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ABSTRACT
Underwater acoustic (UWA) communication channels suf-

fer from long delay spreads and significant Doppler effects.

Such channels are also ultrawideband in nature. Thus, the

typical UWA distortion can be well-described by a multi-

scale multi-lag (MSML) channel model. Many UWA com-

munication systems employ resampling by a single-scale at

the front-end to compensate for the scale effects of UWA

channels. In this paper, the optimal resampling factor for

OFDM signaling over MSML channels is investigated from

a Bayesian perspective. The resampling factor is selected

to minimize the inter-carrier interference resulting from the

MSML channel. The exact interference power is computed,

but is intractable for optimization, thus an upper bound

is employed for optimization. Numerical results verify the

tightness of the bound and the Bayesian approach is com-

pared to deterministic methods previously derived for re-

sampling in MSML channels.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-

tion Applications; C.3 [Special-purpose and Applica-

tion Based Systems]: Signal Processing Systems

General Terms
Underwater acoustic communications, OFDM, Resampling.

Keywords
Multiscale-Multilag channel, Resampling, Intercarrier Inter-
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Figure 1: Mobile underwater acoustic communica-

tion channel.

1. INTRODUCTION
Environmental, surveillance and military applications drive

the need for high speed underwater acoustic communica-

tions. Achieving this goal is challenged by the low speed

of propagation of sound in water, as well as the relatively

high Doppler induced by mobility. Despite these challenges,

there is strong interest in Orthogonal Frequency Division

Multiplexing (OFDM) as a signalling scheme for underwater

acoustic communications [1, 2, 3]. The subcarrier orthog-

onality of OFDM that is retained in linear-time-invariant

channels is typically lost in the presence of time-variation

[2, 3, 4, 5, 6]. In a narrowband wireless communications,

the effect of Doppler distortion can be modeled as a fre-

quency offset or via time-varying multipath coefficients [7,

8]. However, in wideband signalling environments such as

UWA communications, the Doppler distortion on each path

results in time scaling (compression or dilation) of the signal

[4, 9, 11]. Thus the received signal can be well-modeled by

a multi-scale multi-lag (MSML) channel [4].

Common front-end processing used to mitigate the effects

of Doppler scaling includes resampling to eliminate the dom-

inant time scale component [3, 4, 14]. For single-scale chan-

nels, resampling is optimal [4], eliminating the inter-carrier

interference (ICI) induced by mobility. While, resampling

alone is suboptimal for MSML channels [4], it remains an ef-

fective technique for mitigating the effects of multiple scales.

Thus we presume such a two-stage approach (resampling fol-

lowed by further compensation for residual ICI) and inves-

tigate optimal resampling from a Bayesian perspective.
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Prior work on resampling factor estimation focused on

deterministic models. In [13, 14], the time scale factor is

estimated by measuring the differences between transmit-

ted and received packet durations. Our prior work [4], first

determined the optimal resampling parameter under per-

fect channel state information at the receiver and then pre-

sented blind and pilot aided estimation algorithms for the

optimal resampling parameter. A scenario with very small

time scales is considered in [2] and its effect modeled as a

carrier frequency offset. A joint frequency offset and chan-

nel estimation algorithm is then proposed to estimate the

desired parameters.

In this paper, we investigate optimal resampling for an

MSML UWA channel under a probabilistic model for the

channel gain, delay and time scale on each path. We as-

sume only knowledge of the second order statistics of the

channel parameters. We first accurately compute the ICI

caused by a given resampling factor as a function of the

statistics of the channel. The optimal resampling parame-

ter is the one which minimizes the total ICI for the OFDM

signaling. Minimizing the exact ICI power has proven to

be analytically intractable. To overcome this difficulty, we

first compute a tight upper bound on the ICI and the op-

timal resampling parameter is estimated by minimizing the

upper bound. Under the assumption of independent chan-

nel gains on each path and assuming the same probability

distribution for the time scale on each path, we show that

the optimal resampling parameter is only a function of the

first and second order statistics of the time scale parameter

and is entirely determined by the distribution of the time

scale. Numerical simulations are then presented to verify

the tightness of the ICI upper bound and demonstrate the

gains that can be obtained by using statistical information

about the channel.

The rest of this paper is organized as follows. The signal

model for OFDM based UWA transmission is presented in

Section 2. Section 3 presents the resampling operation and

the evaluates the exact ICI. An upper bound for the ICI

is presented in Section 4 and Section 5 evaluates the upper

bound for the channel model previously described. Section

6 presents numerical simulations to verify the tightness of

the upper bound and provides a comparison with other re-

sampling techniques and Section 7 concludes this paper.

