
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Data linkage dynamics with shedding

Bergstra, J.A.; Middelburg, C.A.

Link to publication

Citation for published version (APA):
Bergstra, J. A., & Middelburg, C. A. (2008). Data linkage dynamics with shedding. Ithaca, NY: arXiv.org.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),
other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating
your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask
the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,
The Netherlands. You will be contacted as soon as possible.

Download date: 02 Jul 2019

https://dare.uva.nl/personal/pure/en/publications/data-linkage-dynamics-with-shedding(4df9eb94-cdca-4211-a572-7cba09f30f6a).html

ar
X

iv
:0

80
6.

40
34

v1
 [

cs
.L

O
]

 2
5

Ju
n

20
08

Data Linkage Dynamics with Shedding⋆

J.A. Bergstra and C.A. Middelburg

Programming Research Group, University of Amsterdam,
P.O. Box 41882, 1009 DB Amsterdam, the Netherlands

J.A.Bergstra@uva.nl,C.A.Middelburg@uva.nl

Abstract. We study shedding in the setting of data linkage dynamics,
a simple model of computation that bears on the use of dynamic data
structures in programming. Shedding is complementary to garbage col-
lection. With shedding, each time a link to a data object is updated by
a program, it is determined whether or not the link will possibly be used
once again by the program, and if not the link is automatically removed.
Thus, everything is made garbage as soon as it can be viewed as garbage.
By that, the effectiveness of garbage collection becomes maximal.

Keywords: data linkage dynamics, shedding, forecasting service.

1998 ACM Computing Classification: D.3.3, D.4.2, F.1.1, F.3.3.

1 Introduction

This paper is a sequel to [6]. In that paper, we presented an algebra, called data
linkage algebra, of which the elements are intended for modelling the states of
computations in which dynamic data structures are involved. We also presented
a simple model of computation, called data linkage dynamics, in which states of
computations are modelled as elements of data linkage algebra and state changes
take place by means of certain actions. Data linkage dynamics includes the fol-
lowing features to reclaim garbage: full garbage collection, restricted garbage
collection (as if reference counts are used), safe disposal of potential garbage,
and unsafe disposal of potential garbage.

In the current paper, we add shedding to the features of data linkage dy-
namics. This feature is complementary to the garbage collection features of data
linkage dynamics. Roughly speaking, shedding works as follows: each time a link
to a data object is updated by a program, it is determined whether or not the
link will possibly be used once again by the program, and if not the link is au-
tomatically removed. In this way, everything is made garbage as soon as it can
be taken for garbage. The point of shedding is that by this, the effectiveness of
garbage collection becomes maximal.

⋆ This research was partly carried out in the framework of the Jacquard-project Sym-
biosis, which is funded by the Netherlands Organisation for Scientific Research
(NWO).

http://arXiv.org/abs/0806.4034v1

The view is taken that the behaviours exhibited by programs on execution are
threads as considered in basic thread algebra.1 A thread proceeds by performing
actions in a sequential fashion. A thread may perform an action for the purpose
of interacting with a service that takes the action as a command to be processed.
The processing of the action results in a state change and a reply. In the setting
of basic thread algebra, the use mechanism has been introduced to allow for this
kind of interaction. The state changes and replies that result from performing
the actions of data linkage dynamics can be achieved by means of a service.

In [6], it was explained how basic thread algebra can be combined with data
linkage dynamics by means of the use mechanism in such a way that the whole
can be used for studying issues concerning the use of dynamic data structures in
programming. For a clear apprehension of data linkage dynamics as presented
in that paper, such a combination is not needed. This is different for shedding,
because it cannot be explained without reference to program behaviours. In
the current paper, we adapt the data linkage dynamics services involved in the
combination described in [6] to explain shedding. For the adapted data link-
age dynamics services, shedding happens to be a matter close to reflection on
themselves. Moreover, the adapted data linkage dynamics services are services
of which the state changes and replies may depend on how the thread that per-
forms the actions being processed will proceed. That is why we also introduce a
generalization of the use mechanism to such forecasting services.

Our study of shedding arises from the work on “nullifying dead links” pre-
sented in [9]. That work concerns the removal of links that will not possibly
be used once again by means of static program analysis and program transfor-
mation. In our study of shedding, different from the study in [9], the semantic
effects of the fact that the number of data objects that can exist at the same
time is always bounded are taken into account.

This paper is organized as follows. First, we review data linkage algebra,
data linkage dynamics and basic thread algebra (Sections 2, 3, and 4). Next,
we present the use mechanism for forecasting services and explain how basic
thread algebra can be combined with data linkage dynamics by means of that
use mechanism (Sections 5 and 6). After that, we introduce the shedding feature
and adapt the data linkage dynamics services involved in the combination de-
scribed before such that they support shedding (Sections 7, 8, and 9). Then, we
illustrate shedding by means of some examples (Section 10). Finally, we make
some concluding remarks (Section 11).

2 Data Linkage Algebra

In this section, we review the algebraic theory DLA (Data Linkage Algebra). The
elements of the initial algebra of DLA can serve for the states of computations
in which dynamic data structures are involved.

1 In [4], basic thread algebra is introduced under the name basic polarized process
algebra. Prompted by the development of thread algebra [5], which is a design on
top of it, basic polarized process algebra has been renamed to basic thread algebra.

2

In DLA, it is assumed that a fixed but arbitrary finite set Spot of spots, a
fixed but arbitrary finite set Field of fields, a fixed but arbitrary finite set AtObj

of atomic objects, and a fixed but arbitrary finite set Value of values have been
given.

DLA has one sort: the sort DL of data linkages. To build terms of sort DL,
BTA has the following constants and operators:

– for each s ∈ Spot and a ∈ AtObj, the spot link constant s−→ a : DL;

– for each a ∈ AtObj and f ∈ Field, the partial field link constant a
f
−→ : DL;

– for each a, b ∈ AtObj and f ∈ Field, the field link constant a
f
−→ b : DL;

– for each a ∈ AtObj and n ∈ Value, the value association constant (a)n : DL;
– the empty data linkage constant ∅ : DL;
– the binary data linkage combination operator ⊕ : DL × DL → DL;
– the binary data linkage overriding combination operator ⊕′:DL×DL → DL.

Terms of sort DL are built as usual. Throughout the paper, we assume that
there are infinitely many variables of sort DL, including X , Y , Z. We use infix
notation for data linkage combination and data linkage overriding combination.

