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Abstract: This study is concerned with replenishment decision making with repairable nonconforming
products, backordering and random equipment failure during production uptime. In real world manufacturing
systems, due to different factors generation of nonconforming items and unexpected machine breakdown are
inevitable. Also, in certain business environments various situations between vendor and buyer, the
backordering of shortage stocks sometimes is permissible with extra cost involved. This study incorporates
backlogging, random breakdown and rework into a production system, with the objective of determination of
the optimal replenishment lot size and optimal level of backordering that minimizes the long-run average
system costs. Mathematical modeling along with the renewal reward theorem is employed for deriving system
cost function. Hessian matrix equations are used to prove its convexity. Research result can be directly adopted
by practitioners in the production planning and control field to assist them in making their own robust
production replenishment decision.
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INTRODUCTION

Addressing the problem on he Economic Production
Quantity (EPQ) can be traced back to the study by Taft
(1918) several decades ago. The EPQ model guides
manufacturing firms in determining the optimal
production lot size that minimizes the long-run average
production-inventory costs. Although assumptions in the
classic EPQ model are relatively simple or unrealistic, the
EPQ model remains to be the basis for analyzing more
complex systems (Wagner and Whitin, 1958; Hadley and
Whitin, 1963; Hutchings, 1976; Schneider, 1979;
Schwaller, 1988; Silver et al., 1998; Tripathy et al., 2003;
Nahmias, 2009; Chen, 2011).

One of the assumptions in EPQ model is that all
manufactured items are of perfect quality. However,
owing to many unpredictable factors, generating the
nonconforming items seems inevitable. The defective
items issues and its consequence quality assurance matters
have been broadly studied (Bielecki and Kumar, 1988;
Lee and Rosenblatt, 1987; Cheng, 1991; Chern and Yang,
1999; Boone et al., 2000; Teunter and Flapper, 2003;
Chiu et al., 2011b, 2012a; Amirteimoori and
Emrouznejad, 2011; Pandey et al., 2011). In real world
the stock-out situations may arise occasionally due to
unexpected excess demands and in certain business
environments various situations between vendor and
buyer, the backordering of shortage items sometimes is

permissible. They are commonly satisfied in the very next
replenishment and in this case extra backordering cost is
involved (Chiu, 2003; Chiu and Chiu, 2006; Drake et al.,
2011).

Production equipment failure is another reliability
factor that troubles the production practitioners most.
Therefore, to effectively control and manage the
disruption caused by random breakdown, so the overall
production costs can be minimized, becomes a critical
task to most production planners. It is not surprising that
such an issue has received extensive attentions from
researchers during past decades (Widmer and Solot, 1990;
Groenevelt et al., 1992; Kuhn, 1997; Makis and Fung,
1998; Giri and Dohi, 2005; Chiu et al., 2010, 2012b; Chiu
et al., 2011a, 2012b; Das et al., 2011). Widmer and Solot
(1990) examined breakdown and maintenance operation
problem using queuing network theory. They presented an
easy way of modeling these perturbations so that they can
be taken into account when evaluating the performances
of an FMS (production rate, machine utilization, etc.). A
comparison between the analytical and simulation results
was provided to demonstrate the accuracy of their
proposed modeling technique. Groenevelt et al. (1992)
studied effects of machine breakdown and corrective
maintenance on economic lot sizing  decisions.  Two
different control policies: the No-Resumption (NR) and
Abort-Resume (AR) were examined. NR policy assumes
that production of the interrupted lots is not resumed after
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a breakdown, while AR policy assumes that production is
immediately resumed after a breakdown, if the current on-
hand inventory is below a certain threshold level. They
showed that this control structure is optimal among all
stationary policies and provided exact optimal and closed
form approximate lot sizing formulas and bounds on
average cost per unit time for the approximations. Makis
and Fung (1998) examined an EMQ model with
inspections and random machine failures. Effects of
breakdowns on the optimal lot size and optimal number of
inspections were studied. The formula for the long-run
expected average cost per unit time was obtained and the
optimal production and inspection policy that minimize
the expected average costs are derived. Giri and Dohi
(2005) presented the exact formulation of stochastic EMQ
model for an unreliable production system. Their EMQ
model was formulated based on the Net Present Value
(NPV) approach and by taking limitation on the discount
rate the traditional long-run average cost model was
obtained. The criteria for the existence and uniqueness of
the optimal production time and its computational results
were provided to show that the optimal decision based on
the NPV approach is superior to that based on the long-
run average cost approach. Chiu et al. (2012b) studies the
optimal replenishment run time for a production system
with stochastic machine breakdown and failure in rework.
They assumed that a production system is subject to
Poisson breakdowns (under no-resumption policy) and an
imperfect reworking of defective items. Mathematical
modeling was used and the production-inventory cost
function was derived. Conditional proof of theorem and
proposition was presented with the objective of
determining the optimal replenishment run time that
minimizes the expected costs per unit time. This paper
incorporates the backlogging, reworking of
nonconforming items and random equipment failure into
the EPQ model, with the objective of determining the
optimal replenishment lot size and maximal level of
backordering that minimizes the long-run average cost for
such a realistic system. Because little attention has been
paid to the aforementioned area, this research intends to
bridge the gap.