Notations: Expectation is denoted by E{.}, |.| and (.)∗

denotes the absolute value and conjugation operator respec-

tively. The Fourier transform operator is given by F{.} and

differentiation with respect to x operator with ∂
∂x

.

2. SYSTEM MODEL

2.1 Transmitted Signal
The transmitted passband OFDM signal is given by

x(t) =

N−1∑
k=0

xke
j2πfkt, (0 ≤ t ≤ T ), (1)

where T is the OFDM symbol duration, N is the num-

ber of sub-carriers, xk is the data modulated onto the kth

subcarrier; fk is the kth subcarrier frequency, where fk =

fmin + k∆f ; ∆f = 1
T

is the sub-carrier spacing; fmin is

minimum carrier frequency; and B = N∆f is the band-

width of the system. A rectangular pulse shape over the

interval t ∈ [0, T ] is employed.

2.2 Underwater Channel Model
The linear time-varying (LTV) channel is characterized

by the impulse response, h(t, τ), which denotes the response

of the channel at time t to an impulse at time t − τ . The

received signal after passing through a LTV channel can be

written as,

y(t) =

+∞∫
−∞

h(t, τ)x(t− τ)dτ + ν(t), (2)

where ν(t) is assumed to be additive, white Gaussian noise.

The ratio v/c, where v is the relative velocity between the

transmitter and the receiver and c is the speed of propa-

gation of sound in water, is very large compared to that

of terrestrial radio communications. As a result, the typical

narrowband assumptions invoked for terrestrial radio cannot

be employed in the UWA scenario. In particular, mobility

induces time scaling and not Doppler shifts [6]. The time

scale is given by a = v
c
cosθ where θ is the angle-of-arrival

relative to the direction of travel [7]. Thus, the scale param-

eter on a path can take any value from [− v
c
, v
c
].

The received signal is an aggregation of several scaled

copies of the delayed and attenuated transmitted signal ag-

gregately represented by the MSML channel model:

h(t, τ) =

M∑
n=1

hnδ (τ − τn(t)), τn(t) = τn − ant, (3)

where hn, τn, and an are the channel path gain, path delay,

and time scaling on the nth path, respectively (see [6], [5]

and [12] for a more detailed development and analysis of such

channel models). We shall model the channel parameters as

random variables. We assume that the parameters an, τn,

and hn are mutually independent, the path gains are zero

mean, i.e. E{hn} = 0 with known second moment. Note

that this model encompasses the Rayleigh fading model of

channel taps [15]. The case of channels with non-zero means

(Ex: Rician fading) is not in the scope of this paper. We

also note that for the purposes of computing ICI power,

the knowledge of second moment of the channel gains is

sufficient and is independent of the distribution. Next, we

assume the τn is distributed uniformly over [0, Td], where, Td
is the multipath delay spread [16]. The distribution of the

time scales on each tap will be discussed later in the paper.

From (1), (2) and (3), the received signal can be expressed

as

y(t) =

M∑
n=1

N−1∑
k=0

hnxke
j2πfk(t−(τn−ant)) + ν(t), (4)



which can be factored as

y(t) =

N−1∑
k=0

(
M∑
n=1

hne
−j2πfk(τn−ant)

)
︸ ︷︷ ︸

hk(t)

xke
j2πfkt + ν(t)

=

N−1∑
k=0

hk(t)xke
j2πfkt + ν(t). (5)

In (5), hk(t) is the time-varying channel frequency response

as experienced by the kth sub-carrier. The kth subcarrier

experiences a frequency offset of fkam on the mth path and

this frequency shift changes linearly with the sub-carrier in-

dex.

3. RESAMPLING
As previously noted, mobility induces a scaling (dilation/

compression) of the transmitted waveform in these wideband

channels. For single-scale channels, resampling (or rescaling

of the waveform with respect to time) is an effective com-

pensation for Doppler scaling.

In this section, we characterize the effect of resampling

on MSML signals. To provide some intuition to this effect,

we first consider the scenario with single scale channels and

then we discuss multi-scale channels.

3.1 Single Scale, Multi-Lag Channels
For this scenario we have

τn(t) = τn − at,

thus, the time domain single-scale received signal y(t), when

source signal x(t) is transmitted, is

y(t) =
∑
n

hnx ((1 + a) t− τn) + ν(t).