Let L and L′ be closed DLA terms. Then the constants and operators of
DLA can be explained as follows:

–
s−→ a is the atomic data linkage that consists of a link via spot s to atomic

object a;

– a
f
−→ is the atomic data linkage that consists of a partial link from atomic

object a via field f ;

– a
f
−→ b is the atomic data linkage that consists of a link from atomic object a

via field f to atomic object b;
– (a)n is the atomic data linkage that consists of an association of the value n

with atomic object a;
– ∅ is the data linkage that does not contain any atomic data linkage;
– L ⊕ L′ is the union of the data linkages L and L′;
– L ⊕′ L′ differs from L ⊕ L′ as follows:

• if L contains spot links via spot s and L′ contains spot links via spot s,
then the former links are overridden by the latter ones;

• if L contains partial field links and/or field links from atomic object a via
field f and L′ contains partial field links and/or field links from atomic
object a via field f , then the former partial field links and/or field links
are overridden by the latter ones;

• if L contains value associations with atomic object a and L′ contains
value associations with atomic object a, then the former value associa-
tions are overridden by the latter ones.

The axioms of DLA are given in Table 1. In this table, s and t stand for
arbitrary spots from Spot, f and g stand for arbitrary fields from Field, a, b, c
and d stand for arbitrary atomic objects from AtObj, and n and m stand for
arbitrary values from Value.

The set B of basic terms over DLA is inductively defined by the following
rules:

3

Table 1. Axioms of DLA

X ⊕ Y = Y ⊕ X

X ⊕ (Y ⊕ Z) = (X ⊕ Y) ⊕ Z

X ⊕ X = X
X ⊕ ∅ = X

∅ ⊕′ X = X

X ⊕′ ∅ = X
X ⊕′ (Y ⊕ Z) = (X ⊕′ Y) ⊕ (X ⊕′ Z)

(X ⊕ (
s−→ a)) ⊕′ (

s−→ b) = X ⊕′ (
s−→ b)

(X ⊕ (a
f
−→)) ⊕′ (a

f
−→) = X ⊕′ (a

f
−→)

(X ⊕ (a
f
−→ b)) ⊕′ (a

f
−→) = X ⊕′ (a

f
−→)

(X ⊕ (a
f
−→)) ⊕′ (a

f
−→ b) = X ⊕′ (a

f
−→ b)

(X ⊕ (a
f
−→ b)) ⊕′ (a

f
−→ c) = X ⊕′ (a

f
−→ c)

(X ⊕ (a)n) ⊕′ (a)m = X ⊕′ (a)m

(X ⊕ (
s−→ a)) ⊕′ (

t−→ b) = (X ⊕′ (
t−→ b)) ⊕ (

s−→ a) if s 6= t

(X ⊕ (a
f
−→)) ⊕′ (

s−→ b) = (X ⊕′ (
s−→ b)) ⊕ (a

f
−→)

(X ⊕ (a
f
−→ b)) ⊕′ (

s−→ c) = (X ⊕′ (
s−→ c)) ⊕ (a

f
−→ b)

(X ⊕ (a)n) ⊕′ (
s−→ b) = (X ⊕′ (

s−→ b)) ⊕ (a)n

(X ⊕ (
s−→ a)) ⊕′ (b

f
−→) = (X ⊕′ (b

f
−→)) ⊕ (

s−→ a)

(X ⊕ (a
f
−→)) ⊕′ (b

g
−→) = (X ⊕′ (b

g
−→)) ⊕ (a

f
−→) if a 6= b ∨ f 6= g

(X ⊕ (a
f
−→ b)) ⊕′ (c

g
−→) = (X ⊕′ (c

g
−→)) ⊕ (a

f
−→ b) if a 6= c ∨ f 6= g

(X ⊕ (a)n) ⊕′ (b
f
−→) = (X ⊕′ (b

f
−→)) ⊕ (a)n

(X ⊕ (
s−→ a)) ⊕′ (b

f
−→ c) = (X ⊕′ (b

f
−→ c)) ⊕ (

s−→ a)

(X ⊕ (a
f
−→)) ⊕′ (b

g
−→ c) = (X ⊕′ (b

g
−→ c)) ⊕ (a

f
−→) if a 6= b ∨ f 6= g

(X ⊕ (a
f
−→ b)) ⊕′ (c

g
−→ d) = (X ⊕′ (c

g
−→ d)) ⊕ (a

f
−→ b) if a 6= c ∨ f 6= g

(X ⊕ (a)n) ⊕′ (b
f
−→ c) = (X ⊕′ (b

f
−→ c)) ⊕ (a)n

(X ⊕ (
s−→ a)) ⊕′ (b)n = (X ⊕′ (b)n) ⊕ (

s−→ a)

(X ⊕ (a
f
−→)) ⊕′ (b)n = (X ⊕′ (b)n) ⊕ (a

f
−→)

(X ⊕ (a
f
−→ b)) ⊕′ (c)n = (X ⊕′ (c)n) ⊕ (a

f
−→ b)

(X ⊕ (a)n) ⊕′ (b)m = (X ⊕′ (b)m) ⊕ (a)n if a 6= b

– ∅ ∈ B;
– if s ∈ Spot and a ∈ AtObj, then

s−→a ∈ B;

– if a ∈ AtObj and f ∈ Field, then a
f
−→ ∈ B;

– if a, b ∈ AtObj and f ∈ Field, then a
f
−→ b ∈ B;

– if a ∈ AtObj and n ∈ Value, then (a)n ∈ B;
– if L1, L2 ∈ B, then L1 ⊕ L2 ∈ B.

Theorem 1. For all closed DLA terms L, there exists a basic term L′ ∈ B such

that L = L′ is derivable from the axioms of DLA.

Proof. See Theorem 1 in [6]. ⊓⊔

4

We are only interested in the initial model of DLA. We write DL for the
set of all elements of the initial model of DLA. DL consists of the equivalence
classes of basic terms over DLA with respect to the equivalence induced by the
axioms of DLA. In other words, modulo equivalence, B is DL. Henceforth, we
will identify basic terms over DLA and their equivalence classes.

3 Data Linkage Dynamics

DLD (Data Linkage Dynamics) is a simple model of computation that bears
on the use of dynamic data structures in programming. It comprises states,
basic actions, and the state changes and replies that result from performing the
basic actions. The states of DLD are data linkages. In this section, we give an
informal explanation of the basic actions of DLD to structure data dynamically.
The basic actions of DLD to deal with values found in dynamically structured
data, as well as some actions related to reclaiming garbage, are not explained.
For a comprehensive presentation of DLD, the reader is referred to [6].

