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Abstract 

In the present article, we focus on the numerical approximation of stochastic partial differential equations of Itˆo 
type with space-time white noise process, in particular, parabolic equations. For each case of additive and 
multiplicative noise, the numerical solution of stochastic diffusion equations is approximated using two stochastic 
finite difference schemes and the stability and consistency conditions of the considered methods are analyzed. 
Numerical results are given to demonstrate the computational efficiency of the stochastic methods. 
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1. Introduction and preliminaries 

Many natural phenomena and physical applications 
are modeled by partial differential equations and the 
efficiency of the computed solutions are analyzed 
and tested. Practically, a great number of 
uncertainties are involved in determining these 
partial differential equations. So, in many areas of 
applicable sciences such as financial mathematics, 
mechanic engineering and many complex 
phenomena such as wave propagation, phase 
transition and climate change, a stochastic model 
for describing these uncertainties is employed. 
Hence, the extensive application of random effects 
in describing practical sciences has developed the 
theory of stochastic partial differential equations, or 
SPDEs.  

Thus, providing applicable numerical techniques 
and high accuracy computational methods is of 
great importance for approximating the solution of 
stochastic problems.  

Many effective researches for solving stochastic 
differential equations as well as their strong and 
weak approximation have been implemented by 
Kloeden and Platen [1], Komori [2], Milstein [3], 
Röβler [4] and Higham [5]. 
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In recent years, some of the main numerical 
methods for solving SPDEs like finite difference 
and finite element schemes [6-11], and some 
practical techniques like the method of lines [12, 
11] for boundary value problems, have been applied 
to the linear stochastic partial differential equations, 
and the results of these approaches have been 
experimented numerically. In [13], we have 
considered the approximation of stochastic 
parabolic equations with real valued Brownian 
motion using two various finite difference methods, 
and their numerical results are investigated. The 
main aim of the current work is to verify the main 
properties of unconditional stable finite difference 
schemes when they develop to the stochastic case 
for approximating the solutions of stochastic 
parabolic equations based on the two-dimensional 
white noise process. In other words, we illustrate 
how stochastic term with space-time white noise 
process affects the stability conditions of 
unconditional stable Saul’yev and Crank-Nicolson 
techniques when they are reformulated for 
approximation of stochastic diffusion equations. It 
can be shown that these unconditional stable finite 
difference methods retain their stability conditions 
when they apply to stochastic diffusion equations 
driven by one-dimensional white noise process. In 
general, for a given physical system many different 
perturbations may be considered. Basically, noise 
may enter the physical system either as temporal 
fluctuations of internal variables or as external 
random parameters. Internal randomness is often 
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considered as additive noise terms, while external 
fluctuations are modeled as multiplicative noise 
terms. This paper is concerned with the numerical 
approximation of the stochastic partial differential 
equation of the form  
 

2

2

u u
(x, t) (x, t) (u(x, t)) W(x, t),

t t

 
   

 
 0 t T    (1) 

 

),()0,( 0 xuxu   10 x , 

where u  is a real valued function of Rx  and 
dRx  ,with initial value ])1,0([)( 00 Cxu   

and ),( txW denotes the space-time white noise 

process. The parameter γ is the viscosity term and 
assumed to be a positive constant. We consider the 
numerical solutions of SPDE (1) driven by additive 

noise 1)),(( txu  using implicit stochastic 

Crank-Nicolson scheme, and stochastic explicit 
Saul’yev method with multiplicative noise 

),()),(( txutxu  , and the qualification of 

these stochastic difference schemes will be verified. 
The white noise process defined in SPDE (1) is 
related to the two parameter Brownian motions or 

Brownian sheet ),( txW  by the following 

differential equation:  
 

W (x, t) 
2W

xt
(x, t), 0  t  T,  10  x  

 

where ),(
2

tx
tx

W




 denotes the mixed derivative 

of Brownian sheet. It should be noted that this is 
not a derivative in the ordinary sense, since the 
Brownian sheet is nowhere differentiable. There are 
some important properties of the standard Brownian 
sheet that should be mentioned. Firstly, if S  is the 

characteristic function on the rectangle S, then for 
 
S (0, T) (a, b)   

