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ABSTRACT

The relationship between a time-to-event and a time-dependent or
time-independent covariate is usually assessed using the Cox model.
A frequently encountered problem however is occurrence of missing
covariate values. A recent approach for estimating the Cox model
with a missing covariate jointly models the time-to-event and covari-
ate. In the case of a time-dependent covariate, Dupuy and Mesbah
[Dupuy, J.-F., Mesbah, M. (2002). Joint modeling of event time and
nonignorable missing longitudinal data. Lifetime D. Anal. 8:99–115]
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have proposed a joint model and have obtained a semiparametric
maximum likelihood estimator of the regression parameter of the
Cox model that is consistent and asymptotically normal. Further-
more, an explicit expression was obtained for the asymptotic
variance of this estimator. In this paper, we examine the problem
of estimating this variance. We propose a computationally simple
estimator and we show its consistency. We illustrate the approach
by applications to real data sets.

Key Words: Time-dependent Cox model; Missing covariate;
Semiparametric maximum likelihood estimation; Asymptotic
covariance; Consistency.

Mathematics Subject Classification: 62N01 (62N02, 62P10).

1. INTRODUCTION

Many survival studies collect information on each study participant
both on a survival time and a time-dependent covariate. A frequent
objective of these studies is to evaluate the relationship between survival
and the covariate. The Cox regression model (Cox, 1972) is one of the
most widely used tool for that purpose. To implement the Cox model
with a time-dependent covariate, complete knowledge of the covariate
history for each subject is required. A frequently encountered problem in
practice, however, is occurrence of missing covariate data. Dupuy and
Mesbah (2002) have proposed a joint modeling approach for estimating
the Cox model with a nonignorable missing time-dependent covariate.
Joint analysis of repeated measurements and survival times has also been
extensively used in the context of measurement error of the covariate.
References include Henderson et al. (2000), Li and Lin (2000), Song
et al. (2002a,b), Tsiatis and Davidian (2001) and Wulfsohn and Tsiatis
(1997). Bayesian approaches to estimation in these joint models are
studied by Faucett and Thomas (1995), Ibrahim et al. (2001).

Asymptotic properties of estimators obtained from joint models are
still an open problem. We note nevertheless that some promising simula-
tions have been performed by Li and Lin (2000), and that Dupuy et al.
(2002, 2003) have established consistency and asymptotic normality of
estimators obtained in Dupuy and Mesbah (2002) via a joint model. Since
estimation of the asymptotic variance of these estimators is of practical
interest for constructing tests of hypothesis, we propose in this paper a
simple estimator of this asymptotic variance, and we show its consistency.
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The paper is organized as follows. The joint model proposed by
Dupuy and Mesbah (2002) is briefly presented in Sec. 2. In Sec. 3, a result
of asymptotic normality of semiparametric maximum likelihood estima-
tors in this joint model is briefly recalled. We then discuss practical issues
arising in the estimation of the asymptotic variance of these estimators.
An estimator of this variance is proposed and its consistency is proved.
In Sec. 4, we illustrate our results on two real data sets.

2. A JOINT MODEL

Dupuy and Mesbah (2002) propose a joint modeling approach for
estimating the parameters in the Cox model with missing values of a
time-dependent covariate. The problem and the statistical model can be
described as follows.

Consider a sample of n subjects, indexed by i. Observations of a time-
dependent covariate are to be measured at fixed times t0 ¼ 0 < t1 < � � �
on each of these subjects. Each subject i leaves the study at a random
failure time Ti which is subject to right censoring, that is we observe
Xi ¼ minðTi;CiÞ, where Ci is a potential censoring time, and the censoring
indicator Di ¼ 1fTi�Cig. Assume that the study ends at a fixed time
tðt < 1Þ at which any individual still alive is censored.

The covariate process Zið�Þ ði ¼ 1; . . . ; nÞ is assumed to have the form
of a step function ZiðtÞ ¼ Zij, t 2 ðtj�1; tj� [we refer to Bagdonavičius and
Nikulin (2001) for analysis of time-to-event models under this kind of
covariate process]. Zij is measured at tj if failure or censoring do not occur
in the interval ½0; tj�. Hence Zij is not observed if failure occur before or at
tj. We assume that Zij have uniformly bounded total variations, that isR1
0 jdZijðtÞjþ jZijð0Þj � c for some c > 0 (this ensures that Z has not too
much fluctuation, and this is a reasonable hypothesis in many applications).