Like in DLA, it is assumed that a fixed but arbitrary finite set Spot of spots,
a fixed but arbitrary finite set Field of fields, and a fixed but arbitrary finite
set AtObj of atomic objects have been given. It is also assumed that a fixed
but arbitrary choice function ch : (P(AtObj) \ ∅) → AtObj such that, for all
A ∈ P(AtObj) \ ∅, ch(A) ∈ A has been given. The function ch is used whenever
a fresh atomic object must be obtained.

Below, we will informally explain the features of DLD to structure data
dynamically. When speaking informally about a state L of DLD, we say:

– if there exists a unique atomic object a for which
s−→ a is contained in L,

the content of spot s instead of the unique atomic object a for which
s−→ a is

contained in L;
– the fields of atomic object a instead of the set of all fields f such that either

a
f
−→ is contained in L or there exists an atomic object b such that a

f
−→ b is

contained in L;

– if there exists a unique atomic object b for which a
f
−→ b is contained in L,

the content of field f of atomic object a instead of the unique atomic object

b for which a
f
−→ b is contained in L.

In the case where the uniqueness condition is met, the spot or field concerned is
called locally deterministic.

DLD has the following basic actions to structure data dynamically:

– for each s ∈ Spot, a get fresh atomic object action s !;
– for each s, t ∈ Spot, a set spot action s = t;
– for each s ∈ Spot, a clear spot action s = ∗;
– for each s, t ∈ Spot, an equality test action s == t;
– for each s ∈ Spot, an undefinedness test action s == ∗;
– for each s ∈ Spot and f ∈ Field, a add field action s/f ;
– for each s ∈ Spot and f ∈ Field, a remove field action s\f ;

5

– for each s ∈ Spot and f ∈ Field, a has field action s |f ;
– for each s, t ∈ Spot and f ∈ Field, a set field action s.f = t;
– for each s ∈ Spot and f ∈ Field, a clear field action s.f = ∗;
– for each s, t ∈ Spot and f ∈ Field, a get field action s = t.f .

If only locally deterministic spots and fields are involved, these actions can
be explained as follows:

– s !: if a fresh atomic object can be allocated, then the content of spot s
becomes that fresh atomic object and the reply is T; otherwise, nothing
changes and the reply is F;

– s = t: the content of spot s becomes the same as the content of spot t and
the reply is T;

– s = ∗: the content of spot s becomes undefined and the reply is T;
– s == t: if the content of spot s equals the content of spot t, then nothing

changes and the reply is T; otherwise, nothing changes and the reply is F;
– s == ∗: if the content of spot s is undefined, then nothing changes and the

reply is T; otherwise, nothing changes and the reply is F;
– s/f : if the content of spot s is an atomic object and f does not yet belong

to the fields of that atomic object, then f is added (with undefined content)
to the fields of that atomic object and the reply is T; otherwise, nothing
changes and the reply is F;

– s\f : if the content of spot s is an atomic object and f belongs to the fields of
that atomic object, then f is removed from the fields of that atomic object
and the reply is T; otherwise, nothing changes and the reply is F;

– s |f : if the content of spot s is an atomic object and f belongs to the fields
of that atomic object, then nothing changes and the reply is T; otherwise,
nothing changes and the reply is F;

– s.f = t: if the content of spot s is an atomic object and f belongs to the
fields of that atomic object, then the content of that field becomes the same
as the content of spot t and the reply is T; otherwise, nothing changes and
the reply is F;

– s.f = ∗: if the content of spot s is an atomic object and f belongs to the
fields of that atomic object, then the content of that field becomes undefined
and the reply is T; otherwise, nothing changes and the reply is F;

– s = t.f : if the content of spot t is an atomic object and f belongs to the
fields of that atomic object, then the content of spot s becomes the same as
the content of that field and the reply is T; otherwise, nothing changes and
the reply is F.

In the explanation given above, wherever we say that the content of a spot or field
becomes the same as the content of another spot or field, this is meant to imply
that the former content becomes undefined if the latter content is undefined.
If not only locally deterministic spots and fields are involved in performing an
action, there is no state change and the reply is F.

Atomic objects that are not reachable via spots and fields can be reclaimed.
Reclamation of unreachable atomic objects is relevant because the set AtObj of

6

atomic objects is finite. In [6], we introduce various ways to achieve reclama-
tion of unreachable atomic objects. In this section, we mention only one of the
reclamation-related actions: the full garbage collection action fgc. By performing
this action, all unreachable atomic objects are reclaimed. The reply that results
from performing this action is always T.

We write ADLD for the set of all basic actions of DLD.
In [6], we describe the state changes and replies that result from performing

the basic actions of DLD by means of a term rewrite system with rule priori-
ties [1]. For that purpose, a unary effect operator effα and a unary yield operator
yldα are introduced for each basic action α ∈ ADLD. The intuition is that these
operators stand for operations that give, for each state L, the state and reply,
respectively, that result from performing basic action α in state L.

4 Basic Thread Algebra

In this section, we review the algebraic theory BTA (Basic Thread Algebra), a
form of process algebra which is tailored to the description and analysis of the
behaviours of sequential programs under execution. The behaviours concerned
are called threads.

In BTA, it is assumed that a fixed but arbitrary finite set A of basic actions,
with tau 6∈ A, has been given. We write Atau for A∪{tau}. The members of Atau

are referred to as actions.
Threads proceed by performing actions in a sequential fashion. Each basic

action performed by a thread is taken as a command to be processed by some
service provided by the execution environment of the thread. The processing of a
command may involve a change of state of the service concerned. At completion
of the processing of the command, the service returns a reply value T or F to
the thread concerned.

BTA has one sort: the sort T of threads. To build terms of sort T, BTA has
the following constants and operators:

– the deadlock constant D : T;
– the termination constant S : T;
– for each α ∈ Atau, the binary postconditional composition operator E α D :

T × T → T.

Terms of sort T are built as usual (see e.g. [10, 11]). Throughout the paper, we
assume that there are infinitely many variables of sort T, including x, y, z.

We use infix notation for postconditional composition. We introduce action

prefixing as an abbreviation: α ◦ p, where p is a term of sort T, abbreviates
p E α D p.

Let p and q be closed terms of sort T and α ∈ Atau. Then p E αD q will
perform action α, and after that proceed as p if the processing of α leads to the
reply T (called a positive reply), and proceed as q if the processing of α leads
to the reply F (called a negative reply). The action tau plays a special role. It
is a concrete internal action: performing tau will never lead to a state change

7

Table 2. Axiom of BTA

x E tauD y = x E tauD x T1

Table 3. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

and always lead to a positive reply, but notwithstanding all that its presence
matters.

