, we

found no distinct advantage of spectrally subsetting our

data. Imagery from both years was processed as non-

georeferenced mosaics to maximize the utility of the single

large training area. All image processing was performed

using the Environment for Visualizing Images (ENVI)

version 4.0 software (Research Systems, Boulder, CO).

MNF transforms were applied to the full spectral range of

the reflectance data with the exception of band 1 (450 nm)

and band 63 (1406 nm) in 2002, and band 63 (1406 nm),

band 64 (1420 nm), and band 126 (2493 nm) in 2003, due to

noise and water absorption. The advantage of using the

MNF transform (versus raw reflectance data) is that the

MNF decorrelates the data and reduces spectral redundancy,
ining area and differences in the classifications in a low cover (~10%) area.
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thereby reducing the number of bands necessary to use for

classification. MNF efficiently reorganizes decorrelated data

(Green et al., 1988), and has been demonstrated to perform

well in vegetative discrimination (Underwood et al., 2003).

The entire image mosaic was used to estimate noise

statistics. This large region was used based on experimen-

tation with estimating noise statistics using dark band data

and small, homogeneous subsets of the image. The

experimentations are the subject of an associated study

(Mundt et al., submitted for publication), which found that

the use of a large image subset provides more accurate

classification results when discriminating similar vegetation.

Leafy spurge endmembers for each year were image derived

from the same training area using known geographic

locations and spectral profiles.

For each year’s data set, the MNF transformed reflec-

tance data were classified using the MTMF algorithm. In the

2002 data set, 74 MNF bands were used, and in the 2003

data set, 70 MNF bands were used, based on a 90%

threshold of the cumulative MNF variance. The MTMF

algorithm produces two values for each pixel in an image:

(1) a value of infeasibility; and (2) a Matched Filter value

(MF). Pixels predicted to contain leafy spurge were

interactively selected from a scatter plot of MF values

versus infeasibility values using the criteria of a maximum

infeasibility threshold of 20 and a range of MF values

between 0.1 and 1. Pixels with high MF values and low

infeasibility values were considered to likely contain leafy

spurge. Because this study area contains many small

infestations of leafy spurge that are important to locate on

an operational level, pixels with low MF values and low

infeasibility values were also considered. In these cases, the

infeasibility threshold was adjusted to accommodate the

lower MF values. Further description of this methodology

can be found in Mundt et al. (submitted for publication).

2.4. Validation

Raw data delivery and initial processing of the 2002

imagery were not completed in time for a preliminary

validation during summer 2002. Therefore, the majority of

the field validation took place during the summer of 2003

(for both the 2002 and 2003 data sets) with supplemental

validation during summer 2004. Because leafy spurge has

not been observed to spread more than 1 to 2 pixels (~3 to 7

m) over a 1 year period in Swan Valley, it is assumed for this

study that the use of 2003 and 2004 field validation data is

appropriate for imagery collected in 2002 and 2003. A total

of 364 differentially corrected GPS polygons (referred to as

validation samples) were collected and included 323

polygons collected in 2003 and 41 polygons collected in

2004 (these samples do not include the area used for

classification training). Of the 364 polygons, 270 are located

within the geographical bounds of the 2002 imagery and

214 are located within the geographical bounds of the 2003

imagery (Fig. 1). Polygon data were considered more
desirable than point data in our surveys because in high

spatial resolution images, the size and shape of positive

reference polygons can be visually compared to the size and

shape of an infestation classified in the imagery. Survey

crews were given GPS coordinates to validate, half of which

were predicted positive (leafy spurge presence) and half of

which were predicted negative (leafy spurge absence) by

image classifiers. To avoid potential survey bias, survey

crews were not informed which validation samples were

predicted positive and negative. The survey crews located

each area in the field and in positive areas used GPS units to

map the outside perimeter of the leafy spurge infestation and

record the oblique field cover estimates. At points without

leafy spurge, the field crews surveyed a minimum 50 m

diameter area and recorded the corresponding vegetation.

Positive prediction areas in this survey included approx-

imately 80% of the predicted positive locations (excluding

locations which were inaccessible), while negative locations

were selected using a random location selection stratified by

removing inaccessible and illogical locations (e.g., the tops

of steep mountains, middle of lakes, and tops of buildings).