The model for the longitudinal covariate is: Zij ¼ aZi;j�1 þ Eij ,
j ¼ 1; 2; . . . ; where Eij � Nð0; s2eÞ are independent deviations reflecting
measurement error. Let us denote ða; s2eÞ0 by x. The hazard function
for the Cox model is given by lðtÞebZiðtÞ, where lð�Þ is an unknown
baseline hazard function and b is an unknown regression parameter.
For ease of presentation, we assume that the current value of the covari-
ate is the appropriate component of the covariate history to use in this
model. However, the arguments below would be no more difficult, had
the hazard been a more complex functional of the history of the covariate.

Recall that from the experimental design, the realization of
ZiðXiÞði ¼ 1; . . . ; nÞ at failure or censoring is not observed. Let
aXi

¼ maxfk : tk < Xig denote the indice of the last observed value of
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Zið�Þ before Xi. With these notations, the observed data on subject i are
ðXi;Di;Zi0; . . . ;ZiaXi

Þ, independent across i.
Assume that the censoring time Ci is independent of the failure time

Ti given the covariate, and that the distribution of Ci does not depend
on the parameters x; b;Lð�Þ, nor on the unobserved value of Zið�Þ at
Xi. Under our assumptions, the observed data likelihood Ln is

Yn
i¼1

�Z
lðXiÞebZiðXiÞ

n oDi � exp �
Z Xi

0

lðuÞebZiðuÞ du
� �

� fxðZi0; . . . ;ZiaXi
;ZiðXiÞÞdZiðXiÞ

�
;

where fxðZi0; . . . ;ZilÞ is the density of the random vector
ðZi0; . . . ;ZilÞðl � 1Þ.

Let y0 ¼ ðL0; b0; x0Þ denote the true value of the parameter. The
problem of finding an estimator for y0 is semiparametric since the com-
ponent L0 belongs to a set of nondecreasing absolutely continuous
functions. The maximum in L of the likelihood function does not exist.
To define an estimator for L0, we proceeds by the method of sieves, which
consists in replacing the space Y of parameters ðL; b; xÞ by an increasing
sequence of approximating spaces Yn, so that there exists a maximum
likelihood estimator in each Yn. For a fixed sample size n, the above like-
lihood is then maximized over Yn. Following the approach of Johansen
(1983), we maximize the likelihood Ln over the space fy ¼ ðLn; b; xÞg,
where b 2 R, x 2 R2 and Ln is an increasing step function with positive
jumps at each uncensored failure time. This leads to so-called semiparam-
etric maximum likelihood (SPML) estimators. We refer to Li and Lin
(2000),Murphy (1995), Parner (1998), Scharfstein et al. (1998) andWulfsohn
and Tsiatis (1997) for use of SPML in various situations. Another
example of use of a sieve procedure is given by Murphy and Sen (1991)
for estimating time-dependent regression coefficients in the Cox model.

We used the expectation-maximization (EM) algorithm to calculate
the SPML estimates, along with Gauss–Hermite quadrature for evalua-
tion of integrals. Formulas are given in Dupuy and Mesbah (2002).

3. ESTIMATION OF THE ASYMPTOTIC VARIANCE

OF SPML ESTIMATORS IN THE JOINT MODEL

3.1. Preliminaries

In the following, let BV ½0; t� denote the space of bounded variation
real-valued functions defined on ½0; t�. Let H¼fðh1;h2;h3Þ :h12BV ½0;t�;
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h2 2 R; h3 2 R2g. With h 2 H, we define the norm on H to be khkH ¼
kh1kn þ jh2j þ kh3k2, where k � k2 denotes the Euclidean norm and
kh1kn is the absolute value of h1ð0Þ plus the total variation of h1 on the
interval ½0; t�. We will consider the parameter y as a functional on H
given by

yðhÞ ¼
Z t

0

h1ðuÞdLðuÞ þ h2bþ h03x; ð1Þ

and the parameter space Y as a subset of l1ðHÞ, the space of bounded
real-valued functions on H, equipped with the supremum norm
kyk ¼ suph2H jyðhÞj.