BTA has only one axiom. This axiom is given in Table 2.
Each closed BTA term of sort T denotes a finite thread, i.e. a thread of which

the length of the sequences of actions that it can perform is bounded. Guarded
recursive specifications give rise to infinite threads.

A guarded recursive specification over BTA is a set of recursion equations
E = {X = pX | X ∈ V }, where V is a set of variables of sort T and each pX

is a term of the form D, S or p E αD q with p and q BTA terms of sort T that
contain only variables from V . We write V(E) for the set of all variables that
occur on the left-hand side of an equation in E. We are only interested in models
of BTA in which guarded recursive specifications have unique solutions, such as
the projective limit model of BTA presented in [2].

We extend BTA with guarded recursion by adding constants for solutions
of guarded recursive specifications and axioms concerning these additional con-
stants. For each guarded recursive specification E and each X ∈ V(E), we add a
constant of sort T standing for the unique solution of E for X to the constants
of BTA. The constant standing for the unique solution of E for X is denoted by
〈X |E〉. Moreover, we add the axioms for guarded recursion given in Table 3 to
BTA, where we write 〈tX |E〉 for tX with, for all Y ∈ V(E), all occurrences of
Y in tX replaced by 〈Y |E〉. In this table, X , tX and E stand for an arbitrary
variable of sort T, an arbitrary BTA term of sort T and an arbitrary guarded
recursive specification over BTA, respectively. Side conditions are added to re-
strict the variables, terms and guarded recursive specifications for which X , tX
and E stand.

Henceforth, we write BTA+REC for BTA extended with the constants for so-
lutions of guarded recursive specifications and axioms RDP and RSP. Moreover,
we write T for the set of all closed terms of BTA+REC.

In the following definition, the interpretation of a postconditional composi-
tion operator in a model of BTA+REC is denoted by the operator itself. Let M

be some model of BTA+REC, and let p be an element from the domain of M.
Then the set of residual threads of p, written Res(p), is inductively defined as
follows:

– p ∈ Res(p);
– if q E a D r ∈ Res(p), then q ∈ Res(p) and r ∈ Res(p).

We say that p is regular if Res(p) is finite.

8

We are only interested in models of BTA+REC in which the solution of a
guarded recursive specification E over BTA is regular if and only if E is finite,
such as the projective limit model presented in [2]. Par abus de langage, a closed
term of BTA+REC without occurrences of constants 〈X |E〉 for infinite E will
henceforth be called a regular thread.

5 A Use Mechanism for Forecasting Services

A thread may perform an action for the purpose of interacting with a service
that takes the action as a command to be processed. The processing of the action
may involve a change of state of the service and at completion of the processing
of the action the service returns a reply value to the thread. In this section, we
introduce a mechanism that is concerned with this kind of interaction. It is a
generalization of the use mechanism introduced in [6] to forecasting services. A
forecasting service is a service of which the state changes and replies may depend
on how the thread that performs the actions being processed will proceed.

It is assumed that a fixed but arbitrary finite set F of foci and a fixed but
arbitrary finite set M of methods have been given. Each focus plays the role
of a name of some service provided by an execution environment that can be
requested to process a command. Each method plays the role of a command
proper. For the set A of actions, we take the set {f.m | f ∈ F , m ∈ M}.
Performing an action f.m is taken as making a request to the service named f
to process command m.

Recall that T stands for the set of all closed terms of BTA+REC.
A forecasting service H consists of

– a set S of states ;
– an effect function eff : M× S × T → S;
– a yield function yld : M× S × T → {T, F, B};
– an initial state s0 ∈ S;

satisfying the following conditions:

∃s ∈ S • ∀m ∈ M, p ∈ T •

(yld(m, s, p) = B ∧ ∀s′ ∈ S • (yld(m, s′, p) = B ⇒ eff (m, s′, p) = s)) ,

∀s ∈ S, m, m′ ∈ M, f ∈ F , p, q ∈ T •

(yld(m, s, S) = B ∧ yld(m, s, D) = B ∧ yld(m, s, tau ◦ p) = B ∧
(m 6= m′ ⇒ yld(m, s, p E f.m′ D q) = B)) .

The set S contains the states in which the services may be, and the functions
eff and yld give, for each method m, state s and thread p, the state and reply,
respectively, that result from processing m in state s if p is the thread that makes
the request to process m.

Given a forecasting service H = (S, eff , yld , s0), a method m ∈ M and a
thread p ∈ T :

9

Table 4. Axioms for use operators

S /f H = S TSU1
D /f H = D TSU2

(tau ◦ p) /f H = tau ◦ (p /f H) TSU3

(p E g.mD q) /f H = (p /f H) E g.mD (q /f H) if f 6= g TSU4
(p E f.m D q) /f H = tau ◦ (p /f

∂
∂m

H [p E f.m D q]) if H [p E f.m D q](m) = T TSU5

(p E f.m D q) /f H = tau ◦ (q /f
∂

∂m
H [p E f.m D q]) if H [p E f.m D q](m) = F TSU6

(p E f.m D q) /f H = D if H [p E f.m D q](m) = B TSU7

– the derived service of H after processing m in the context of p, written
∂

∂m
H [p], is the forecasting service (S, eff , yld , eff (m, s0, p));

– the reply of H after processing m in the context of p, written H [p](m), is
yld(m, s0, p).

A forecasting service H = (S, eff , yld , s0) can be understood as follows:

– if thread p makes a request to the service to process m and H [p](m) 6= B,
then the request is accepted, the reply is H [p](m), and the service proceeds
as ∂

∂m
H [p];

– if thread p makes a request to the service to process m and H [p](m) = B,
then the request is rejected.

By the first condition on forecasting services, after a request has been rejected
by the service, it gets into a state in which any request will be rejected. By the
second condition on forecasting services, any request that does not correspond
to the action being performed by thread p is rejected.

In the case of a forecasting service H = (S, eff , yld , s0), the derived service
and reply that result from processing a method may depend on how the thread
that makes the request to process that method will proceed. Hence the name
forecasting service. Henceforth, we will omit the qualification forecasting if no
confusion can arise with other kinds of services.

We introduce yet another sort: the sort S of services. However, we will not
introduce constants and operators to build terms of this sort. We introduce the
following additional operators:

– for each f ∈ F , the binary use operator /f : T × S → T.

We use infix notation for the use operators.
Intuitively, p /f H is the thread that results from processing all actions per-

formed by thread p that are of the form f.m by service H . When an action of
the form f.m performed by thread p is processed by service H , that action is
turned into the internal action tau and postconditional composition is removed
in favour of action prefixing on the basis of the reply value produced.