2.5. Accuracy assessment

Accuracy assessment in high spatial resolution hyper-

spectral imagery is a developing science, and recent

publications have emphasized the importance of decisions

pertaining to expressing the accuracy of thematic classi-

fications (Congalton & Green, 1999; Foody, 2002; Lopez et

al., 2004; Stehman & Czaplewski, 1998; Story & Con-

galton, 1986). While it is important that accuracies represent

the sensitivity limits of the classifier, it is also necessary to

provide land managers with a useful product that meets their

needs for reliability and confidence. Our approach to

accuracy assessment was intended to address two major

criteria: (1) quantify the repeatability of high resolution

hyperspectral images for discriminating spatially small

infestations of invasive plants; and (2) reflect the needs of

land managers to reliably locate infestations. When this

project was initiated, local weed managers identified an

assessment criterion of 70% for user’s accuracy (percentage

of pixels classified on the map which actually represent that

category on the ground).

One of the major considerations in assessing the accuracy

of remote sensing data from high spatial resolution imagery is

understanding georegistration errors. We collected 44 differ-

entially corrected ground control points (including the control

targets) using GPS receivers in one of the flightlines in order

to estimate the georegistration error of the HyMap data.

Horizontal positional errors from these control points did not

have a dominant directional shift, but expressed a minimum

error of 5 m, a maximum error of 26 m, and a mean error of

13.6 m. Thus, a positive classification may occur at distances

up to 26 m (N5 pixels) from the predicted location in the

imagery. To test influences of geometric errors on classified

products, producer’s accuracy (percentage of reference pixels



Table 1

Accuracy assessment strategy with 15 m buffers of polygon data

Positive Negative

True Any classified pixel occurs

inside or within 15 m of the

perimeter of a GPS reference

positive sample.

No classified pixels occur

inside or within 15 m of the

perimeter of a GPS reference

negative sample.

False No classified pixels occur

inside or within 15 m of the

perimeter of a GPS reference

positive sample.

Any classified pixel occurs

inside or within 15 m of the

perimeter of a GPS reference

negative sample.
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correctly classified) was optimized respective to buffering

validation samples. The producer’s accuracy increased in

both years at small buffer distances and formed a sill near 14

m (Fig. 3). This sill had a similar value to the mean

georegistration error in the image, and is thus interpreted as

representing an optimal buffer distance to accommodate

georegistration errors. For the purpose of this assessment,

both positive and negative GPS validation samples were

buffered by 15 m (just over 4 pixels) to accommodate this

error. A buffering approach was also used by Williams and

Hunt (2004), who collected ground validation plots that were

larger (50 m by 50 m) than the spatial resolution of their

AVIRIS image pixel size (20 m by 20 m).

There are several methods to express the accuracy of a

remote sensing classification. An error matrix (array of

numbers that express the number of sample units assigned to

a particular category relative to the actual category as

indicated by the reference data) (Congalton, 2004) of

validation samples (polygons) as well as error matrices of

related classification validation samples were constructed

following methods presented by Congalton and Green

(1999) (Table 1), and Foody (2004), respectively. The

Kappa statistic is used to: (1) test whether the remotely

sensed classifications are better than randomly assigning

labels to areas; and (2) test the comparison of two matrices

to investigate whether they are statistically, significantly

different (Congalton, 2004).

Three separate accuracy assessments were performed: (1)

using all GPS-acquired validation samples from 2002 and

2003 that were located within the spatial extent of the

respective imagery (method 1); (2) using only those GPS-

acquired validation samples N 30 m2in size and having N
Fig. 3. Plot of buffer distance versus producer’s accuracy for validation sam
40% cover of leafy spurge (method 2); and (3) using only

those validation samples that fell within the extent of both

the 2002 and the 2003 imagery (method 3). These methods

were chosen in order to compare the individual classifica-

tions between each year’s data set and to determine if larger

and relatively high cover infestations in Swan Valley had

higher producer’s and user’s accuracies than smaller, low

cover infestations. Because the image data sets were

acquired over slightly different geographic areas between

years, method 3 was considered in order to use the same

validation data set for both years. Following these accuracy

assessments, error matrices are presented for the assessment

of the significance of the difference between the 2002 and

2003 classifications after Foody (2004).
3. Results

Results of the accuracy assessments for leafy spurge

presence demonstrated overall accuracies between 84% and
ples. Buffer distance equal to 15 m is used for accuracy assessments.