Note that specific choices for h in (1) correspond to the quantities
of interest. For example, if we let h1ðuÞ ¼ 0 for all u 2 ½0; t�; h2 ¼ 1 and
h3 ¼ 0, then (1) reduces to b. If we let h1ðuÞ ¼ 1fu�tgðt 2 ½0; t�Þ, h2 ¼ 0
and h3 ¼ 0, then (1) reduces to LðtÞ.

In this paper, we are interested in estimating the asymptotic variance
of the SPML estimator of b0 and L0, so we restrict attention to the
limiting distribution offfiffiffi

n
p ðL̂Ln � L0Þ;

ffiffiffi
n

p ðb̂bn � b0Þ
� �

;

which is given by Dupuy et al. (2003). Dupuy et al. (Submitted) gives the
more general result of the limiting distribution of

ffiffiffi
n

p ðŷyn � y0Þ ¼
ð ffiffiffi

n
p ðL̂Ln � L0Þ;

ffiffiffi
n

p ðb̂bn � b0Þ;
ffiffiffi
n

p ðx̂xn � x0ÞÞ. This may be relevant in
applications where one is also interested in estimating and testing the
parameters of the distribution of the time-dependent covariate.

Dupuy et al. (2003) give in the following theorem an asymptotic
normality result for ð ffiffiffi

n
p ðL̂Ln � L0Þ;

ffiffiffi
n

p ðb̂bn � b0ÞÞ, considered as a func-
tional on the space H12 ¼ fh2H : h3 ¼ 0;khkH <1g. Again, if we let
h1ðuÞ¼0 for all u2 ½0;t� and h2¼1, this reduces to

ffiffiffi
n

p ðb̂bn�b0Þ. Similarly,
letting h1ðuÞ ¼ 1fu�tgðt 2 ½0; t�Þ and h2 ¼ 0 yields to

ffiffiffi
n

p ðL̂LnðtÞ � L0ðtÞÞ.
In the following, we denote expectation with respect to the empirical

distribution of the data by En, and expectation with respect to the true
underlying distribution by Ey0 . Moreover, we denote by Eiy hðZðXÞÞ½ �
the conditional expectation of a function hðZðXÞÞ given the observations
on the i-th subject and the parameter value y.

Theorem 1. The sequence ð ffiffiffi
n

p ðL̂Ln � L0Þ;
ffiffiffi
n

p ðb̂bn � b0ÞÞ converges in
distribution in the space l1ðH12Þ to a zero mean Gaussian process G with
covariance process

covðGðgÞ;Gðg�ÞÞ ¼
Z t

0

g1ðuÞs�1
1;y0ðg�Þ ðuÞdL0ðuÞ þ s�1

2;y0ðg�Þg2;
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where

s1;y0ðhÞ ðuÞ ¼ Ey0

�ðh1ðuÞ þ h2ZðuÞÞeb0ZðuÞ1fu�Xg
	
;

s2;y0ðhÞ ¼ Ey0

Z X

0

ZðuÞeb0ZðuÞ h1ðuÞ þ h2ZðuÞð ÞdL0ðuÞ
� �

:

Estimation of the asymptotic variance

Z t

0

h1ðuÞs�1
1;y0ðhÞ ðuÞdL0ðuÞ þ s�1

2;y0ðhÞh2; ð2Þ

of ð ffiffiffi
n

p ðL̂Ln � L0Þ;
ffiffiffi
n

p ðb̂bn � b0ÞÞ ðhÞ is crucial for constructing tests
of hypotheses and calculating confidence intervals. In the following, we
discuss practical and theoretical aspects of the problem of estimation
of (2).

3.2. A Convergent Estimator of the Asymptotic Variance

A natural estimator of (2) may be obtained by replacing y0 by ŷyn in
sy0 ¼ ðs1;y0 ; s2;y0Þ. This, however, raises problems. We first illustrate these
problems on the particular example of estimation of the asymptotic
variance of

ffiffiffi
n

p ðb̂bn � b0Þ. We then propose an alternative convergent
estimator of (2).