The axioms for the use operators are given in Table 4. In this table, f and
g stand for arbitrary foci from F , m stands for an arbitrary method from M,
p and q stand for arbitrary closed terms of sort T, and H is a variable of sort

10

S. Axioms TSU3 and TSU4 express that the action tau and actions of the form
g.m, where f 6= g, are not processed. Axioms TSU5 and TSU6 express that a
thread is affected by a service as described above when an action of the form
f.m is processed by the service. Axiom TSU7 expresses that deadlock takes place
when an action to be processed is not accepted.

Henceforth, we write BTAuse for BTA, taking the set {f.m | f ∈ F , m ∈ M}
for A, extended with the use operators and the axioms from Table 4.

The use mechanism introduced in [5] deals in essence with forecasting services
of which:

– the set of states is the set of all sequences with elements from M;
– the derived service and reply that result from processing a method do not

depend on how the thread that makes the request to process that method
will proceed.

For these services, the use mechanism introduced in this section coincides with
the use mechanism introduced in [5]. The architecture-dependent services con-
sidered in [3] can be looked upon as simple forecasting services.

6 Thread Algebra and Data Linkage Dynamics Combined

The state changes and replies that result from performing the actions of data
linkage dynamics can be achieved by means of services. In this short section, we
explain how basic thread algebra can be combined with data linkage dynamics
by means of the use mechanism introduced in Section 5 such that the whole
can be used for studying issues concerning the use of dynamic data structures
in programming. The services involved do not have a forecasting nature. The
adapted services needed to deal with shedding, which are described in Section 9,
have a forecasting nature.

Recall that DL stands for the set of all elements of the initial model of DLA,
and recall that, for each α ∈ ADLD, effα and yldα stand for unary operations
on DL that give, for L ∈ DL, the state and reply, respectively, that result from
performing basic action α in state L. It is assumed that a blocking state ↑ 6∈ DL
has been given.

Take M such that ADLD ⊆ M. Moreover, let L ∈ DL ∪ {↑}. Then the data

linkage dynamics service with initial state L, written DLD(L), is the service
(DL ∪ {↑}, eff , yld , L), where the functions eff and yld are the effect and yield
functions satisfying the equations in Table 5.

By means of threads and the data linkage dynamics services introduced
above, we can give a precise picture of computations in which dynamic data
structures are involved. Examples of such computations can be found in [6].

The combination of basic thread algebra and data linkage dynamics by means
of the use mechanism can be used for studying issues concerning the use of
dynamic data structures in programming at the level of program behaviours. A
hierarchy of simple program notations rooted in PGA is presented in [4]. Included
are program notations which are close to existing assembly languages up to and

11

Table 5. Definition of effect and yield functions for DLD

eff (m, L, p E f.m D q) = effm(L) if m ∈ ADLD

eff (m, L, p E f.m D q) = ↑ if m 6∈ ADLD

yld(m, L, p E f.m D q) = yldm(L) if m ∈ ADLD

yld(m, L, p E f.m D q) = B if m 6∈ ADLD

yld(m, L, p) = B ⇒ eff (m, L, p) = ↑

including program notations that support structured programming by offering
a rendering of conditional and loop constructs. Regular threads are taken as the
behaviours of programs in those program notations. Together with one of the
program notations, the combination of basic thread algebra and data linkage
dynamics can be used for studying issues concerning the use of dynamic data
structures in programming at the level of programs. We mention one such issue.
In general terms, the issue is whether we can do without garbage collection
by program transformation at the price of a linear increase of the number of
available atomic objects. In [6], we phrase this issue precisely for one of the
program notation rooted in PGA.

The notation for the basic actions of DLD, makes the focus-method notation
f.m less suitable in the case where m is a basic action of DLD. Therefore, we
will henceforth mostly write f(m) instead of f.m if m ∈ ADLD.

7 The Shedding Feature

In this section, we introduce the shedding feature in the setting of data linkage
dynamics in an informal way. In Section 9, we will adapt the data linkage dy-
namics services introduced in Section 6 to explain shedding in a more precise
way.

Roughly speaking, shedding works as follows: each time the content of a spot
or field is changed, it is determined whether or not the spot or field will possibly
be used once again, and if not its content is made undefined. If a spot or field is
made undefined in this way, we say that it is shed. The use of a previously shed
spot or field is called a shedding error.

The shedding feature is rather non-obvious. Consider the thread

dld(s !) ◦ ((dld(u = s) ◦ S) E dld(t !)D S)

and assume that the cardinality of AtObj is 1. If s is not shed on performing s !,
then a negative reply is produced on performing t ! and the thread terminates
without having made use of s. However, from this it cannot be concluded that
s could be shed on performing s ! after all. If s would be shed on performing s !,
a positive reply would be produced on performing t ! and after that a shedding
error would occur. This shows that shedding becomes paradoxical if we do not
deal properly with the fact that shedding of a spot or field influences whether
or not that spot or field will possibly be used once again.

12

In the light of this, it is of the utmost importance to have the right criterion
for shedding in mind:

a spot or field can safely be shed if it is not possible for the program
behaviour under consideration to evolve in the case where that spot
or field is shed, irrespective as to whether other spots and fields are
subsequently shed, in such a way that the first shedding error concerns
that spot or field.

When speaking about applications of this criterion, shedding errors that concern
the spot or field to which the criterion is applied are called primary shedding
errors and other shedding errors are called secondary shedding errors.

In Section 6, it was explained how basic thread algebra can be combined
with data linkage dynamics by means of the use mechanism from Section 5
in such a way that the whole can be used for studying issues concerning the
use of dynamic data structures in programming. For a clear apprehension of
data linkage dynamics as presented in Section 3, such a combination is not
needed. This is different for shedding: it cannot be explained without reference
to program behaviours. In Section 9, we adapt the data linkage dynamics services
involved in the combination described in Section 6 to explain shedding.

For the adapted data linkage dynamics services, shedding happens to be a
matter close to reflection on itself. Material to the adaptation is the above-
mentioned criterion for shedding a spot or field. Instrumental in checking this
criterion are the data linkage dynamics services for a minor variation of DLD.
It concerns services which support the mimicking of shedding.

8 Mimicking of Shedding

In this section, we describe the data linkage dynamics services that are material
to checking the criterion for shedding a spot or field adopted in Section 7.

The services in question are data linkage dynamics services for a variation
of DLD. The variation concerned, referred to as DLDmsh, differs from DLD as
follows:

– it has two additional atomic objects ∗p and ∗s;
– for each s ∈ Spot, it has two additional basic actions s = ∗p and s = ∗s;
– for each s ∈ Spot and f ∈ Field, it has two additional basic actions s.f = ∗p

and s.f = ∗s;
– on performing s !, the contents of spot s never becomes ∗p or ∗s;
– on performing fgc, ∗p and ∗s are never reclaimed.