If the scaling parameter, a, is known, then the received sig-

nal can be dilated/compressed by the inverse scaling factor.

Proper resampling completely eliminates ICI in this scenario

[11] and symbol-by-symbol processing is optimal.

3.2 MSML Channels
When the channel paths have different time scales, an, the

time domain multi-scale received signal y(t) is given by

y(t) =
∑
n

hnx ((1 + an) t− τn) + ν(t).

As we can see in the case of multiple, distinct, scales, symbol-

by-symbol processing is not optimal [4], and the frequency-

dependent Doppler scales introduce strong ICI if effective

Doppler compensation is not performed. For this channel,

resampling with the factor b, results in the received signal

yb(t) = y

(
t

1 + b

)
=

N−1∑
k=0

hk

(
t

1 + b

)
xke

j2πfk( t
1+b ) + ν(

t

1 + b
) (6)

Our goal herein is to determine the optimal single-scale re-

sampling factor for MSML channels that will be yield the

smallest ICI.

3.3 ICI Power After Resampling
We now compute an exact expression for the ICI power in

OFDM-based UWA systems given that a single resampling

operation is performed at the receiver. Assuming perfect

time synchronization, the received signal after resampling

with the factor b and projection onto the mth subcarrier

can be expressed as

ym =
1

T

T∫
0

yb(t)e
−j2πfmtdt. (7)

After substituting yr(t) form (6) in (7), we have

ym =

 1

T

T∫
0

hm

(
t

1 + b

)
e

−j2πfmbt
1+b dt

xm+

∑
k 6=m

 1

T

T∫
0

hk

(
t

1 + b

)
e

−j2πfkbt
1+b e−j2π(fm−fk)tdt

xk
︸ ︷︷ ︸

ICI term inducedby theMSMLchannel

+νm,

(8)

where νm is additive white Gaussian noise. Eqn. (8) can be

rewritten as ym = cmxm +
∑
k 6=m

ckmxk + νm where

ckm
∆
=

1

T

T∫
0

µk(t)e−j2π(fm−fk)tdt,

and µk(t) = hk( t
1+b

)e−j2πfk( bt
1+b

).

With (8), we can now obtain an expression for the ICI

power. Since the transmitted symbols have unit power and

are independent and zero-mean, it is easy to show that the

ICI power on the mth subcarrier is given as

P
(m)
ICI = E


∣∣∣∣∣∣
∑
k 6=m

ckmxk

∣∣∣∣∣∣
2 =

∑
k 6=m

E
{
|ckm|2

}
. (9)

From [17] (Chapter 10, 10-28), it can be further shown that

E
{
|ckm|2

}
=

1∫
−1

Ck(Tλ) (1− |λ|) ej2π(k−m)λdλ, (10)

where Ck(τ) is the autocorrelation of µk(t), namely

Ck(τ) =
1

2
E{µk(t+ τ)µ∗k(t)}. (11)

Substituting the expression for hk(t) from (5), we have

µk(t) =
M∑
n=1

hne
−j2πfkτnej2πfk

an−b
1+b

t. (12)

Using (12), we obtain the following expression for the auto-

correlation function (11):

Ck (τ) = 1
2
E

{
M∑
n=1

M∑
m=1

hnh
∗
me
−j2πfk(τn−τm)

×ej2πfk(ϕn−ϕm) tej2πfkϕnτ
}
,

(13)



where ϕn = an−b
1+b

. Due to statistical independence between

the channel parameters, we can rewrite (13) as,

Ck(τ) =
1

2

M∑
n=1

E{|hn|2}Ea{ej2πfk
a−b
1+b

τ}. (14)

As mentioned before a = v
c
cosθ, thus we can rewrite (14) as

Ck(τ) = Υhe
−j2πfk b

1+b
τEθ{ej2π

f̄kτ

1+b
cos θ}, (15)

where

Υh =
1

2

M∑
n=1

E
{
|hn|2

}
, (16)

and f̄k = v
c
fk = βfk. For the sake of simplicity, we define

the normalized correlation function as

g(x) = Υhe
−j2πb
(1+b)β

x
Eθ{e

j2πx
1+b

cos θ}, (17)

which is related to the autocorrelation function Ck(τ) as

Ck(τ) = g(f̄kτ). (18)

From (18), we can rewrite Ck(Tλ) as

Ck(Tλ) = g(f̄kTλ) =

+∞∫
−∞

G(f)ej2πf(f̄kTλ)df, (19)

whereG(f), the normalized Doppler spectrum, is the Fourier

transform of g(x):