Estimating the asymptotic variance s�1
2;y0ðhÞ of

ffiffiffi
n

p ðb̂bn � b0Þ by
replacing y0 by ŷyn in s2;y0 leads to the following estimator:

s�1
2;ŷyn

ðhÞ ¼ Eŷyn

Xp
k¼1

ZðskÞ2eb̂bnZðskÞDL̂LnðskÞ1fsk�Xg

" #�1

: ð3Þ

Calculation of such expectations are however cumbersome, due to the
dimension of the integrals involved. One may then approximate (3) by
using empirical means, such as

1

n

Xn
i¼1

Xp
k¼1

ZiðskÞ2eb̂bnZiðskÞDL̂LnðskÞ1fsk�Xig

" #�1

:

This, however, would require observation of the missing ZiðXiÞ.
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Our proposal is then to first estimate sy0 ¼ ðs1;y0 ; s2;y0Þ by
ŝsŷyn ¼ ðŝs1;ŷyn ; ŝs2;ŷynÞ, where

ŝs1;ŷynðhÞ ðuÞ ¼
1

n

Xn
i¼1

Eiŷyn
ðh1ðuÞ þ h2ZðuÞÞeb̂bnZðuÞ1fu�Xg
h i

;

ŝs2;ŷynðhÞ ¼
1

n

Xn
i¼1

Eiŷyn

Z X

0

ZðuÞeb̂bnZðuÞ h1ðuÞ þ h2ZðuÞð ÞdL̂LnðuÞ
� �

;

and then to estimate the asymptotic variance (2) by

Z t

0

h1ðuÞŝs�1
1;ŷyn

ðhÞðuÞdL̂LnðuÞ þ ŝs�1
2;ŷyn

ðhÞh2: ð4Þ

For example, following this proposition, the estimator of the
asymptotic variance of

ffiffiffi
n

p ðb̂bn � b0Þ has the form

ŝs�1
2;ŷyn

ðhÞ ¼ 1

n

Xn
i¼1

Xp
k¼1

Eiŷyn
½ZðskÞ2eb̂bnZðskÞ�DL̂LnðskÞ1fsk�Xig

" #�1

: ð5Þ

Next theorem shows that (4) is a consistent estimator of the asymptotic
variance (2).

Theorem 2. For ðg1; g2Þ 2 H12, the solution h ¼ ŝs�1
ŷyn
ðgÞ to g1 ¼ ŝs1;ŷynðhÞ,

g2 ¼ ŝs2;ŷynðhÞ exists with probability going to one as n tends to infinity, and

Z t

0

h1ðuÞŝs�1
1;ŷyn

ðhÞðuÞ dL̂LnðuÞ þ ŝs�1
2;ŷyn

ðhÞh2

converges in probability to
R t
0 h1ðuÞs�1

1;y0ðhÞðuÞdL0ðuÞ þ s�1
2;y0ðhÞh2.

We shall note, however, that we can not compute the exact value of
ŝs�1
1;ŷyn

and ŝs�1
2;ŷyn

since the EM algorithm provides us only an approximation

of ŷyn. Moreover, y contains a functional part and convergence properties
of the EM algorithm in this case are not well established. We shall
note that simulations by Chen and Little (1999) and Li and Lin (2000)
in the contexts of missing and mismeasured time-independent covariates
respectively seem to point to the validity of such an approach.

Proof. We give an outline of our proof, which follows the method
proposed by Murphy (1995) for proving consistency of an estimator of
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the asymptotic variance of estimators in the frailty model. This theorem
can be proved by the following two steps. &

Lemma 1. suph2H12
kŝsŷynðhÞ � sy0ðhÞkH converges in probability to 0.