If only locally deterministic spots and fields are involved, the additional basic
actions can be explained as follows:

– s = ∗p: the content of spot s becomes ∗p and the reply is T;
– s = ∗s: the content of spot s becomes ∗s and the reply is T;

13

Table 6. Definition of effect and yield functions for DLD with mimicking of shedding

eff msh(m, L, p E f.m D q) = eff msh
m (L) if m ∈ ADLDmsh

eff msh(m, L, p E f.m D q) = ↑ if m 6∈ ADLDmsh

yldmsh(m,L, p E f.m D q) = yldmsh
m (L) if m ∈ ADLDmsh

yldmsh(m,L, p E f.m D q) = B if m 6∈ ADLDmsh

yldmsh(m,L, p) = B ⇒ eff msh(m, L, p) = ↑

– s.f = ∗p: if the content of spot s is an atomic object and f belongs to the
fields of that atomic object, then the content of that field becomes ∗p and
the reply is T; otherwise, nothing changes and the reply is F;

– s.f = ∗s: if the content of spot s is an atomic object and f belongs to the
fields of that atomic object, then the content of that field becomes ∗s and
the reply is T; otherwise, nothing changes and the reply is F.

If not only locally deterministic spots and fields are involved in performing an
action, there is no state change and the reply is F.

The special atomic objects ∗p and ∗s are used as follows:

– when checking of the criterion for some spot or field starts, the shedding of
that spot or field is mimicked by setting its content to ∗p;

– during checking, the shedding of another spot or field is mimicked by setting
its content to ∗s.

If a spot or field is used whose content is ∗p, a mimicked primary shedding error
is encountered and, if a spot or field is used whose content is ∗s, a mimicked
secondary shedding error is encountered.

Different sets of spots, sets of fields or sets of atomic objects give rise to
different instances of DLA. The states of DLD are the elements of the initial
model of some instance of DLA. Because of the two additional atomic objects,
the states of DLDmsh are the elements of the initial model of another instance
of DLA. Henceforth, we write DL for the set of all elements of the initial model
of former instance of DLA and DLmsh for the set of all elements of the initial
model of latter instance of DLA. In [6], we describe the state changes and replies
that result from performing basic actions of DLD by means of a term rewrite
system with rule priorities. It is obvious how that term rewrite system must be
adapted to obtain a term rewrite system describing the state changes and replies
that result from performing basic actions of DLDmsh. For each basic action α of
DLDmsh, we write eff msh

α and yldmsh
α for the effect and yield operators that go

with α in the latter term rewrite system. Moreover, we write ADLDmsh for the
set of all basic actions of DLDmsh.

Let L ∈ DLmsh ∪ {↑}. Then the mimicking of shedding supporting data link-

age dynamics service with initial state L, written DLDmsh(L), is the service
(DLmsh ∪ {↑}, eff msh, yldmsh, L), where the functions eff msh and yldmsh are the
effect and yield functions satisfying the equations in Table 6.

14

9 Shedding Supporting Data Linkage Dynamics Services

In this section, we turn to the data linkage dynamic services that support shed-
ding themselves.

We assume that dld ∈ F . It is supposed that requests to a shedding support-
ing data linkage dynamics service to process basic actions of DLD are always
made using the focus dld. We write Ash

DLD for the set of all basic actions of DLD
that are of the form s !, s = t, s.f = t or s = t.f .

In the definition of shedding supporting data linkage dynamics services given
below, we use an auxiliary function sh :ADLD → ADLD and a set shok ⊆ T ×DL.

The function sh gives, for each basic action of DLD for changing the content
of a spot or field, the basic action of DLD for making the content of that spot
or field undefined. For each other basic action of DLD, sh gives the basic action
itself. The function sh is defined as follows:

sh(s !) = (s = ∗) ,
sh(s = t) = (s = ∗) ,
sh(s.f = t) = (s.f = ∗) ,
sh(s = t.f) = (s = ∗) ,
sh(α) = α if α 6∈ Ash

DLD .

In the definition of the set shok , we use an auxiliary function msh :{0, 1, 2}×
ADLD → ADLDmsh and, for each L ∈ DLmsh, sets nosherr(L), secmsherr (L) ⊆
ADLD.

The function msh gives, for each natural number in the set {0, 1, 2} and each
basic action of DLD for changing the content of a spot or field: the basic action
itself if the number is 0, the basic action of DLDmsh for making the content of
that spot or field ∗p if the number is 1, and the basic action of DLDmsh for
making the content of that spot or field ∗s if the number is 2. For each other
basic action of DLD, msh gives always the basic action itself. The function msh

is defined as follows:

msh(0, α) = α ,
msh(1, s !) = (s = ∗p) ,
msh(1, s = t) = (s = ∗p) ,
msh(1, s.f = t) = (s.f = ∗p) ,
msh(1, s = t.f) = (s = ∗p) ,

msh(i, α) = α if α 6∈ Ash
DLD ,

msh(2, s !) = (s = ∗s) ,
msh(2, s = t) = (s = ∗s) ,
msh(2, s.f = t) = (s.f = ∗s) ,
msh(2, s = t.f) = (s = ∗s) .

For each L ∈ DLmsh, the set nomsherr (L) contains all basic actions α ∈ ADLD

whose use in state L does not amount to a mimicked shedding error and the
set secmsherr(L) contains all basic actions α ∈ ADLD whose use in state L
amounts to a mimicked secondary shedding error. For each L ∈ DLmsh, the set
nomsherr (L) is inductively defined as follows:

– s !, s = ∗ ∈ nomsherr (L);
– if L ⊕ (s−→ a) = L, a 6= ∗p and a 6= ∗s,

then t = s, s == ∗, s/f, s\f, s |f ∈ nomsherr(L);

15

– if L ⊕ (
s−→ a) ⊕ (

t−→ b) = L, a 6= ∗p, a 6= ∗s, b 6= ∗p and b 6= ∗s,
then s == t, s.f = t ∈ nomsherr (L);

– if L ⊕ (
s−→ a) ⊕ (a

f
−→ b) = L, a 6= ∗p, a 6= ∗s, b 6= ∗p and b 6= ∗s,

then t = s.f ∈ nomsherr(L);

and the set secmsherr (L) is inductively defined as follows:

– if L⊕(s−→∗s) = L, then t = s, s == t, t == s, s == ∗, s/f, s\f, s |f, s.f = t,
t.f = s, t = s.f ∈ secmsherr (L);

– if L ⊕ (s−→ a) ⊕ (a
f
−→ ∗s) = L, then t = s.f ∈ secmsherr(L).