Table 2

Error matrix (in number of validation samples) and accuracies (in percent)

for 2002 imagery using all validation samples located within the spatial

extent of the 2002 imagery (method 1)

Reference

Present Absent Row totals User’s accuracy

Classified Present 34 8 42 81%

Absent 27 201 228 88%

Column totals 61 209 270

Producer’s accuracy 56% 96%

Overall accuracy 87%

Table 4

Error matrix (in number of validation samples) and accuracies (in percent)

for 2002 imagery using validation samples N 30 m2in size and N 40% cover

infestations of leafy spurge (method 2)

Reference

Present Absent Row totals User’s accuracy

Classified Present 19 8 27 70%

Absent 9 201 210 96%

Column totals 28 209 237

Producer’s accuracy 68% 96%

Overall accuracy 93%
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94% (Tables 2–7). Producer’s accuracies ranged between

50% and 68% in 2002 and 62% and 80% in 2003, while

user’s accuracies ranged between 70% and 81% in 2002 and

77% and 88% in 2003 (Tables 2–7). These accuracies are

similar to accuracies derived by Dudek et al. (2004) and

Kokaly et al. (2004). In method 1, using all available

validation samples, the producer’s accuracy was 56% in

2002 and 63% in 2003. Both of these accuracies are notably

lower than the user’s accuracy of 81% and 88% for 2002

and 2003, respectively. In method 2, using only larger and

higher percent cover validation samples, the producer’s

accuracies were 68% and 80% in 2002 and 2003,

respectively, while the user’s accuracies were 70% and

77% in 2002 and 2003, respectively. In method 3, using

only validation samples that were geographically located

within both the 2002 and 2003 flightlines, the producer’s

accuracies were 50% and 62% in 2002 and 2003,

respectively, and the user’s accuracies were 74% and 88%,

respectively.

Kappa values range from 0.52 to 0.75 for the 2002 and

2003 classifications (Table 8). Kappa significance was

tested with a two-tailed Z-test with infinite degrees of

freedom at 95% confidence interval (critical regions of

F1.96). The null hypothesis, that a given Kappa was equal

to zero, was rejected for all classifications (Table 8).

The test statistic (t-test) is used to compare the 2002 and

2003 Kappa values using a null hypothesis that the difference

in the Kappa values between 2002 and 2003 (in each method)

is equal to zero. The differentiability of these Kappa values

was tested with a two-tailed t-test with infinite degrees of

freedom at 95% confidence interval (critical regions of
Table 3

Error matrix (in number of validation samples) and accuracies (in percent)

for 2003 imagery using all validation samples located within the spatial

extent of the 2003 imagery (method 1)

Reference

Present Absent Row totals User’s accuracy

Classified Present 43 6 49 88%

Absent 25 140 165 85%

Column totals 68 146 214

Producer’s accuracy 63% 96%

Overall accuracy 86%
F1.96). Results indicate that the null hypothesis fails to be

rejected for all comparisons between years (Table 8).

Because of uncertainty as to the statistical rigor of Kappa

using related validation samples, this study also tested the

differentiability of the classifications using methods pre-

sented by Foody (2004). This includes comparison matrices

of the 2002 and 2003 classifications for all validation

samples (Table 9), for all positive validation samples (Table

10), and for all negative validation samples (Table 11).

Using the t-test and a 95% confidence interval, no

significant difference was found between the classifications.

In addition to these results, we also subjected the same error

matrices to chi-squared and chi-squared continuity corrected

significance testing, and in each case, we failed to reject the

null hypothesis (there was not a significant difference

between the 2 years at 95% confidence).
4. Discussion

To test the ability of hyperspectral imagery to detect leafy

spurge infestations in 2002 and 2003, the MTMF algorithm

was used for classification. Accuracy assessments were

performed on each year’s classified data set and compared.