Proof. We first show that the functions under the sign
P

in ŝs1;ŷyn and
ŝs2;ŷyn form Donsker classes (for h 2 H12). As an illustration of the method,
we prove that

Z t

0

h1ðuÞZðuÞebZðuÞ1fu�Xg dLðuÞ : h1 2 BV ½0; t�
� �

form a Donsker class.
From Lemma 2 of Parner (1998), the classes f1;u :1f½�;1Þg 7�! 1f½u;1Þg

and f2;u :Zð�Þ 7�!ZðuÞðu2 ½0;t�Þ are Donsker. Then f3;u : e
bZð�Þ 7�!ebZðuÞ

is Donsker since the exponential function is Lipschitz on compact sets
of real line. Finally, f4;u : Zð�ÞebZð�Þ1f½�;1Þg 7�!ZðuÞebZðuÞ1f½u;1Þgðu 2 ½0; t�Þ
is Donsker since Zð�Þ is uniformly bounded.

Let c : u 7�!cðuÞ be some uniformly bounded real-valued function
defined on ½0; t�. Define the map j : c 7�!jðcÞ from l1ð½0; t�Þ to
l1ðBV ½0; t�Þ by

jðcÞ ðhÞ ¼
Z t

0

hðuÞcðuÞdf ðuÞ;

for f 2 BV ½0; t�. Assume that the class ju : cð�Þ 7�!cðuÞðu 2 ½0; t�Þ form a
Donsker class. Then fGnju : u 2 ½0; t�g (where Gnju ¼

ffiffiffi
n

p ðEnju � Ey0 juÞ)
converges to some tight limit process. The function j is continuous,
and from the continuous mapping theorem, it follows that jðGnjuÞ
converges in distribution. Now,

jðGnjuÞ ðhÞ ¼
Z t

0

hðuÞGnju df ðuÞ ¼
Z t

0

hðuÞ ffiffiffi
n

p ðEnju � Ey0 juÞdf ðuÞ

¼ ffiffiffi
n

p
En

Z t

0

hðuÞcðuÞdf ðuÞ � Ey0

Z t

0

hðuÞcðuÞdf ðuÞ

 �

¼ ffiffiffi
n

p ðGnðjðcÞ ðhÞÞÞ:
Hence cð�Þ 7�! R t

0 hðuÞcðuÞ df ðuÞðh 2 BV ½0; t�Þ is Donsker. Applying this
with cð�Þ ¼ Zð�ÞebZð�Þ1f½�;1Þg gives that the class Zð�ÞebZð�Þ1f½�;1Þg 7�!R t
0 h1ðuÞZðuÞebZðuÞ1fu�Xg dLðuÞ is Donsker ðh1 2 BV ½0; t�Þ.

The same arguments for the remaining parts of ŝs1;ŷyn and ŝs2;ŷyn leads to
the desired conclusion. Details can be found in Dupuy et al. (Submitted).
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A Donsker class is also a Glivenko–Cantelli class. Hence, having
proved that functions under

P
in ŝs1;ŷyn and ŝs2;ŷyn are Donsker, it follows

that suph2H12
kŝsŷynðhÞ � sy0ðhÞkH converges in probability to 0. &

Lemma 2. suph2H12
kŝs�1

ŷyn
ðhÞ � s�1

y0 ðhÞkH converges in probability to 0.

Proof. From Lemma 4 of Dupuy et al. (Submitted), sy0 is continuously
invertible, then ŝsŷyn is continuously invertible with a probability going to 1
as n tends to infinity. For 0 < q < 1, let Hq

12 ¼ fh 2 H12 : khkH � qg.
Then, with a probability going to 1 as n tends to infinity, for every
Hp

12 	 H12 there exists Hq
12 	 H12 such that ŝs�1

ŷyn
ðHq

12Þ 	 Hp
12, and for

every g 2 H
q
12, there exists h 2 H

p
12 such that ŝs�1

ŷyn
ðgÞ ¼ h. Therefore

kŝs�1
ŷyn
ðgÞ�s�1

y0 ðgÞkH ¼ ks�1
y0 ðsy0ðhÞÞ�s�1

y0 ðŝsŷynðhÞÞkH

� sup
h2Hq

12

ks�1
y0 ðhÞkH
khkH

sup
h2Hp

12

ksy0ðhÞ� ŝsŷynðhÞkH :

From Lemma 1, it follows that supg2H12
kŝs�1

ŷyn
ðgÞ � s�1

y0 ðgÞkH converges
to 0. &

From Lemma 2, it follows that
R t
0 h1ðuÞŝs�1

1;ŷyn
ðhÞ ðuÞdL̂LnðuÞ þ ŝs�1

2;ŷyn
ðhÞh2

converges in probability to
R t
0 h1ðuÞs�1

1;y0ðhÞ ðuÞ dL0ðuÞ þ s�1
2;y0ðhÞh2.