T b

S0 a
dW(x, t) W(S),    

d b

Sc
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T b

a
dtdxtxfE

0

2 )),((  then  
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Allen et. al. [6] have suggested the following 

approximation for one-dimensional white noise 

process )(xW , for computing the approximated 

solution of stochastic partial differential equations. 
The partition 1...0 121  Nxxx  is 

defined on the interval [0,1], where 

xixi  )1( and 
N

x
1

 .Then, the following 

approximation is defined for the white noise 

process )(xW on this partition  
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i.e. i ~ N(0,1), and 
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1
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xxxif
x ii
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Clearly, this estimation is similar to the discrete 

time approximation of continuous time white noise 
when the solution of stochastic differential 
equations is numerically simulated. (see for 
example Kloeden and Platen [1]). Similarly, an 
approximate noise process is constructed to the 
generalized zero mean Gaussian process. Following 
the approach of Allen et. al.[6], the space [0, 1] 
×[0,T] is partitioned by rectangles 

],[],[ 11   jjii ttxx , where xixi  )1( and 

tjt j  )1(  for Mi ,...,1 and Nj ,...,1 . 

The following approximation for the mixed 
derivative of the generalized Gaussian white noise 
process can then be made with respect to the 
partition,  
 

2 M N

ij i j
i 1 j 1

Ŵ 1
(x, t) x t (x) (t),

t x x t  


     

      

 

where ij ~ N (0, 1), t  T / N, x 1/ M  

and 
 


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otherwise

xxxif
x ii
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defines the characteristic function for x , and 

 j (t) is defined similarly for t , and  
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The outline of the paper is as follows: In section 

2, the explicit unconditional stable Saul’yev method 
is reformulated for the stochastic parabolic equation 
driven by multiplicative noise and the stability and 
consistency conditions are investigated for the 
stochastic case. In section 3, the stochastic Crank-
Nicolson implicit method is applied to the 
stochastic diffusion equation driven by additive 
noise and the efficiency of the proposed method is 
analyzed. The numerical results are presented in 
section 4 to support the theoretical analysis. Finally, 
some concluding remarks are given.  
 

2. Multiplicative noise  

The Saul’yev method was first introduced by 
Saul’yev [14] for solving initial value problems 
based on the two approximations that are 
implemented for computations proceeding in alter-
nating directions, e.g., from left to right and from 
right to left [15, 16]. In applying the left to right 
Saul’yev method to the stochastic diffusion 
equation, the time derivative is approximated with 
the usual forward-difference expression and the 
space derivative is approximated by 
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So, the stochastic difference scheme (SDS) that 

approximate the stochastic diffusion equation with 
multiplicative noise (σ(u)= u) is:  
 

uj
n1  uj

n
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 

uj1
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or 
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  
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where 
2x

t




 . Here, n
ju  is intended as an 

approximation to u( jx, nt); and Wj
n W (Rj,n ),  

where njR ,  is the rectangle [ j x, ( j 1) x] [n t, (n 1) t].        

Basically, these schemes discretize continuous 
space and time into an evenly distributed grid 
system, and the values of the state variables are 

evaluated at each node of the grids. Considering a 
uniform space grid x  and time grid t  in the 
time-space lattice, we can estimate the solution of 
equation at the points of this lattice. The value of 
the approximate solution at the point ),( tnxk   

will be denoted by 
n
ku , where kn,  are integers.  

We want to approximate the solution of SPDE (1) 
for the case of multiplicative noise by random 

variable 
n
ku  defined by stochastic difference 

scheme (2), which is the stochastic version of 
Saul’yev method. A similar formulation can be 
considered for the right to left Saul’yev method. 
For all proposed schemes, the increments of Wiener 

process are assumed independent of the state 
n
ku . 

2.1. Stability analysis  

Stability is probably the most important problem in 
any algorithm since it is a necessary rather than 
sufficient condition for accuracy. Applied to 
parabolic equations, Saul’yev’s technique is 
unconditionally stable and, because it is explicit, it 
is not necessary to solve a large system of 
simultaneous equations at each time step in the 
algorithm like implicit unconditional stable 
methods [16]. Consequently, we are concerned with 
studying the stability analysis of the Saul’yev SDS 
for approximating the stochastic diffusion equation 
with space-time process based on multiplicative 
noise.  

Von Neumann introduced a method to prove 
stability using Fourier analysis so that it can give 
necessary and sufficient condition for the stability 
of deterministic finite difference schemes [17, 18]. 