Project results illustrate that user’s accuracies are all above

70%, meeting the threshold specified by the weed managers.

Additionally, the study demonstrated that the image

processing methods were repeatable between years. Com-

parison testing indicates that the Kappa values between

years in each method failed to reject the null hypothesis that

their differences equal zero, and Kappa results indicate that
Table 5

Error matrix (in number of validation samples) and accuracies (in percent)

for 2003 imagery using validation samples N 30 m2in size and N 40% cover

infestations of leafy spurge (method 2)

Reference

Present Absent Row totals User’s accuracy

Classified Present 20 6 26 77%

Absent 5 140 145 97%

Column totals 25 146 171

Producer’s accuracy 80% 96%

Overall accuracy 94%



Table 6

Error matrix (in number of validation samples) and accuracies (in percent)

for 2002 imagery using validation samples that fell within the spatial extent

of both the 2002 and the 2003 imagery (method 3)

Reference

Present Absent Row totals User’s accuracy

Classified Present 17 6 23 74%

Absent 17 126 147 86%

Column totals 34 132 170

Producer’s accuracy 50% 95%

Overall accuracy 84%

Table 8

Kappa (K) and significance testing at 95% confidence interval using all

validation samples (method 1), using validation samples N30m2 in size and

N40% cover infestations of leafy spurge (method 2), and using only those

validation samples that fell within the extents of both the 2002 and the 2003

data (method 3)

Classification K Zstat Ho: K=0 tstat Ho: (K2002�K2003)=0

2002 (method 1) 0.58 9.23 Reject 0.642 Fail to reject

2003 (method 1) 0.63 10.84 Reject

2002 (method 2) 0.65 8.29 Reject 0.899 Fail to reject

2003 (method 2) 0.75 10.27 Reject

2002 (method 3) 0.52 5.85 Reject 1.293 Fail to reject

2003 (method 3) 0.67 8.71 Reject

t-test (tstat) results correspond to the respective 2002 and 2003 pairs.
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the classifications of leafy spurge in 2002 and 2003 have

good agreement. Slight differences in the classifications

between years were detected both in the error matrices and

when visually interpreting the imagery. Regardless of these

differences, leafy spurge detection was not significantly

affected which indicates that the methods are applicable for

baseline and change detection surveys in the Swan Valley

and similar ecosystems. The discussion below explores and

compares the accuracy assessments, provides potential

explanations for the small differences in the classifications

between 2002 and 2003, and explores spectral thresholds for

leafy spurge. The discussion which explores differences in

the classifications does not impact the significance of our

study; however, it provides important considerations for all

image processing studies.

4.1. Classification accuracy assessments

In all of the accuracy assessments, user’s accuracies are

higher than producer’s accuracies, and overall accuracies are

consistently high (above 84%). The difference between

user’s and producer’s accuracies narrows in method 2. The

results of method 3 indicate that the classifications over the

same geographic area utilizing the same processing techni-

ques are similar between years. However, the user’s and

producer’s accuracies are lower than those derived in

method 1. Though the weed manager’s user’s accuracy

threshold was met, the lower producer’s accuracies in

methods 1 and 3 are of concern. MTMF is designed to

reduce the number of false positives and thus increase

producer’s accuracies. In this study, MTMF did work as
Table 7

Error matrix (in number of validation samples) and accuracies (in percent)

for 2003 imagery using validation samples that fell within the spatial extent

of both the 2002 and the 2003 imagery (method 3)

Reference

Present Absent Row totals User’s accuracy

Classified Present 21 3 24 88%

Absent 13 129 142 91%

Column totals 34 132 166

Producer’s accuracy 62% 98%

Overall accuracy 90%
designed; however, a large number of false positives are

attributed to multiple small infestations of leafy spurge. For

example, producer’s accuracies increased in method 2

(relatively large, high cover infestations) from method 1,

and it is inferred that many of the false positives were low

cover infestations. The higher producer’s accuracies in

methods 1 and 2 for the 2003 classification (versus 2002

classification) indicate that the 2003 classification likely

identified more small infestations. The user’s accuracies

likely decreased in method 2 because the sample size of the

true positives decreased while the true negatives stayed

constant between methods 1 and 2. This hypothesis was

tested by randomly sampling the number of positives in

method 1 from 61 to 28 for 2002 and 68 to 25 for 2003 (to

match the number of positive samples used in method 2)