4. APPLICATIONS: TWO REAL EXAMPLES

Example 1. We illustrate the proposed method by first analyzing
quality-of-life (QoL) data from a cancer clinical trial. Two groups of
patients with metastatic colorectal cancer (referred to as groups A and
B in the following) and treated with two different therapies were followed
for their QoL until dropout. Collection of QoL data was done by admin-
istering a questionnaire to study participants at a number of prespecified
time points. The aim of our analysis is to evaluate the relationship
between dropout and the longitudinal QoL in each group, and to test
for a difference between groups.

The Cox model is a standard tool for that purpose. However,
Cox regression analysis is complicated here by missingness of QoL
scores at dropout. A commonly used approach to implement the Cox
model in such a situation substitutes in the Cox partial likelihood,
for each subject at his failure time, the last covariate value prior to
that time. This method, termed ‘‘last value carried forward’’ (LCF)
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(Altman and De Stavola, 1994) can induce considerable bias into the
parameter and variance estimators. One other strategy is a two-stage or
‘‘regression calibration’’ approach (Wang et al., 1997), where a model is
fitted to the time-dependent covariate and predictors of the missing values
are used to impute missing values in the partial likelihood. This method
however produces an inconsistent estimator of the regression parameter
of the Cox model (Wang et al., 1997). Some alternative approaches have
recently been proposed: the approximate partial likelihood method of Lin
and Ying (1993) consists in replacing any missing term at time t in the Cox
partial likelihood score function by an estimate, calculated on subjects
who are at risk at t and for whom observed covariate measurements at t
are available. The estimated partial likelihood of Zhou and Pepe (1995)
is an imputation method, which requires a validation sample of subjects
with no missing covariate measurements. Paik and Tsai (1997) elaborate
on this approach and propose an imputation method that does not require
that some subjects are fully observed. However, for these methods to be
valid, it is assumed that the covariate is missing completely at random
or at random, that is, missingness does not depend on the unobserved
covariate value. However, it has now been recognized that QoL is generally
not missing at random (see Mesbah et al., 2002). In particular, following
Mesbah et al. (Submitted) who provide a detailed description of the study
and data, ‘‘it may be assumed that the patients with missing data had a
worse QoL score.’’ The authors note that ‘‘the relationship between data
missingness and the possibly low values of the missing QoL scores
suggested that the missingness mechanism was not at random.’’

Hence we propose to use the joint model proposed by Dupuy and
Mesbah (2002) to take account of the missing QoL scores in estimating
the Cox model. We then use our asymptotic results, and particularly
the convergence in probability of our variance estimator, to test for
association between dropout and the longitudinal QoL in each group,
and to test for a difference between groups A and B. Results are com-
pared with an at-random-analysis which assumes the following hazard
function for dropout: lðtÞ expðbZðtÞÞ, where ZðtÞ ¼ Zat is the last
observed QoL score prior to dropout. Partial likelihood (PL) estimation
is then used to estimate b.

Groups A and B had, respectively, 115 and 120 patients. The number
of QoL scores per patient in group A (respectively, group B) ranges
between 1 and 10 (respectively, 1 and 13). Scores of QoL range between
0 and 7, with a higher score indicating a better overall QoL.

Table 1 displays the estimates from both at-random-analysis and the
joint model, together with estimated standard errors, which are obtained
using formula (5) for the joint model.
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The negative values for the regression parameter b obtained from
both estimation methods imply that patients with low levels of QoL
are more likely to dropout. However, we note that estimates from at-
random-analysis are less significant (p-values are, respectively, 0.037
and 0.032 in groups A and B). Failure of the at-random-analysis to take
account of the worsening of QoL just before dropout may explain that
estimates of the association of dropout and QoL are biased towards
the null. The at-random-analysis uses for estimation the last QoL score
prior to dropout instead of the actual (unobserved) QoL value at drop-
out, which is certainly lower. This in turn attenuates the impact of a
decrease in QoL on dropout and this may explain the observed bias.