If 2lu  and 1ˆ nu  are the Fourier transformation 

of 1nu then  
 


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,)(ˆ
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1 11 dueu nximn
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or in the discrete form: 
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m

m
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m
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2

1
ˆ 11 
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               (4) 

 
where  is a real variable. Substituting in a 

stochastic difference scheme, we have 
 

).(ˆ),,()(ˆ 1  nn uxtxgu                      (5) 
 
that ),,( xtxg    is the amplification factor of 

the stochastic difference scheme. The decision 
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whether a scheme is stable or not can be simplified 
by the aid of amplification factor.  

Like the deterministic case, we get the following 
necessary and sufficient condition for a scheme’s 
stability via its amplification factor, see Roth [19]  
 

.1|),,(| 2 tKxtxgE                        (6) 

 
Theorem 1. The stochastic Saul’yeu scheme is 
stable for: 
 

r 21

2




ee

x

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according to the Fourier-Transformation analysis 
for the stochastic diffusion equation (1) with 
multiplicative noise. 
 
Proof: According to the Fourier-inversion-formula 

n
mu  has the following transformation:  
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substituting in the stochastic Saul’yev Scheme we 
have:  
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and then 
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 So, the amplification factor of the stochastic 
Saul’yev scheme is:  
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because of the independence of the Wiener process, 
we have:  
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Since for every γ, ρ and x  we have: 
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so we have 
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For 
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21

2




ee

x


  is a 

sufficient condition for stability of the stochastic 
Saul’yev scheme applying to stochastic diffusion 
equation with multiplicative noise. 

2.2. Consistency condition  

In general, consistency implies that the solution 
of stochastic partial differential equations is an 
approximation of the considered stochastic finite 
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difference. Consider a stochastic partial differential 
equation:  
 

GLv   
 

where L denotes the differential operator and 

)(2 RLG  is an inhomogeneity. Assuming n
ku is 

the solution that is approximated by a stochastic 
finite difference scheme denoted by n

kL , and 

applying the stochastic scheme to the SPDE, we 
have n

k
n
k

n
k GuL  , whereby n

kG  is the approximation 

of the inhomogeneity.  
 
Definition 1. (Consistency of an SDS) The finite 
stochastic difference scheme n

k
n
k

n
k GuL   is 

pointwise consistent with the stochastic partial 
differential equation GLv  at point (x, t), if for 
any continuously differentiable function Φ=Φ(x, t), 
in mean square 
 

0||]),([)(|| 2 n
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n
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n
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as ttx  ,0 , and (kx, (n 1)t)
converges to (x, t) .  

 
Theorem 2. The stochastic Saul’yev scheme is 
consistent in mean square for the stochastic 
diffusion equation (1) with multiplicative noise. 
 
Proof: Let Φ(x, t) be a smooth function (at least 
continuously differentiable in x and continuous in 
t), then we have  
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Since(x, t) is only a deterministic function as, 

we have

 

 
E | L() |k

n () |2 0,  
 
when ., kn This proves the consistency. 

Essentially, it is extremely important for the 
solution of stochastic difference schemes (SDS) to 
converge to the solution of the stochastic partial 
differential equations or SPDEs. 
 
Definition 2. (Convergence of an SDS) A 

stochastic difference scheme 
n
k

n
k

n
k GuL   

approximating the stochastic partial differential 
equation GLv  is convergent in mean square at 
time t if, as tn  )( 1  converges to t, 
 

 

2
n 1 n 1E || u v || 0                                           (11) 

 
for ,)( ttn 1    and   0x  

 

where 1nu and 1nv are infinite dimensional vectors 
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According to the theorems proved about the 
stability and consistency of the stochastic Saul’yev 
scheme and the stochastic version of the Lax-
Richtmyer theorem [20], stochastic Saul’yev 
method is convergent for solving stochastic 
diffusion equation (1) with multiplicative noise. 
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3. Additive noise 

Applying the stochastic implicit Crank-Nicolson to 
the stochastic diffusion equation (1) with 