and recalculating the error matrices. In these cases, the

user’s accuracies decreased similarly for method 1 as in

method 2. It is also notable that the Kappa values are higher

in method 2 than in methods 1 and 3. This may be explained

by the use of more uniform data (leafy spurge infestations

N40% cover and N30 m2) in method 2. The sample size may

also have biased the Kappa values. Fifty validation samples

per class have been empirically derived as the minimum

number necessary for balance between what is practical and

what is statistically necessary for accuracy assessments

(Congalton & Green, 1999). This criterion was not met in

method 2 because large infestations of leafy spurge are not

abundant in Swan Valley. It was also not met in method 3
Table 9

Related agreement matrix for the 2002 and 2003 classifications using all of

the validation samples that fell within the extent of both the 2002 and the

2003 imagery

2002 Classification

Correct Incorrect Row totals

2003 classification Correct 137 13 150

Incorrect 6 10 16

Column totals 143 23

Number of positives 34 tstat=1.61,

no significant differenceNumber of negatives 132

The number of positive and negative samples used is indicated.



Table 10

Related agreement matrix for the 2002 and 2003 classifications using only

the positive validation samples that fell within the extent of both the 2002

and the 2003 imagery

2002 Classification

Correct Incorrect Row totals

2003 classification Correct 14 7 21

Incorrect 3 10 13

Column totals 17 17

Number of positives 34 tstat=1.26,

no significant differenceNumber of negatives 0

The number of positive samples used is indicated.

Table 11

Related agreement matrix for the 2002 and 2003 classifications using only

the negative validation samples that fell within the extent of both the 2002

and the 2003 imagery

2002 Classification

Correct Incorrect Row totals

2003 classification Correct 123 6 129

Incorrect 3 0 3

Column totals 126 6

Number of positives 0 tstat=1.00,

no significant differenceNumber of negatives 132

The number of negative samples used is indicated.
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because of the reduced geographic area that was used in the

accuracy assessment.

The number of negative validation samples used in the

accuracy assessments is two to three times larger than the

number of positive validation samples. In this study, this

resulted in a positive bias in the overall accuracy, but a more

conservative estimate of user’s accuracy. The effects of

using the same number of negative validation samples

(chosen through random sampling) as positive validation

samples were tested. User’s accuracies increased by 9% to

35%, with the exception of the 2003 classification in

method 3, which did not change. The overall accuracies

generally decreased by 6% to 15%, and, by definition,

producer’s accuracies remained constant. Consequently, the

decision was made to utilize all negative validation samples

in the accuracy assessments, thereby generating conserva-

tive estimates of user’s accuracies (rather than conservative

estimates of overall accuracies) and capitalizing on the

knowledge provided by including all available field data.

4.2. Comparison of 2002 and 2003 data sets

As noted previously, comparisons between the 2002 and

2003 classifications (Tables 9–11) indicate that there is no

statistical difference between the classifications. In the

majority of instances where leafy spurge was detected, it

was detected in both years. However, visual comparison of a

subset of the classifications of 2002 and 2003 (Fig. 2)

indicates that there are cases in which leafy spurge was

classified in 2002 but not in 2003, and vice versa. Overall,

the results illustrate that slightly higher accuracies were

obtained from the 2003 imagery than the 2002 imagery.

There are several potential explanations for these differ-

ences, including georegistration and geometric issues,

differences in leafy spurge reflectance (due to variations in

leafy spurge phenology, solar zenith angles, and atmos-

pheric conditions), endmember selection, and processing

and field validation biases. Differences in accuracy are not

likely due to changes in data collection or pre-processing

because the signal-to-noise ratio of the HyMap instrument

between data collection years was consistent (500:1; Cocks

et al., 1998) and the same atmospheric correction was

applied to both data sets. Further, care was taken to ensure

that the data from both years were processed and classified
using the same methods and criteria. The discussions below

on georegistration and geometric errors, changes in leafy

spurge reflectance, training endmember selection, and

image processing and field validation biases are not

confined to repeatability studies and are also significant

for single-date image processing.