G(f) =

+∞∫
−∞

g(x).e−j2πfxdx

=

+∞∫
−∞

Υhe
−j2πb
(1+b)β

x
Eθ
{
e
j2πx
1+b

cos θ
}
.e−j2πfxdx

= Eθ


+∞∫
−∞

Υhe
−j2πb
(1+b)β

x
e
j2πx
1+b

cos θe−j2πfxdx

 . (20)

Using F{ej2πεx} = δ(f − ε), where δ(.) is the Dirac delta

function, in (20) we have,

G(f) = ΥhEθ

{
δ

(
f +

b

(1 + b)β
− cos θ

1 + b

)}
. (21)

Based on the scaling property of the Dirac delta function,

we have

G (f) = Υh(1 + b)Eθ
{
δ
(

cos θ − (1 + b) f − b
β

)}
=


Υh(1 + b)

 pθ(Ψ(f))+pθ(−Ψ(f))√
1−
(
(1+b)f+ b

β

)2

 fl ≤ f ≤ fu

0 else

(22)

where Ψ(f) = cos−1
(

(1 + b) f + b
β

)
, fu = β−b

β(1+b)
, and fl =

−(β+b)
β(1+b)

. The Doppler spectrum only depends on the distri-

bution of the scattering angle θ, i.e., pθ(.). Furthermore, the

shape of the normalized Doppler spectrum does not depend

on f̄k.

Considering (9), (10), (19), and (22), P
(m)
ICI becomes

P
(m)
ICI =

∑
k 6=m

+∞∫
−∞

G(f)

×


+1∫
−1

ej2πf(f̄kTλ)(1− |λ|)ej2π(k−m)λdλ

df. (23)

The integrand with bounds -1 to +1 can further be simplified

by exploiting symmetry in the odd and even parts. The odd

part equals zero, and the even part can be written as

P
(m)
ICI =

∑
k 6=m

+∞∫
−∞

G(f)

×

2

+1∫
0

(1− λ) cos
(
2π
[
f(f̄kT ) + (k −m)

]
λ
)
dλ

 df

=
∑
k 6=m

+∞∫
−∞

G(f)sinc2(k −m+ f(f̄kT ))df

=

+∞∫
−∞

G(f)Sm(f)df, (24)

where

Sm(f) =
∑
k 6=m

sinc2(k −m+ f(f̄kT )). (25)

Substituting f̄k = β(fc + k∆f) and T = 1
∆f

in (25), and

defining α
∆
= fc

∆f
then we can rewrite (25) as

Sm(f) =
∑
k 6=m

sinc2 {(βf + 1) k + (αβf −m)}. (26)

Thus the exact expression for the ICI power in the mth sub-

carrier becomes

P
(m)
ICI =

+∞∫
−∞

G(f)Sm(f)df. (27)

The total power for the ICI at receiver for all sub-carriers

will thus be

PICI =

N−1∑
m=0

P
(m)
ICI . (28)

The integral in (27) cannot be calculated directly. Therefore,

we will calculate an upper-bound for the ICI power. We will

then seek to optimize the upper bound via our choice of b.

4. ICI POWER APPROXIMATION
In the following theorem we evaluate an upper bound for

Sm(f).

Theorem 1. Assume fl = −(b+β)
β(1+b)

and fu = (β−b)
β(1+b)

,

(i) For fl ≤ f < 0

Sm(f) ≤ 1

1 + βf
− sinc2 (β(α+m)f) . (29)



(ii)For 0 ≤ f < fu

Sm(f) ≤

(
2 cos

(
2π(βαf−m)

1+βf

)
+ 1
)
βf + 1

(1 + βf)2

− sinc2 (β(α+m)f) . (30)

Proof. The proof is given in Appendix A.

Since β is much smaller than one (≈ 10−3) and b is upper-

bounded by β and f is limited to the interval [fl, fu], and

−2 ≤ fl ≤ −1 and 0 ≤ fu ≤ 1, thus we can conclude that

βf+1 ≈ 1 and cos( 2π(αβf−m)
1+βf

) ≈ cos (2παβf), which means

that the cosine has nearly αβ ripples between the 0 and

1 frequencies. Furthermore, αβ = βfcT is the maximum

Doppler shift for the zeroth sub-carrier and this value is

usually less than 1
2
. Thus, we anticipate that the upper

bounds provided in Theorem 1 will be tight. This will be

verified in Section 7.