Additive noise  u  1   we have 
 

uj
n1  uj

n

t


2

D2uj
n  D2uj

n1    
2Ŵ

tx
| jn  




2x2 uj1
n  2uj

n  uj1
n  uj1

n1  2uj
n1  2uj1

n1    
2Ŵ

tx
| jn,

 
which can be written as 
 

 ruj1
n1  (1 2 u)uj

n1  ruj1
n1 

 ruj1
n  (1 2 r)uj

n  ruj1
n 


x

Wj
n,         (12)

 

 

where 
2x

t
r




 . Assuming n
ju  is the 

approximation of SPDE (1) at ),( tnxj   and 

)( ,nj
n
j RWW   where njR ,  is the rectangle

])(,[])(,[ tntnxjxj  11 . We want to 

investigate the qualification of this implicit 
stochastic difference scheme in the viewpoint of 
stability, consistency and convergence. 

3.1. Stability analysis 

Definition 3. (Stability of an SDS) A stochastic 
difference scheme is said to be stable with respect 
to a norm in mean square if there exist some 

positive constants x0  and t0  and non negative 

constants K and β such that 
 

2 2n 1 t 0E u ke E u .                                          (13) 

For all 0 00 t (n 1) t, 0 x x , 0 t t             
 
Theorem 3. The stochastic Crank-Nicolson scheme 
is stable in mean square with respect to 

.   supk .
2

-norm for the stochastic diffusion 

equation (1) with additive noise. 
 

Proof: Applying E
2

. to (12), in mean square we 

get: 
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so we have 
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This holds for every j on the (n 1) th time 

step, so we have  
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Therefore, the stochastic Crank-Nicolson scheme 

is stable for 
20

2

||||
| 21




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ue
x

e 


applying to 

stochastic diffusion equation with additive noise. 

3.2. Consistency condition 

Theorem 4. The stochastic Crank-Nicolson scheme 
is consistent in mean square for the stochastic 
diffusion equation (1) with additive noise. 
 
Proof: If ),( tx  be a smooth function, then we 

have: 
 

(n 1) t (k 1) xn
k tn t k x

L( ) (r, s)dr ds
   

 
     

 
  tn

tn

xk

xk xx dsdrsr





  )1( )1(
),(

 

 
  tn

tn

xk

xk
srdW





 )1( )1(

),(
 

 
Therefore, in mean square we get 
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since ),( tx  is only a deterministic function as, 

we have 
 

E L()
k

n  Lk
n () 2  0,  

 
when .0,  tx This proves the consistency. 

As a result, the stochastic Crank-Nicolson method 
is convergent in its region of stability for 
approximating the solution of stochastic diffusion 
equation (1) with additive noise according to the 
stochastic Lax-Richtmyer theorem. 

4. Numerical results  

Computational efficiency is another important 
factor in evaluating the superiority of the numerical 
techniques. In this section, we perform some 
numerical tests for approximating the solutions of 
SPDE (1). We apply the two stochastic Saul’yev 
and Crank-Nicolson schemes to the stochastic 
diffusion equation driven by multiplicative and 
additive noise. In all our computations, the space 
domain is the interval Ω = [0, 1] and discretized 
into M uniform grid points. We carry out 10000 
realizations for each test, and display the averaged 
solutions along with the considered simulations.  

4.1. Example 1.  

We examine the performance of the proposed 
Stochastic Saul’yev Scheme for stochastic diffusion 
equation with multiplicative noise of the form:  
 

2

2

u(x, t) u(x, t)
u(x, t)W(x, t)

t x

 
   

 


                (14) 
 
subject to the following initial condition: 
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2(x 0.2)
u(0, x) exp( ), x [0,1],
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  
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2(x 0.2)

u(0, x) exp( ), x [0,1],


  


2(x 0.2)
u(0, x) exp( ), x [0,1],


  

  

2(x 0.2)
u(0, x) exp( ), x [0,1],


  

  
 
and the boundary conditions:  
 

u(t, 0) 
1

4t 1
exp(
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 (4t 1)
),  

 

).
)14(
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exp(

14
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




tt
tu

  
 

 
 
Fig. 1. Mean solution of stochastic diffusion equation 
driven by additive noise with γ =0.005 and λ =1.5 using 
Saul’yev method with 200 mesh points 

 
In order to examine the behavior of the numerical 

solution with respect to the various values of the 
SPDE’s coefficients, we used different values for 
diffusion constant γ and stochastic coefficient λ in 
our tests. Assuming ∆t =0.01, λ =1.5, according to 
the stability conditions for approximating the 
solutions of stochastic diffusion equation (14) with 
multiplicative noise at time t = 1, we obtain:  
 

5
21
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1027.6 


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e
x

e
 

 
 

In order to qualify the numerical results of the 
considered stochastic diffusion equation, we plot, in 
Fig. 1, the stochastic solutions using stochastic 
Saul’yev Scheme (2) with γ = 0.005 on a mesh of 
200 gridpoints. The computational results for 
approximating the solution of SPDE(14) is shown 
in Table 1 considering several values for time step 
and space size, γ and λ. 