4.2.1. Georegistration and geometric errors

While high spatial resolution images are more likely to

locate smaller infestations of a given target than coarse

spatial resolution images, they are also associated with a

higher degree of variability and geometric errors that are

difficult to constrain or correct. Geometric errors are

commonly large scale, such as a shift or rotation of the

image (Aspinall et al., 2002); however, we also found a

second level of geometric confusion in high spatial

resolution airborne data, such as a one to three pixel local

shift in non-uniform directions. This complicates accuracy

assessment in that it is difficult to discern correct classifier

performance affected by geometric imprecision as opposed

to stochastic classification errors. Pixel shifts (georegistra-

tion errors) between the 2 years may have resulted in small

differences in the expression of the leafy spurge distribution

within a pixel. For example, one pixel with 100% cover in

the 2003 imagery may be expressed as four pixels with 25%

cover in the 2002 imagery, making it more difficult to

detect.

4.2.2. Leafy spurge reflectance

Errors in the ASD instrument field calibration and

changes in the spectral targets placed in the field between

2002 and 2003 resulted in the inability to compare ASD

spectra between years. Subsequently, leafy spurge reflec-

tance derived from the training area (the mean value of four

non-adjacent pixels in the image) was evaluated between

years, and slight differences were determined (Fig. 4). The

2003 reflectance is slightly higher in the near-infrared (NIR)

and slightly lower in the short-wave infrared (SWIR) than

the 2002 reflectance of leafy spurge. The mean difference in

the reflectance values is approximately 4%.

The difference in reflectance values may be due to

different solar zenith angles or that leafy spurge was at a

more mature bloom in 2003 than in 2002. The latter



Fig. 4. Mean spectral reflectance of leafy spurge for four non-adjacent pixels consisting of approximately 100% leafy spurge cover from the 2002 and 2003

HyMap data.
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hypothesis is supported by differences in the climate

between years. The 2002–2003 winter produced a lower

snowpack in the Swan Valley than the 2001–2002 winter,

resulting in leafy spurge blooming earlier in 2003. Leafy

spurge typically blooms in the region from mid-June to mid-

July and it is likely that during the timing of the 2003 image

acquisition, the leafy spurge was at a more mature bloom

than in 2002. The higher peak bloom may have resulted in

an internal cell structure that caused higher intercellular

reflectance in the NIR. Likewise, higher water content

during peak bloom may have caused the increased

absorption in the SWIR in 2003. This increased absorption

in the SWIR did not strongly affect the classification, which

also supports our decision not to spectrally subset the data

before processing.

Leafy spurge in the Swan Valley has not been observed to

grow at rates faster than ~3 m to 7 m (1 to 2 pixels) in size per

year; however, there is the chance that significant enough,

growth between 2002 and 2003 allowed for better discrim-

ination in 2003. It is also important to note that there was

some unconstrained degree of chemical control of leafy

spurge between data acquisition dates, which may have

influenced accuracies. In the Swan Valley, land ownership

and management is split between typically large, private

ranches, Bonneville County, BLM, and USFS. While inter-

agency cooperation can be difficult, local land ownership

management practices are nearly impossible to coordinate

and document. This results in difficulty in assessing classifier

performance, such as false positives that may not actually be

false, or false negatives that may actually be true. Ideally, a

large-scale field validation could be performed concurrent

with image collection; however, this is not always feasible in

remote or access-restricted areas.
In addition to the climate and possible changes in

growth, the change in leafy spurge reflectance may also

have been caused by changes in solar zenith angles and

atmospheric conditions between dates. Though both data

sets were acquired at the end of June, the 2002 imagery was

acquired 40 min before solar noon while the 2003 imagery

was acquired 2.5 h before solar noon. The timing of the

2002 image acquisition would normally result in a viewing

angle closer to nadir for flat terrain, the whisk broom design

of the HyMap sensor coupled with variable topography in

Swan Valley are additional factors that would cause

inconsistent differences in reflectance magnitudes. Further-

more, during the early part of the 2002 summer, there were a

larger number of fires in the Intermountain West than in

2003. Visibility was at least 40 km during the days of data

acquisition in both 2002 and 2003; however, there may have

been slightly more particulates in the atmosphere due to

smoke in 2002. The effects of these particulates and the

influence of the atmospheric corrections on smoke partic-

ulates across the visible, NIR, and SWIR are likely non-

linear but largely unknown.