The set shok contains all pairs (p, L) ∈ T × DL such that, if the first action
that is performed by p is an action of the form dld.m, where m is a basic action
of DLD for changing the content of a spot or field, the criterion for shedding of
that spot or field is met. The general idea underlying the definition of shok given
below is that the criterion for shedding can be checked by mimicking shedding.
In checking, all possibilities must be considered:

– if an action of the form f.m with f 6= dld is encountered, then two possibilities
arise: (i) the reply is T and (ii) the reply is F;

– if an action of the form dld.m with m a basic action of DLD of the form s !,
s = t, s.f = t or s = t.f is encountered, then two possibilities arise: (i) the
spot or field eligible for shedding is not shed and (ii) the spot or field eligible
for shedding is shed.

In general, this means that many paths must be followed. For regular threads,
the number of paths to be followed will remain finite and eventually either ter-
mination, deadlock, a mimicked primary shedding error, a mimicked secondary
shedding error or a cycle without mimicked shedding errors will be encountered
along each of the paths to be followed. The criterion for shedding is met if along
each of the paths to be followed it is not a mimicked primary shedding error
that is encountered first. For non-regular threads, it is undecidable whether the
criterion for shedding is met.

The set shok is defined by shok = shok ′(1, ∅), where the sets shok ′(i, C) ⊆
T × DLmsh for i ∈ {0, 1, 2} and C ⊆ T × DLmsh are defined by simultaneous
induction as follows:

– (S, L), (D, L) ∈ shok ′(i, C);
– if f 6= dld,

(p, L) ∈ shok ′(0, C ∪ {(p E f.m D q, L)}),
(p, L) ∈ shok ′(2, C ∪ {(p E f.m D q, L)}),
(q, L) ∈ shok ′(0, C ∪ {(p E f.m D q, L)}),
(q, L) ∈ shok ′(2, C ∪ {(p E f.m D q, L)}),

then (p E f.m D q, L) ∈ shok ′(i, C);
– if m ∈ nomsherr(L),

(p E dld.msh(i, m)D q) /dld DLD
msh(L) = tau ◦ (r /dld DLD

msh(L′)),
(r, L′) ∈ shok ′(0, C ∪ {(p E dld.m D q, L)}),
(r, L′) ∈ shok ′(2, C ∪ {(p E dld.m D q, L)}),

then (p E dld.m D q, L) ∈ shok ′(i, C);

16

Table 7. Definition of effect and yield functions for DLD with shedding

eff sh(m, L, p E f.m D q) = eff
sh(m)(L) if m ∈ ADLD ∧ (p E f.m D q, L) ∈ shok

eff sh(m, L, p E f.m D q) = effm(L) if m ∈ ADLD ∧ (p E f.m D q, L) 6∈ shok

eff sh(m, L, p E f.m D q) = ↑ if m 6∈ ADLD

yldsh(m,L, p E f.m D q) = yld
sh(m)(L) if m ∈ ADLD ∧ (p E f.m D q, L) ∈ shok

yldsh(m,L, p E f.m D q) = yldm(L) if m ∈ ADLD ∧ (p E f.m D q, L) 6∈ shok

yldsh(m,L, p E f.m D q) = B if m 6∈ ADLD

yldsh(m,L, p) = B ⇒ eff sh(m, L, p) = ↑

– if m ∈ secmsherr(L),
then (p E dld.m D q, L) ∈ shok ′(i, C);

– if 〈X |E〉 ∈ T , X = tX ∈ E, (〈tX |E〉, L) ∈ shok ′(i, C),
then (〈X |E〉, L) ∈ shok ′(i, C);

– if (p, L) ∈ C, then (p, L) ∈ shok ′(i, C).

In shok ′(i, C), i corresponds to the way in which a basic action of DLD for
changing the content of a spot or field is dealt with in checking:

– without mimicking of its shedding if i = 0;
– with mimicking of its shedding by means of ∗p if i = 1;
– with mimicking of its shedding by means of ∗s if i = 2.

The members of C correspond to the combinations of thread and state encoun-
tered before in checking. If such a combination is encountered again, this indi-
cates a cycle without shedding errors because a path is not followed further after
termination, deadlock, a mimicked shedding error or a cycle without mimicked
shedding errors has been encountered.

By the occurrence of the equation (p E dld.msh(i, m)D q) /dld DLD
msh(L) =

tau ◦ (r /dld DLD
msh(L′)) in the third rule of the inductive definition of the sets

shok ′(i, C), a service that is engaged in checking whether a pair (p, L) ∈ T ×DL
belongs to shok is close to reflecting on itself.

Now, we are ready to define, for L ∈ DL∪{↑}, a data linkage dynamic service
DLDsh(L) that supports shedding.

Let L ∈ DL∪{↑}. Then the shedding supporting data linkage dynamics service

with initial state L, written DLDsh(L), is the service (DL ∪ {↑}, eff sh, yld sh, L),
where the functions eff sh and yld sh are the effect and yield functions satisfying
the equations in Table 7.

10 Examples

In this section, we give two examples that illustrate how the definition of shed-
ding supporting data linkage dynamics services can be used to determine whether
in a fixed case a spot or field, whose contents should be changed, is shed. The first
example concerns a case where a spot is shed and the second example concerns
a case where a spot is not shed.

17

Example 1. Let

p = dld(s !) ◦ (S E dld(t !)D D) ,
p′ = S E dld(t !)D D ,
p′′ = S E dld(t = ∗s)D D .

Thread p′ is a residual thread of p and thread p′′ is p′ with t ! replaced by t = ∗s

to mimic shedding. Assume that the cardinality of AtObj is 1, and let a be the
unique atomic object such that AtObj = {a}. Then in p /dld DLDsh(∅), spot s
is shed on performing s !. This is straightforwardly shown using the definition
of shedding supporting data linkage dynamics services. It follows immediately
from the definition of nomsherr that:

(s !) ∈ nomsherr (∅) ,

(t !) ∈ nomsherr(s−→∗p) ,

and it follows easily from the axioms for the use operators and the definition of
mimicking of shedding supporting data linkage dynamics services that:

p /dld DLD
sh(∅) = tau ◦ (p′ /dld DLD

sh(
s−→∗p)) ,

p′ /dld DLD
sh(s−→∗p) = tau ◦ (S /dld DLD

sh((s−→∗p) ⊕ (t−→ a))) ,

p′′ /dld DLD
sh(s−→∗p) = tau ◦ (S /dld DLD

sh((s−→∗p) ⊕ (t−→∗s))) .