The second order Taylor series of bounds in the Theorem

1 are

Sm(f) ≤

 −βf + (βf)2
[
1 + π2

3
(α+m)2

]
fl ≤ f < 0

βf + (βf)2
[
−3 + π2

3
(α+m)2

]
0 ≤ f ≤ fu

(31)

Thus, using (31) and (27) we can compute a tight upper-

bound for ICI as,

P
(m)
ICI ≤ m1β + (m3 +

π2

3
m2(α+m)2)β2, (32)

where parameters them1 =
fu∫
fl

|f |G(f)df , m2 =
fu∫
fl

f2G(f)df ,

and m3 =
0∫
fl

f2G(f)df − 3
fu∫
0

f2G(f)df .

5. RESAMPLING ESTIMATION
In this section, first we introduce the K-state modelling of

time-scale profile which can be considered as a generalization

of two-path modelling [7]. Then the resampling factor b for

K-state modelling of time-scale profile is calculated.

K-state model: The scale parameter in an MSML UWA

channel on each path can take any value from − v
c

to v
c
.

Since the probability of receiving in some direction say θi
can be larger than others (let pi be the probability asso-

ciated with the value θi, i
th direction of arrival), we can

model general distribution pa(a) as a collection of probable

angle-of-arrivals in the discrete points ai = βcos(θi) with

probability pi

pa (a) =

K∑
i=1

piδ (a− ai), (33)

where pi is the occurrence probability of time scale ai . For

convenience in computation, we assume a1 ≤ a2 ≤ ... ≤ aK .

From pa(a), we can compute pθ(θ) and then G(f) using (21).

Considering the K-state model leads to

G(f) = Υh

K∑
i=1

piδ (f − fi), (34)
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Figure 2: Exact Sm(f) and the proposed upper

bound for αβ < 0.5.

where fi = ai−b
β(b+1)

. Having G(f) from (34), parameters m1,

m2, and m3 in (32) result as following,

m1 = Υh

K∑
i=1

pi
|ai − b|
β (1 + b)

(35)

m2 = Υh

K∑
i=1

pi
(ai − b)2

β2(1 + b)2 (36)

m3 = Υh

{
j∑

i1=1

pi1
(ai − b)2

β2(1 + b)2 − 3

K∑
i2=j+1

pi2
(ai − b)2

β2(1 + b)2

}
(37)

where j = {i|ai ≤ b < ai+1} in (37). A special case of the

K-state model is the uniform K-state model which occurs

when pi = 1
K

.

In the following we state the optimal b forK-state modelling.

Proposition 1. If we substitute the values of m1, m2,

and m3 from Eq. (35) to (37) in (32) then the optimal value

of b which minimizes the upper-bound for K-state modelling

is given by

b =
ςµa2 + (ς + 1)µa + 1− Ω2

(ς + 19) (µa + 1) + Ω1
(38)

where µa = E {a}, µa2 = E
{
a2
}
, Ω1 = 10

j∑
i=1

(1 + ai) pi,

Ω2 = 2
j∑
i=1

(
4a2
i + 3ai − 1

)
pi; j = {i|ai ≤ b < ai+1} and

ς = 2Tα
N
− 6; and Tα = 1

N

N−1∑
m=0

(α+m)2.

6. SIMULATION AND DISCUSSION
In this section, we validate our mathematical analysis. We

first confirm the approximation of theorem 1. In Figures 2

and 3 we compare the exact value of Sm(f) to the upper

bound approximation of Sm(f). These figures confirm that

for αβ ≤ 1/2 the bound is tight.



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

f

A
m
p
li
tu
d
e

 

 

Exact value of S
m

(f)

Upper Bound

Figure 3: Exact Sm(f) and the proposed upper

bound for αβ > 0.5.
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for proposed b in Eq. (38).

In Fig. 2, we consider β = 5×10−4, and α = fc
∆f
≈ 350. In

Fig. 3, αβ > 1/2 for β = 1× 10−3 and we see the expected

looseness of the bound. Observe that we can reduce this

effect by choosing the symbol duration to be smaller.

We next illustrate the difference between approximated

(32) and exact (28) ICI power via simulation. For this exper-

iment, we consider an OFDM transmission system with N =

512 subcarriers, ∆f = 50Hz subcarrier spacing, fmin =

4kHz, and β = 5× 10−3.