4.2.3. Training endmember selection

The selection of training endmembers is a critical

component in supervised remote sensing classifications. In

our study, we quantified differences exceeding three stand-

ard deviations between leafy spurge endmember spectra

selected using various techniques, including image extrac-

tion and separate calculations for field derived spectra using

a hand-held field spectrometer. The endmember differences

were likely associated with changes in solar zenith angle,

differing stages of phenology, and/or variability in atmos-

pheric corrections. We found that using the most extreme



N.F. Glenn et al. / Remote Sensing of Environment 95 (2005) 399–412 409
endmembers for classification resulted in a lower accuracy

as opposed to using a mean reflectance endmember for

training spectra (Mundt et al., submitted for publication).

Other work by Bielski (2003) illustrates the importance of

spatial and spectral considerations in endmember derivation.

Additionally, different classification algorithms and differ-

ent software packages will deviate slightly from each other.

Because the training site was used for classification of all

hyperspectral lines, there is the possibility that the leafy

spurge phenology and/or the image quality of the flightlines

not containing the training site could have contributed error

to the classifications. This is not likely because field

observations indicated that the phenology of leafy spurge

was consistent within years across the study area. Yet, there

is the possibility that the mean endmembers used in the

2002 or 2003 classifications did not fully characterize all of

the leafy spurge in the respective geographical extents,

resulting in differences in the classification results.

4.2.4. Image processing bias

Producer bias in image classification is nearly impossible

to avoid. Typically, processing of remote sensing imagery is

iterative, in which a user will make repeated classifications,

visually comparing them to expected distributions, adjusting

their strategy, and re-classifying the data until an optimal

product has been derived. While this iterative process likely

produces a higher quality product, it also introduces many

opportunities for user bias and lowers the possibility of

accurately repeating the classification. This is especially true

in MTMF given the non-linearity of the relationship

between MF and infeasibility, perpetuated by convex

geometrical relationships introduced by mixing of similar

spectra (Boardman, 1993). Further bias can be introduced in

accuracy assessments as a user begins to question the

quality of the source data, geometric precision, and

anthropogenic and natural artifacts that may affect classi-

fications. While the methods used in this study are highly

consistent between years, it is still important to consider that

image processing differences may have influenced the

classifications between years.

4.2.5. Field validation bias

Field validation is a significant component of any remote

sensing study. In this study, the validation was a stratified

random selection of both predicted positive and negative

areas, though every effort was made to make the selection of

validation samples random. As noted previously, a mini-

mum of 50 GPS-acquired validation samples for each class

is suggested. This study collected a total of 364 validation

samples and satisfied the criterion of at least 50 samples per

class for the method 1 accuracy assessments. However, in

methods 2 and 3, this criterion was not satisfied.

The most difficult component of the field validation

process was consistent estimation of percent cover of leafy

spurge. Estimates of cover have been demonstrated to be

highly variable between observers as well as from the same
observer over time (McMahan et al., 2003). As previously

stated, field estimations of vegetation were made from

oblique views. This may provide an overestimation of

vegetation cover in comparison to nadir assessments.

Equally of importance to note is the use of 2003 and 2004

validation data with 2002 and 2003 imagery. If leafy spurge

was at a more mature bloom in 2003 and change in growth

did occur, then the validation data may have reflected these

differences causing overestimation of populations in 2002.

