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ABSTRACT 
This paper describes the resent development of a virtual 

flux method for simulating fluid-structure interaction problems.  
The virtual flux method is one of the sharp interface Cartesian 
grid methods.  The numerical flux across the interface is 
replaced with the virtual flux so that proper interface conditions 
must be satisfied there.  In this study, the virtual flux method 
is applied to numerical flow simulations about reciprocating 
engines.  The compressible Navier-Stokes equations are 
coupled with the equation of motion of the piston, connecting 
rod, and crank system.  Intake and exhaust valves are lifted up 
and down according with the crank angle in the intake and 
exhaust strokes.  Instead of modeling the complex fuel 
combustion process, a proper amount of energy is added to the 
Navier-Stokes equation at the beginning of each expansion 
stroke, to retain the four stroke engine cycle at a constant 
revolution rate.  Initially the engine is started by starter motor 
force, which is added for a few seconds.  The engine comes to 
work at the revolution rate intended after some initial transition 
cycles.  With designing the intake and exhaust valve lift 
properly, intake mass and revolution rate are improved by 
several percent.  It is confirmed that the virtual flux method is 
easily applicable to the simulation of fluid-structure interaction 
problems. 
 
 

INTRODUCTION 
Numerical simulation of fluid-structure interaction 

problems is one of the a current topics in the computational 
fluid dynamics.  Using the arbitrary Lagrangian Eulerian 
(ALE) method[1,2] is a straightforward strategy for simulating 
the fluid-structure interaction problems.  The ALE method 
may be accurate, since the fluid-structure interface is 

conformed to a moving boundary of computational grid.  
Conforming the grid boundary to the moving interface is 
generally difficult and time-consuming especially for the 
interface under large deformation. Cartesian grid methods [3,4] 
are another strategy fit for simulating the fluid-structure 
interaction problems.  The methods need no grid 
reconstruction even if large deformation of fluid-structure 
interface takes place.  One drawback of the Cartesian grid 
methods, however, is that most of the methods may smear the 
interface over several mesh spacing.  Thus a sharp interface 
Cartesian grid method [5,6] is preferable for simulation of 
fluid-structure interaction problems. The virtual flux method 
[7,8] is one of the sharp interface Cartesian grid methods.  
The numerical flux of the Navier-Stokes equations across the 
interface is replaced with the virtual flux so that proper 
interface conditions must be satisfied there.  In this study, the 
applicability of the virtual flux method to the fluid-structure 
interaction problems is demonstrated in numerical flow 
simulations about reciprocating engines. 

 

GOVERNING EQUATIONS 
Fluid flows in the reciprocating compressors and engines 

may be described by the compressible Navier-Stokes equations, 
which can be written in the following form. 
 

SFq
⋅∇=⋅∇+

∂
∂

t
                (1) 

 
Where  is the conservative vector,  the convective flux 
vector, and S  the viscous flux vector.  The conservative 
vector and the flux vectors are given with: 

q F
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where ρ  is the density, u  the velocity vector,  the 
pressure,  the total energy per unit volume,  the viscous 
stress tensor, and  the heat flux vector.  The total energy 

 is defined for a perfect gas as: 

p
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where γ  is the ratio of specific heats. 

The components of the viscous stress tensor and the heat 
flux vector, for example, xxτ , xyτ , and , may be written 

as: 
xh

 

x
Th

y
u

x
v
x
u

x

xy

xx

∂
∂

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=

⋅∇−
∂
∂

=

κ

μτ

μμτ u
3
22

            (4) 

 
where  and  are the velocity components, T  is the 
temperature, 

u v
μ  is the viscosity and κ  is the thermal 

conductivity.  In this study Smagorinsky's eddy viscosity 
model is used for practical turbulent flow simulations. 
 

NUMERICAL PROCEDURE 
Obtaining numerical solution of the compressible Navier-

Stokes equations for flows about complex geometries on a 
Cartesian grid, the virtual flux method is introduced in 
conventional spatial discretizing methods. 

Spatial Discretizing Method 
The convective terms of the compressible Navier-Stokes 

equations can be evaluated simply at a regular point on the 
Cartesian grid, for example, as: 
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FIGURE 1.  STENCIL ABOUT A REGULAR POINT. 

 
where q~  is the primitive variable,  denotes the mesh 
spacing, and i  is the cell index as shown in Fig. 1.  The 
numerical flux at the cell surface is obtained as: 
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where xA  is defined as: 

 
−= xxxx RΛRA                (7) 

 
Here  and  are, respectively, the eigenvalue matrix 
and the right eigenvector matrix of the flux Jacobian matrix 

, which is defined as: 

xΛ xR

xA
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x                    (8) 

 
 The third order method may be obtained, for example, if 

 are evaluated with the following reconstruction [9]. −
+ 2/1

~
iq
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Here 2/1

~
+Δ iq  are obtained with: 

 

iii qqq ~~~
12/1 −=Δ ++              (10) 

 
The weights 0ω  and 1ω  for the third order linear method 
are: 
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Virtual Flux Method 
If an immersed solid boundary is located between the 

points  and i 1+i  as shown in Fig. 2, the numerical fluxes 
of Eq. (5) must be modified so that no-slip and no-penetration 
velocity boundary conditions are satisfied on the solid 
boundary. 
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FIGURE 2.  STENCIL ABOUT A INTERFACIAL POINT. 