We note that the estimated standard error obtained from the joint
model is greater compared with the at-random-approach. This is because
the estimate of b may be affected by the uncertainty in the estimate of the
other parameters. More variability is incorporated.

It is also of practical interest to note that the estimated relative risks
between 2 patients in group A with a difference in QoL of x units are,
respectively, e�0:1636x (PL method for at-random-analysis) and e�0:3620x

(SPML method for the joint model). These are represented as functions
of x on Fig. 1, together with similar curves for group B.

It appears that when dropout is nonignorable, the at-random-
analysis strongly underestimates the risk of dropout for negative x (in
both groups A and B), that is, strongly underestimates risk of dropout
for patients with a decreasing QoL. Our method proves useful to reduce
bias in estimation of this relative risk, which may be of practical interest
for practitioners and clinical care of the patients.

One may also be interested in testing for a difference in b between
groups A and B. From the result proved in Sec. 3,

ffiffiffi
n

p ðb̂bn � b0Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝs�1
2;ŷyn

ðhbÞ
q

converges in distribution to Nð0; 1Þ, where hb ¼ ðh1; 1Þ with

Table 1. PL and SPML estimates and standard errors for at random and
nonignorable analysis of time to dropout and longitudinal QoL.

Group
Estimate
of b

Estimated
standard

error (S.E.) Est.=S.E. p-value

PL for at-random- A �0.1636 0.0781 �2.0947 0.037
analysis B �0.1672 0.0779 �2.1463 0.032

SPML for joint A �0.3620 0.0863 �4.1947 <0.001
model B �0.3161 0.0870 �3.6333 <0.001
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h1ðuÞ ¼ 0, u 2 ½0; t�. Let denote this statistic by

ffiffiffiffiffiffi
nA

p b̂bAnA � bA0ffiffiffiffiffiffiffiffiffiffiffi
ŝs�1
2;ŷyAnA

q and
ffiffiffiffiffi
nB

p b̂bBnB � bB0ffiffiffiffiffiffiffiffiffiffiffi
ŝs�1
2;ŷyBnB

q
for group A and B respectively. Since nA ¼ 115 and nB ¼ 120, we
approximate the law of

b̂bAnA � b̂bBnB � bA0 � bB0
� 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝs�1

2;ŷyAnA
nA

þ
ŝs�1

2;ŷyBnB
nB

r

by Nð0; 1Þ.
Testing H0 : b

A
0 ¼ bB0 against H1 : b

A
0 6¼ bB0 , we accept H0 at the 5%

level using both at-random-analysis ( p ¼ 0:96) and the joint modeling
approach ( p ¼ 0:70). However, the at-random-analysis seems again to
yield results biased towards the null, which suggests that is some
situations, the at-random-analysis would falsely conclude to absence of
difference. Again, in case of nonignorable dropout, our joint model and
its asymptotic properties appear as an appealing alternative to reduce
this bias.

Figure 1. Relative risk of dropout vs. x estimated by the SPML and PL
methods.
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As a by-product of the joint modeling approach, we obtain estimates
for the parameters of the longitudinal covariate. This would allow us to
test also for differences in these parameters between groups.

Example 2. Our results are now used to analyze data consisting of
repeated measures of CD4 lymphocyte counts on 101 patients with
advanced disease due to the human immunodeficiency virus (HIV)
(source: http:==www:maths:lancs:ac:uk=diggle=lda=Datasets=). CD4
lymphocyte count is known to be associated with clinical outcome and
the degree of this association is of interest from a prognostic
viewpoint. A standard analysis is to use the Cox regression model to
evaluate the relationship between CD4 count (the covariate) and survival.

Each subject is followed until death (there is no censoring in our
data). The current value of CD4 count on the time interval where death
occurs can not be observed and is then missing for inference in the Cox
model. The LCF and two-stage approaches are the most widely used
methods in practice, to resolve such an issue in estimating the Cox model.
However, the LCF method can induce considerable bias into the estimate
of the true association of interest. Simulations of Dafni and Tsiatis (1998)
in the context of covariate measurement error in the Cox model indicate
that the two-stage approach yields parameter estimates that are still
biased towards the null, even though the majority of the bias using more
naive modeling approaches is eliminated. This method may, however,
still give erroneous results.