4.3. Spectral thresholds for detecting leafy spurge

A common desire for land managers when assessing the

efficiency of remote sensing classifications is to determine

the percent cover of weeds and/or pixel size necessary for

detection. In the iterative processing of these data sets, it

became apparent that the detectable limits of a target are

better described in terms of spectral components than they

are in terms of percent cover or pixel resolution. Further,

leafy spurge in a different state of maturity than the

training pixels (e.g., more mature bloom) may have higher

or lower detectable limits. The spectral component thresh-

old for leafy spurge was determined by detailed analyses

of the MF and infeasibility scatterplots. Similar to

Williams and Hunt (2002), we found that an MF value

of 0.1 was the approximate lower threshold for discerning

leafy spurge.

Although it is simpler to consider the minimum units of a

discrimination for a classifier in terms of spectral compo-

nents (at the conceptual level), there is also a need to assess

the percent cover above which a sensor is able to repeatedly

differentiate a target in the field. To assess this, the

producer’s accuracy of the classification was optimized

respective to canopy cover, and the results demonstrate that

above 40% cover of leafy spurge, the sensor had consistent

accuracy between years (Fig. 5). From this, it is inferred that

40% cover of leafy spurge in a 3.5 m pixel is the minimum

required spectral component for repeatable detection. This

is likely a conservative interpretation of the data due to the

reasons discussed in the previous sections (e.g., georegis-

tration, leafy spurge reflectance, endmember selection,

processing, and field biases). It is noted that this cover

estimation was derived from oblique field estimates, and

validation samples may or may not have been entirely

contained within one pixel in the image. Further, 40% cover

should not be correlated to the lower threshold of detect-

ability (MF value of 0.1). Leafy spurge with lower percent

cover within a pixel was also correctly identified (e.g., 10%

cover) (Fig. 2), though detection of the lower spectral

component values have not demonstrated repeatability.

Pixels with infeasibility values N20 were not considered

to contain leafy spurge, and similar to previous research, the

selection of significant pixels at MF values lower than 0.1

was not achievable. The relationship between MF and

infeasibility is non-linear, locally variable, and has not been

discussed extensively in the literature. We found that



Fig. 5. Plot of minimum percent leafy spurge cover versus producer’s accuracy for determining repeatability of percent cover discrimination.
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significant pixel selection should be performed cautiously,

especially in heterogeneous environments with high poten-

tial for spectral mixing (such as in this study, where targets

are spatially small). We also found that true positive

infestations with lower values of MF were often associated

with lower values of infeasibility, while higher values of MF

may have higher values of infeasibility. In this study, the

selection of block threshold values such as presented in

Williams and Hunt (2002) resulted in lower accuracies. This

is likely due to the smaller spatial scale of leafy spurge

infestations in the Swan Valley in comparison to those in

Midwest states.
5. Conclusions

This project demonstrates the ability of high resolution

hyperspectral imagery to develop repeatable inventories of

small and low percent cover infestations of leafy spurge in

riparian and mixed sagebrush-steppe environments. A MF

threshold of 0.1 and an infeasibility value less than 20

were determined to be the most appropriate values for

delineating leafy spurge in the Swan Valley. These findings

can now be applied to image processing for change

detection in the future in the Swan Valley and for baseline

surveys in ecosystems similar to the Swan Valley. Because

leafy spurge was not observed to change dramatically over

1 year in our study area, a second inventory would not

need to be performed for several years. The study results

indicate that for repeatable surveys, leafy spurge cover of

at least 40% per 3.5 m pixel is necessary. While the

MTMF algorithm was able to detect lower percent cover

of leafy spurge in the 2002 and 2003 imagery, it was

unable to do so in exact locations in both 2002 and 2003.
This is likely a result of georegistration and geometric

differences, changes in leafy spurge reflectance, training

endmember selection differences, and image processing

and field validation biases between years. Changes in leafy

spurge reflectance between years are likely explained by

slight differences in leafy spurge bloom and time of day of

image acquisition. Regardless of these uncertainties, the

hyperspectral data and image processing provided results

that met the user’s accuracy threshold of 70%. High

spectral resolution is necessary to differentiate low percent

cover infestations of leafy spurge, while high spatial

resolution images assist in locating spatially small infes-

tations. While hyperspectral imagery may be significantly

more expensive than other imagery sources, it also

demonstrates a more useful product than may be derived

using other sensors. Therefore, the use of hyperspectral

imagery may be the most cost-effective long-term manage-

ment tool available.
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