Hence, by the definitions of shok ′ and shok :

(p′, s−→∗p) ∈ shok ′(0, {(p, ∅)}) ,

(p′,
s−→∗p) ∈ shok ′(2, {(p, ∅)}) ,

(p, ∅) ∈ shok ′(1, ∅) ,
(p, ∅) ∈ shok .

From this it follows by the definition of eff sh that eff sh(s !, ∅, p) = effsh(s !)(∅).
On account of shedding, we have that

p /dld DLD
sh(∅) = tau ◦ tau ◦ S ,

whereas

p /dld DLD(∅) = tau ◦ tau ◦ D .

The point is that a positive reply is produced on performing t ! only if spot s is
shed on performing s !.

Example 2. Let

p = dld(s !) ◦ ((dld(u = s) ◦ S) E dld(t !)D S) ,
p′ = (dld(u = s) ◦ S) E dld(t !)D S ,
p′′ = dld(u = s) ◦ S .

Thread p is the same thread as the one discussed in Section 7 and threads p′

and p′′ are residual threads of p. Assume again that the cardinality of AtObj

is 1, and let a be the unique atomic object such that AtObj = {a}. Then in
p /dld DLD

sh(∅), spot s is not shed on performing s !. This is easily shown using

18

the definition of shedding supporting data linkage dynamics services. It follows
immediately from the definition of nomsherr , the definition of secmsherr , and
basic set theory that:

(u = s) 6∈ nomsherr((s−→∗p) ⊕ (t−→ a)) ,

(u = s) 6∈ secmsherr((s−→∗p) ⊕ (t−→ a)) ,

(p′′, (s−→∗p) ⊕ (t−→ a)) 6∈ {(p, ∅), (p′, s−→∗p)} ,

and it follows easily from the axioms for the use operators and the definition of
mimicking of shedding supporting data linkage dynamics services that:

p /dld DLD
sh(∅) = tau ◦ (p′ /dld DLD

sh(
s−→∗p)) ,

p′ /dld DLD
sh(

s−→∗p) = tau ◦ (S /dld DLD
sh((

s−→∗p) ⊕ (
t−→ a))) .

Hence, by the definitions of shok ′ and shok :

(p′′, (s−→∗p) ⊕ (t−→ a)) 6∈ shok ′(0, {(p, ∅), (p′, s−→∗p)}) ,

(p′, s−→∗p) 6∈ shok ′(0, {(p, ∅)}) ,
(p, ∅) 6∈ shok ′(1, ∅) ,
(p, ∅) 6∈ shok .

From this it follows by the definition of eff sh that eff sh(s !, ∅, p) = effs !(∅).

11 Conclusions

We have introduced shedding in the setting of data linkage dynamics and have
adapted the data linkage dynamics services described in [6] such that they sup-
port shedding. The adaptation shows that the shedding feature is rather non-
obvious. In particular, it is striking how much the matter is complicated by
taking into consideration the semantic effects of the fact that the number of
data objects that can exist at the same time is always bounded.

We consider the work presented in this paper a semantic validation of shed-
ding. It is an entirely different question whether a real implementation of shed-
ding is of any use in practice. We have not answered this question. Empirical
studies, see e.g. [8], indicate that in general a large part of the data objects that
are reachable at a program point are actually not used beyond that point. How-
ever, the static approximation of shedding proposed in [9] might be more useful
in practice.

In the definition of shedding supporting data linkage dynamics services, be-
longing to shok corresponds to meeting the criterion for shedding. The set shok

is defined using the idea of mimicked shedding. As a result, the description of
the criterion for shedding looks to be rather concrete. It is an open question
whether a more abstract description of the criterion for shedding can be given.
If so, our concrete description should be correct with respect to that abstract
description.

In the case of shedding, the use of forecasting turns out to be semantically
feasible. No restrictions are needed to preclude forecasting from introducing

19

something paradoxical. This is certainly not always the case. For example, in the
case of the halting problem, the use of forecasting is not semantically feasible, see
e.g. [7], and in the case of security hazard risk assessment, the use of forecasting
requires certain restrictions, see e.g. [3].

References

1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W., Weijland, W.P.: Term-rewriting sys-
tems with rule priorities. Theoretical Computer Science 67, 283–301 (1989)

2. Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In:
J.C.M. Baeten, J.K. Lenstra, J. Parrow, G.J. Woeginger (eds.) Proceedings 30th
ICALP, Lecture Notes in Computer Science, vol. 2719, pp. 1–21. Springer-Verlag
(2003)

3. Bergstra, J.A., Bethke, I., Ponse, A.: Thread algebra and risk assessment services.
In: C. Dimitracopoulos, L. Newelski, D. Normann (eds.) Logic Colloquium 2005,
pp. 1–17. Springer-Verlag (2007)

4. Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic
and Algebraic Programming 51(2), 125–156 (2002)

5. Bergstra, J.A., Middelburg, C.A.: Thread algebra for strategic interleaving. Formal
Aspects of Computing 19(4), 445–474 (2007)

6. Bergstra, J.A., Middelburg, C.A.: Data linkage algebra, data linkage dynamics, and
priority rewriting. Electronic Report PRG0806, Programming Research Group,
University of Amsterdam (2008). Available at http://www.science.uva.nl/

research/prog/publications.html, and also available at http://arxiv.org/:
ArXiv:0804.4565v2 [cs.LO]

7. Bergstra, J.A., Ponse, A.: Execution architectures for program algebra. Journal of
Applied Logic 5, 170–192 (2007)

8. Hirzel, M., Diwan, A., Henkel, J.: On the usefulness of type and liveness accuracy
for garbage collection and leak detection. ACM Transactions on Programming
Languages and Systems 24(6), 593–624 (2002)

9. Khedker, U.P., Sanyal, A., Karkare, A.: Heap reference analysis using access graphs.
ACM Transactions on Programming Languages and Systems 30(1), Article 1
(2007)

10. Sannella, D., Tarlecki, A.: Algebraic preliminaries. In: E. Astesiano, H.J. Kreowski,
B. Krieg-Brückner (eds.) Algebraic Foundations of Systems Specification, pp. 13–
30. Springer-Verlag, Berlin (1999)

11. Wirsing, M.: Algebraic specification. In: J. van Leeuwen (ed.) Handbook of Theo-
retical Computer Science, vol. B, pp. 675–788. Elsevier, Amsterdam (1990)

20