 

where , , and  are reconstructed 
with considering the immersed solid boundary conditions. For 
example, 
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where  are calculated with: ∗
+Δ 2/1
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FIGURE 3.  STENCIL FOR A ONE-SIDED 
EXTERPOLATION. 
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Here  are obtained with one-sided first or second order 

exterpolating operators 

∗
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L , as shown in Fig. 3, 3
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The weights 0ω  and 1ω  are defined for a nonlinear method 
as: 
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where 0α and 1α  are obtained as: 
  

where IBq~  and 
IBx∂

∂q~
 are Dirichlet and Neumann 

boundary conditions at the immersed boundary, respectively.. 
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 The numerical viscous fluxes of Eq. (14) must be also 
modified so that no-slip and no-penetration velocity boundary 
conditions are satisfied on the solid boundary as: 

Here ε  is a small number which prevents null division in 
smooth flow regions. 

The viscous terms of the Navier-Stokes equations are 
evaluated simply with the second order central difference 
approximation.  For example, 
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 Time Stepping Method 
After discretizing the spatial derivatives, the Navier-Stokes 

equations can be written in the form: 
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The second order Runge-Kutta method is used for solving the 
equation as: 
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where the superscript  denotes the time index and n tΔ  the 
time step size. 

RECIPROCATING ENGIN MODEL 
In this paper a fluid-structure interactive simulation is 

carried out to reproduce the four strokes of a reciprocating 
engine. The computational reciprocating engine model is 
schematically drawn in Fig. 4.  The revolution of crank shaft 
is described with the following equation of motion. 
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where θ  is the crank angel and M  the moment of force 
acting on the crank shaft.  The total inertia moment of piston, 
connecting rod, and crank )(θI  is defined as 
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Here  and  are the mass of the piston and 

connecting rod, and  and are the inertia moment of the 
crank and connecting rod, respectively.  Between the radius of 
the crank 

pm crm

cI cI

r , the length of the connecting rod , and its slope 
angle 

l
φ , the following equations are obtained from Fig. 4. 

 

θφ sinsin
l
r

=             (25) 

 

 
 

FIGURE 4.  SCHEMATIC MODEL OF A RECIPROCATING 
ENGINE. 

For the moment of force acting on the crank shaft, the 
moment of pressure force  acting on the piston head and 

the moment of load  acting on the crank shaft are 
considered and assumed as: 

pM

lM

 
)sin(cos φθφ += Ap PM            (26) 
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d
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dM l
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where AP  is the pressure force acting on the piston head and 
ζ  is a proper constant. 

NUMERICAL RESULTS 
The computation is carried out for the cylinder width  

of cm and stroke 
D

8.5 H  ( r2= ) of cm.  Figure 5 
shows typical valve lift designed as a function of the crank 
angle.  The intake valve is lifted up and down according with 
the crank and connecting rod pulling the piston down from the 
top dead center (TDC) to the bottom dead center (BDC) in the 
intake stroke.  The exhaust valve is also lifted up and down 
according with connecting rod driving the piston from BDC to 
TDC in the exhaust stroke.  In practice the intake valve lift 

 and  are designed as 
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The opening and closing angles considered here are tabulated 
in table 1 with the amplitude and of mm. ia ea 625.3
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Instead of modeling the complex fuel combustion process, 
to retain the angular velocity of crank at about 1800rpm, a 
proper amount of energy is added to the Navier-Stokes 
equations in the expansion stroke as shown in Fig. 6. 

 
 

TABLE 1.  VALVE LIFT PARAMETERS. 
 

case ioθ  icθ  eoθ  ecθ  

1 0 π  π3  π4  
2 π05.0− π15.1  π05.3  π05.4  

 

 
 

TABLE 2.  INTAKE MASS AND REVOLUTION RATE 
 

case mass rpm 
1 0.214g 1811 
2 0.232g 1851 

 

 

FIGURE 5.  VALVE LIFT HISTORY AS A FUNCTION OF 
CRANK ANGLE. 

 

 
 

FIGURE 7.  INTAKE AND EXHAUST MASS FLUX. 

The intake mass flux and exhaust mass flux for case 2 are 
plotted in Fig. 7.  Initially the piston is started by starter motor 
force, which is added for a few seconds, from TDC to the 
intake stroke.  After some initial transition cycles, the engine 
comes to work at the almost constant rate of rpm.  The 
error between the intake mass and exhaust mass in a four stroke 
engine cycle is less than %.  The intake mass and 
revolution rate are tabulated in Table 2.  About % increase 
of the intake mass and % increase of the revolution rate are 
observed in the case 2 compared with those of case1. 

1850

5.0
8

2

FIGURE 6.  ADDING ENERGY AS A FUNCTION OF CRANK 
ANGLE. 
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 Typical velocity vectors, colored by the temperature 
obtained for the four strokes, are plotted in Figs. 8 - 11.  Fresh 
gases flow into the cylinder through the intake port (Fig. 8).  
As connecting rod driving the piston from BDC to TDC, the 
gases are being compressed (Fig. 9).  The hot gases, heated by 
energy added, are driving the piston to BDC (Fig. 10), and the 
gases flow out through exhaust port (Fig. 11).  The four stroke 
engine cycle is clearly reproduced in the simulation. 

 

 

CONCLUSION 
A virtual flux method  has been developed for simulating 

fluid-structure interaction problems.  The numerical flux 
across the fluid-structure interface is successfully replaced with 
the virtual flux, so that proper interface conditions are satisfied 
there.  In this study, the virtual flux method is applied to 
numerical flow simulations about reciprocating engines.  In 
order to retain the four stroke engine cycle, a proper amount of 
energy is added to the Navier-Stokes equation at the beginning 
of the expansion stroke, instead of modeling the complex fuel 
combustion process.  Initially the engine is started by starter 
motor force, which is added for a few seconds.  After some 
initial transition cycles, the engine comes to work at the 
constant revolution rate intended.  With designing the intake 
and exhaust valve lift properly, intake mass and revolution rate 
are improved by several percent.  It is confirmed that the 
virtual flux method is easily applicable to the simulation of 
fluid-structure interaction problems 
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