 
Table 1. Test of multiplicative SPDE by the  

stochastic Saul’yev method 
 

γ λ ∆t ∆x E(u(0.2,1)) E(u(0.2,1))2

0.005 2.5 0.005 0.005 0.480932 0.584977 

0.05 1.5 0.01 0.01 0.499408 0.265886 

0.1 2 0.0025 0.0025 0.472556 0.223612 

0.2 1 0.01 0.025 0.506348 0.263021 

 

 
 

Fig. 2. Mean solutions of stochastic diffusion equation 
using stochastic Saul’yev method 

 
The evolution in time of averaged solution for the 

multiplicative stochastic diffusion with γ = 0.04 and 
λ = 4 is shown in Fig. 2 during the time interval [0, 
1]. In Fig. 3, we plot the results obtained by six 
different realizations (plotted by solid lines) at 
t=0.75, with the averaged solution plotted by dotted 
lines) for comparison reasons. As it can be seen, the 
computed stochastic solution preserves the 
symmetry in the computational domain and, at 
every realization, the simulated solution remains 
close to the averaged one. 

4.2. Example 2. 

We consider another test example for 
approximating the solution of stochastic diffusion 
equation driven by additive noise of the form 
 

2

2

u(x, t) u(x, t)
W(x, t)

t x

 
 

 


                             (15) 
 
with initial condition 
 

,)
2

1
(41)0,( 2 xxu  
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Fig. 3. Six different simulations with the stochastic Saul’yev scheme at t=0.75 

 
and boundary condition ,0),1(),0(  tutu  

using stochastic Crank-Nicolson method. In order 
to examine the behavior of the numerical solutions, 
we provide, in Table 2, the averaged solution of 
(15) with some different values for diffusion and 
stochastic coefficients. 

 
Table 2. Test of additive SPDE by the  

stochastic Crank-Nicolson method 
 
γ λ ∆t ∆x E(u(0.5,0.8)) E(u(0.5,0.8))2

0.5 1.5 0.01 0.01 0.011012 0.027708 

0.05 2 0.005 0.005 0.638203 0.520909 

0.1 2.5 0.00625 0.01250 0.394541 0.299308 

0.005 3.5 0.003125 0.00625 0.988298 1.867629 

 
In Fig. 4 we have represented the numerical 

solutions of SPDE (15) subject to the initial 
condition )5sin(2)3sin()0,( xxxu   and 

boundary conditions ,0),()0,(  txuxu with  

γ = 0.005 and λ = 4 during the time interval [0, 1]. 

5. Conclusion 

This paper has provided two stochastic finite 
difference methods for the numerical solution of 
stochastic parabolic equations with space-time 
white noise process. The stable explicit Saul’yev 
and implicit Crank-Nicolson schemes are 
developed for the stochastic case for solving the 
parabolic SPDEs driven by multiplicative and 
additive noise. In this viewpoint, the most 
important properties of a stochastic finite difference 
scheme have been described and analyzed. Despite 

the fact that two explicit and implicit methods are 
unconditionally stable for solving deterministic 
diffusion equations, applying to the parabolic 
SPDEs with two-dimensional white noise process, 
the stochastic term limits the stability conditions. 

The proposed methods have been illustrated by 
numerical examples and stochastic finite difference 
approximation for the stochastic diffusion equation 
has been demonstrated. 
 

 
 
Fig. 4. Mean solution of stochastic diffusion with 
additive noise problem using stochastic Crank-Nicolson 
method 
 

Another open question is how to extend such 
methods for non-uniform mesh, and how to define 
the mesh with regard to local truncation error at 
each grid point. This method appears to yeild a 
better approximation for computing the numerical 
solution of stochastic parabolic equations. 
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