In Fig. 4 the exact ICI power with and without resam-

pling and its bound from (32) are compared. We use the K-

state model where K = 5, pa(a) =
5∑
i=1

piδ (a− ai) and the

ai are drawn from {β, 0.1β, 0.4β, 0.6β, 0.2β}, with pi = 0.2

for all i. In the next experiment, we check the optimal-

ity of the computed resampling factor in Proposition 1, Eq.

(38). To perform this test, we consider four different values

for the resampling factor. One is the optimal value, bopt,
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Figure 5: Optimality of computed resampling factor

b in Eq. (38).
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Figure 6: Performance comparison of proposed

resampling factor Eq.(38) and resampling factor

Eq.(39).

computed from (38), as well as b = 0.99bopt, b = 1.01bopt,

b = 1.02bopt, b = 1.5bopt, and b = 3bopt. To compare the val-

ues for b = 0.99bopt, b = 1.01bopt, b = 1.02bopt, and b = bopt,

we also add the magnified part of the plots to the top-left

side of figure. As is clear from Fig. 5, bopt gives the best

performance, namely the ICI power after resampling with

bopt is the smallest in comparison with the other resampling

factors. Note, from Fig. 5, it is clear that if the value of

resampling factor was chosen wrong (e.g. b = 3bopt) then

the ICI power value may be more than the case without re-

sampling.

A common way to compute the resampling factor (see e.g.

[11], [14], [3], [10] and their references) is to assume a single

scale and to estimate the resampling factor as

b̂ =
TpTx
TpRx

− 1, (39)



where TpTx is the OFDM packet length at the transmitter

and TpRx is the OFDM packet length at the receiver. In Fig.

6, curves show that the ICI compensation for our proposed

method has better performance compared with result for b

computed from Eq. (39).

7. CONCLUSIONS
We consider OFDM signaling over multi-scale multi-lag

(MSML) underwater acoustic channels wherein the effect of

mobility induces a unique time scaling of the transmitted sig-

nal on each channel path resulting in significant intercarrier

interference (ICI) at the receiver. The optimal resampling

factor which minimizes the power of the ICI at the receiver

was determined given the statistical models for the parame-

ters of the MSML channel. First the exact ICI power was de-

termined and then an upper bound to this power was devel-

oped which enabled optimization. For the special case of K-

state modeling of the scale parameters, the upper-bound was

evaluated and optimal resampling factor calculated. Simula-

tion results show that the proposed method and model result

in better performance than that of the classical resampling

factor computation via comparison of the transmitted and

received packet durations. Our current approach assumes

a Rayleigh-like model for the channel coefficients; however,

recent work [15] suggests that a Ricean model may be more

accurate - this is an avenue of future work.

APPENDIX
A. PROOF OF THEOREM 1

From (26), we can write down

Sm(f) ≤

(
+∞∑

k=−∞

sinc2 ((βf + 1) k + (αβf −m))

)
− sinc2 (β (α+m) f) . (40)

The first term of the right hand side of (40) can be inter-

preted as the summation of f(t) = sinc2 ((βf + 1) t+ (αβf −m))

samples at times t = k. if we say F (Ω) is Discrete Fourier

Transform (DFT) of f(k), then

+∞∑
k=−∞

f(k) = F (Ω)|Ω=0. (41)

Using time-shifting property of DFT, we know

F (Ω) =
1

(βf + 1)

+∞∑
l=−∞

e
j αβf−m

(βf+1)
Ω

Λ

(
Ω− 2πl

2π (βf + 1)

)
, (42)

where Λ(Ω) is triangle function defined as following,

Λ(Ω) =

{
1− |Ω| |Ω| ≤ 1

0 O.W

Using (42) and (41),

+∞∑
k=−∞

sinc2 ((βf + 1) t+ (αβf −m))

=

(
1

βf + 1

+∞∑
l=−∞

e
j αβf−m

(βf+1)
(Ω−2πl)

Λ

(
Ω− 2πl

2π (βf + 1)

))∣∣∣∣∣
Ω=0

=
1

(βf + 1)

∑
|l|<(βf+1)

e
−j2π(αβf−m)

(βf+1)
l

(
1− |l|

(βf + 1)

)
.

(43)

Since the bounds of integration on (27) are specified with

G(f) which are fl and fu(These values are evaluated from

(22)), We approximate the Sm(f) over fl ≤ f ≤ fu. For

fl ≤ f < 0, k can be only equal zero. For 0 ≤ f ≤ fu, k can

be equal to 0 and ±1. Thus, by substituting the k values in

(43), the proof is complete.�
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