As is customary, CD4 counts were log-transformed to ensure that the
assumption of normality is better satisfied, that is Z represents here log
CD4. We then estimated the regression parameter in the Cox model using
both LCF and two-stage methods, and our joint model. Results are
presented in Table 2.

It is anticipated that imputing the missing value by LCF will yield a
seriously biased estimate of b since CD4 count may vary dramatically
before death. Failure of the LCF approach to capture this variation

Table 2. Cox regression analysis of time to death for patients with AIDS.
No censoring.

Estimation
method

Estimate
of b

Estimated standard
error (S.E.) Est.=S.E. p-value

LCF �0.2634 0.1872 �1.4071 0.158
Two-stage �0.5190 0.1829 �2.8376 0.005
Joint model �0.6498 0.1909 �3.4039 <0.001
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indeed leads to acceptation of the null hypothesis of no association
between CD4 and death ( p ¼ 0:158). In comparison to this approach,
the two-stage method results in a much less biased estimate of the regres-
sion parameter b ( b̂b ¼ �0:5190) and concludes to a significant association
between log CD4 and death ( p < 0:004). The parameter we obtain from
the joint model is further from the null hypothesis ( b̂b ¼ �0:6498 and
p < 0:001), indicating that we have probably reduced the bias even
further.

The estimated standard errors for the LCF, two stage and joint
modeling approaches are, respectively, 0.1872, 0.1829, 0.1909. The
standard error obtained from the joint model is again greater, as in
Example 1.

In comparing the estimates obtained from the three approaches, we
see that our estimate of the association of death and log CD4 is less
biased towards the null. We may then be interested in assessing the effect
of censoring of the terminal event on relative performance of the three
methods. As a preliminary attempt to evaluate this, we carried out the
following ‘‘simulation’’: we randomly censored 10%, 25% and 50% of
the study subjects, and we fitted the Cox model using the three methods.
Results are presented in Table 3.

From these results, we see that presence of censoring increases the
estimated standard error (as in the no censoring case, the standard error
is greater for the joint model than for the LCF and two-stage
approaches). Censoring then results in increasing the p-value for testing

Table 3. Cox regression analysis of time to death for patients with AIDS.
Censoring.

%
Censoring

Estimation
method

Estimate
of b

Estimated
standard

error (S.E.) Est.= S.E. p-value

10 LCF �0.2629 0.1970 �1.3345 0.183
Two-stage �0.5211 0.1923 �2.7098 0.007
Joint model �0.6569 0.1913 �3.4339 <0.001

25 LCF �0.2931 0.2157 �1.3588 0.174
Two-stage �0.5433 0.2112 �2.5724 0.010
Joint model �0.6727 0.2205 �3.0508 0.002

50 LCF �0.2359 0.2647 �0.8912 0.373
Two-stage �0.4943 0.2597 �1.9034 0.057
Joint model �0.6314 0.2672 �2.3630 0.018
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the null hypothesis of no association between death and log CD4 count.
For 50% censoring, the two-stage approach even leads to the conclusion
that at the 5% level, there is no association between death and the long-
itudinal marker. We note that the test obtained from the joint model is
still significant at the 5% level.

5. DISCUSSION

We have proposed an estimator for the asymptotic variance of
SPML estimators in a joint model for survival and longitudinal data
which was developed by Dupuy and Mesbah (2002) to estimate the
Cox model with a missing time-dependent covariate. This variance
estimator is consistent and easy to compute. Tests of hypothesis based
on more ‘‘naive’’ methods of estimation in the Cox model with a missing
time-dependent covariate may yield erroneous conclusions. This is
particularly evident when the censoring is heavy or when missingness
of the covariate is falsely assumed to be at random instead of nonignorable.
Our method provides a mean of correcting this. Simulations for com-
paring our joint model to some alternative methods are subject for
future research.

The validity of our approach, asymptotic results, and of the statisti-
cal analysis based on them (e.g., tests of hypothesis) however depends on
the parametric distributional assumptions for the longitudinal covariate.
Future research is then needed to investigate sensitivity to violation of
these assumptions.
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