METHODOLOGY

Mathematical modeling and formulation: Consider in
a production system the annual demand rate for a specific
item is 8 and this item can be produced at a rate P per
year, where P is much larger than 8. All products
produced are screened and the unit inspection cost is
included in unit manufacturing cost C. Let x be the
random nonconforming rate and d denotes the rate of
making imperfect quality items, where, d = Px. All
nonconforming items produced are assumed to be 100%
repairable during the rework process (Fig. 1) and it is
further assumed that the production rate of perfect quality

items must always be greater than the sum of the demand
rate 8 and the defective rate d. That is (P-d-8)>0.

Due to the long-term relationships between
manufacturer and its clients, when demand occasionally
exceeds supply, shortages are allowed and backordered.
These items will be satisfied when the next replenishment
production cycle starts. The imperfect quality items are
assumed to be all repairable through a rework process.
Further, according to the Mean Time Between Failures
(MTBF) analysis, a Poisson distributed breakdown may
occur during the on-hand inventory piling time (Fig. 1).
When a machine failure happens, the abort/resume
inventory control policy is adopted in this study. Under
such a policy, when a breakdown takes place the machine
is under repair immediately and a constant repair time is
assumed. Further, the interrupted lot will be resumed right
after the production equipment is fixed and put back to
use.

It is also assumed that during the setup time, prior to
the production uptime, the working status of machine is
fully checked and confirmed. Hence, the chance of
breakdown in a very short period of time when production
begins is small. It is also assumed that due to tight
preventive maintenance schedule, the probability of more
than one machine breakdown occurrences in a production
cycle is very small. However, if it does happen, safety
stock will be used to satisfy the demand during machine
repairing time. Therefore, multiple machine failures are
assumed to have insignificant effect on the proposed
model. Figure 1 depicts the level of on-hand inventory of
perfect quality items in proposed model.

The related system cost parameters include: unit
production cost C, setup cost K, unit repair cost for each
defective item reworked CR, cost for repairing machine M,
unit holding cost h, unit holding cost per reworked item h
and unit shortage backordering cost b. Additional notation
has:

Q = Production replenishment lot size for each cycle,
to be determined by this study

B = The maximum backorder level allowed for each
cycle, to be determined by this study

T = Production cycle length
T1 = Production run time to be determined by the

proposed study
H1 = Level of on-hand inventory when machine

breakdown occurs
H2 = Level of on-hand inventory when machine is

repaired and restored
H3 = Level of on-hand inventory when the remaining

regular production uptime ends
H4 = The maximum level of perfect quality inventory

when rework finishes
t = Production time before a random breakdown

occurs
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tr = Time required for repairing and
restoring the machine

t2 = Time needed to rework the defective
items

t3 = Time required for depleting all
available perfect quality on-hand
items,

t4 = Shortage permitted time
t5 = Time required for filling the

backorder quantity B
I(t) = On-hand inventory of perfect quality

items in time t
Id(t) = On-hand inventory of defective items

in time t
TC(T1,B) = Total production-inventory costs per

cycle
TCU(T1,B) = Total production-inventory costs per

unit time
E[TCU(T1,B)] = The expected total production-

inventory costs per unit time

From Fig. 1, the following basic formulas can be
directly obtained: different levels of on-hand perfect
products during production uptime; production run time
T1; the cycle length T; time for rework t2; time required to
deplete all available on-hand items t3; shortage allowed
time t4, time for refilling backlogging B (maximum
backordering quantity) t5 and the levels of on-hand
inventory H1, H2, H3 and H4:

H1 = (P ! d ! 8)t (1)

H2 = H1!tr 8 = H1!g8 (2)

H3 = H2+(P ! d ! 8).(T1!t5!t) (3)

H4 = H3+(P1! 8)t2 (4)

T1 = Q/P (5)

T = T1+t2+t3+t4+tr (6)

t2 = d.T1/P1 (7)

t3 = H4/8 (8)

t4 = B/8 (9)

t5 = B/(P!d!8) (10)

where, the repair time for equipment is assumed to be a
constant tr = g and d = Px.

In real life situation as well as in the present study, it
is conservatively assumed that if a failure of a machine
cannot be fixed within a certain allowable amount of time,
then a spare machine will be in place to avoid further
delay of production. The level of on-hand nonconforming
products for the proposed system is depicted in Fig. 2. 

Fig. 1: On-hand inventory of perfect products in the proposed
model with backlogging, repairable defects and
breakdown taking place during stock piling time

Fig. 2: On-hand inventory of repairable nonconforming items
in the proposed production sy

Total imperfect quality items produced during the
production run time T1 are:

d.T1= x. Q (11)

Cost analysis for the proposed system: Form the above
equations and Fig. 1 and 2, one obtains the total
production-inventory cost per cycle TC(T1, B) as follows:

(12)

( )

( ) ( )

( ) ( ) ( ) ( )

( )

TC T B K M C PT C PT x

h

H t H H
t

H H

T t t
H H

t
H t

h
d t t

t t t t t
t t dT

T t t

h
P t

t b
B

t

R

r

r

( , ) .( ) .[ . ]
( )

( )

( )

1 1 1

1 1 2 2 3

1 5
3 4

2
4 3

5
5 5

5 1
1 5

1
1 2

2

2 2 2

2 2

2 2

2 2

= + + +

+
+

+
+

+

− − +
+

+

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+
+

+ + + +
+ +

− −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
⎡
⎣⎢

⎤
⎦⎥
+ ( ) ( )5 42

+
⎡
⎣⎢

⎤
⎦⎥

B
t

Substituting all parameters from Eq. (1) to (11) in (12),
TC(T1, B) becomes:
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One notes that the expected values of x can be employed to take into account random nonconforming rate in the
production-inventory cost analysis. Further, because the machine is subject to Poisson machine breakdown rate (with
mean equals to $ per unit time), one can use integration of TC(T1, B) to deal with such a random failure distribution.
Therefore, the long-run expected costs per unit time E[TCU(T1, B)] can be calculated as follows:
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Substituting all related parameters from Eq. (1) to (13) in the numerator of (14) one has:
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With further derivations, the numerator of Eq. (14) becomes:

(16)

( )[ ] ( )

( )[ ]
[ ][ ]

( )
[ ]( ) [ ]

E TC T B F t dt hPgT h g gB E
x P

e

K M P T C C E x hPg

h P
T PT

hPT B

B
b h E

x
x P

P T E x
P

h h

T t

T t

R

10 1
2

1

2

1
2

1
2 1

2 2
1
2 2

1
1

1 5

1 5

1
1

1
2

2
1

1 2

, ( )
/

/

/

−

− −

∫ = − + +
− −

⎡
⎣⎢

⎤
⎦⎥

+ − ⋅

+ + ⋅ ⋅ + ⋅ +

+ −
⎡

⎣
⎢

⎤

⎦
⎥ −

+ +
−

− −
⎡
⎣⎢

⎤
⎦⎥
+ −

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

λ
λ

β

λ λ

λ λ

β ⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

Substituting Eq. (16) in (14) one has E[TCU(T1, B)] as follows:
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Substituting Eq. (18) in (17) one has:
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Convexity and the optimal operating decisions: In order to find the optimal production lot size, one should first prove
the convexity of E[TCU(T1,B)]. Hessian matrix equations (Rardin, 1998; Hillier and Lieberman, 2001) can be employed
for the proof:
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E[TCU(T1,B)] is strictly convex only if Eq. (21) is satisfied for all T1 and B different from zero. With further derivation
one obtains (Appendix):
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Equation (21) is resulting positive because all parameters are positive. Hence, E[TCU(T1,B)] is a strictly convex
function. It follows that for the optimal uptime T1 and the optimal backordering level B, one differentiates E[TCU(T1,B)]
with respect to T1 and with respect to B and solve the linear systems of Eq. (22) and (23) by setting these partial
derivatives equal to zero:
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With further derivations Eq. (22) becomes:
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Substituting Eq. (24) in (25) one has:
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Therefore, the optimal replenishment run time is:

(27)
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Substituting Eq. (18) in (27) and let:

B1 = E[1/(1!x!8/P)] and B2 = (b+h). E[(1!x)/(1!x!8/P)] (28)

RESULTS AND DISCUSSION

The optimal solutions in terms of production run time and lot size are obtained as follows:
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If production equipment failure factor is not an issue at all, then machine repairing cost and time are both zero (i.e.,
M = 0 and g = 0), Eq. (30) and (24) become the same as were given in Chiu (2003) as follows:

(31)
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Further, if the nonconforming rate is zero (i.e., x = 0),
then Eq. (31) and (33) become the same equations as
those in classic EPQ model with shortages backordered
(Hillier and Lieberman, 2001):
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Numerical example with further discussion: Consider
a product has annual demand 4600 units and its annual
production rate P is 11500 units. Production equipment is
subject to a random breakdown that follows a Poisson
distribution with mean $ = 2 times per year and according
to the MTBF analysis, a random breakdown is expected
to occur in inventory piling time. Abort/Resume (AR)
policy is used when a random breakdown occurs. The
percentage x of defective items produced follows a
uniform distribution over the interval [0, 0.2]. All
nonconforming products are repairable at a rework rate
P1= 600 units/year. Additional values of system
parameters are

C = $2 per item
CR = $0.5 for each item reworked
K = $450 for each production run
h = $0.6 per item per unit time
h1 = $0.8 per item per unit time,
M = $500 repair cost for each breakdown
b = $0.2 per item backordered per unit time
g = 0.018 years, time needed to repair and restore the

machine

Applying Eq. (29), (30) and (24), one obtains the
optimal production run time T1* = 0.7454 (years), the
optimal replenishment lot-size Q* = 8572 and the optimal
backordering level B* = 3447. Plugging these decision
variables in Eq. (19), the optimal E[TCU(T1*,B*)] =
$10,386.06. Figure 3 illustrates variation of the expected
values of nonconforming rate E[x] effects on E[TCU(Q*,
B*)]. One notes  that  as  E[x]  increases, the value of the
long-run average cost function E[TCU(Q*, B*)] increases
significantly.

Figure 4 demonstrates the convexity of the long-
run average cost function E[TCU(Q, B)] for the proposed
model. Finally, one notes that suppose the research result

Fig. 3: Variation of the expected values of nonconforming rate
E[x] effects on E[TCU(Q*,B*)]

Fig. 4: Demonstration of the convexity of the long-run average
cost function E[TCU(Q,B)] for the proposed model

of the present study does not exist, one will probably use
a closely related model (Chiu, 2003) to obtain Q = 5601
and B = 2320. Then by plugging T1 and B in Eq. (19) one
obtains E[TCU(Q,B)] = $10,577. One notes that it will
cost $191 more than the optimal cost we have or 16.1%
more on total other related cost (i.e., E[TCU(Q,B)]-8C).

CONCLUSION

The present study incorporates the backordering of
permissible shortage, the reworking of repairable
nonconforming items and random equipment failure into
the classic economic production quantity model. In the
manufacturing sector, all aforementioned factors are
realistic and/or inevitable. Without an in-depth
investigation of such a real life production system, the
optimal lot-size and level of backordering that minimize
total production-inventory costs cannot be obtained.
Because little attention has been paid to this area, this
research intends to bridge the gap. For future study, one
could look into the effect of equipment failure taking
place in backorder satisfying time on the replenishment
decisions.
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Appendix:

Proof of convexity of E[TCU(T1,B)]
Applying the Hessian matrix equations (Rardin, 1998) to Eq. (19) one has:
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Therefore, one has Eq. (21).
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