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Abstract

The number of known spin vectors of main belt and near-Earth asteroids is regularly growing, including new objects, and updating the estimates
concerning known cases, with the aid of new observations and of improved observational techniques. A reliable statistical analysis of the spin
vectors is now possible. In general the poles (both for MB bodies and for NEAs) are not isotropically distributed, as some general theoretical
considerations may predict. Main belt asteroids show a lack of poles close to the ecliptic plane. There is a marginally significant excess of
prograde spinners in the 100–150 km size range, but interestingly there is not a statistically significant excess in the larger size range. Among
NEAs, there is an excess of retrograde rotations. The distributions of longitudes of poles of both groups do not show statistically significant
deviations from random. We discuss the possible physical implications of the various resulting pole anisotropies in terms of dynamical—mainly
non-gravitational—effects, and point out the importance of new observational campaigns, mainly devoted to compute the poles of small bodies
and of the members of asteroid dynamical families.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Photometric lightcurves of asteroids provide information
about rotational periods, orientations of spin axes and shapes,
as well as of the physical properties of their surfaces. Photo-
metric methods have been supported and tested by a variety
of other observational techniques (for example, with respect to
the rotational properties, radar observations and spacecrafts fly-
bys).

Prior to about 2000, it was presumed that the spin properties
of asteroids depend mainly on their collisional evolution (Davis
et al., 1989); this would predict a nearly isotropic distribution of
poles. A small excess of prograde spins might be expected, es-
pecially for large main belt asteroids (MBAs), due to a residual
directed component of spins from the time of formation. But,
in reality, the magnitude of the “directed component” might be
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only of the order of the orbital frequency, and thus be com-
pletely overwhelmed by the isotropic component of spin due to
random collisions (see, for example, Bertotti et al., 2003). As-
teroid collisional evolution studies are aimed at understanding
how collisions have shaped the observed features of the aster-
oid population, in order to support models of the formation and
evolution of the Solar System (Davis et al., 2002). Changes in
the spin rate and the creation of tumbling rotation states and
of binary asteroids are among the consequences of collisions
(Paolicchi et al., 2002).

Early statistical analyses of the asteroid spin-vector distrib-
utions were performed by Magnusson (1986, 1990) and Drum-
mond et al. (1988, 1991). The studies were based on no more
than 30 asteroids and showed a bi-modality of the observed pole
distribution and an apparent lack of poles close to the ecliptic
plane. Analyses performed by Pravec et al. (2002), based on 83
objects, have confirmed the earlier findings. Detailed analyses
for 73 main belt asteroids have also been made by Skoglov and
Erikson (2002) (see Section 3).

http://www.elsevier.com/locate/icarus
mailto:agn@amu.edu.pl
http://dx.doi.org/10.1016/j.icarus.2007.06.008
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2. Data

A database of asteroid spin-vector determinations was orig-
inally created by Per Magnusson, at that time working at the
Uppsala Observatory (Sweden) and reported in the Asteroids II
book (Magnusson, 1989). The latest update of his data set
was made in December 1995 and contained the poles (ex-
pressed in terms of the geocentric ecliptic coordinates of the
pole) and in many cases also sidereal periods of rotation and
shapes (but only when part of a spin-vector determination)
for about 100 asteroids. It is still available at the archives of
the Small Bodies Node of the NASA Planetary Data System:
http://pdssbn.astro.umd.edu/.

Recently, the maintenance and updating of this data set has
been adopted by the Poznań Observatory (Poland). All new as-
teroid pole determinations found in the literature have been in-
cluded. At the present time the list (which is regularly updated)
contains pole coordinates and supplementary information for
about 170 asteroids and is available at: http://www.astro.amu.
edu.pl/Science/Asteroids/.

For most asteroids several independent solutions have been
published. This can be confusing for non-specialists and readers
not interested in the spin-vector determination process. Because
of this and also to ease statistical studies, “synthesis values” (es-
timated at the best of our present knowledge) have been added
for some asteroids. The synthesis values have been obtained
by taking averages of the most recent independent results, with
weights based on the reliability of the method used and the
amount of the input data. This process is somewhat subjec-
tive but has been based on regular discussions with several
experts in pole determination. Table 1 presents a sample page
of the main table of the list. In the first column the method
of the pole vector determination is indicated (A—amplitude,
M—magnitude, E—epoch, L—lightcurve inversion, R—radar
methods, etc.). In the following columns we have places for
four different spin vector solutions per line: two for prograde
(β0 > 0) and two for retrograde rotation (β0 < 0). These reflect
the symmetry properties of most of the spin-vector determina-
tion methods. In the next column we have the sidereal period of
rotation given in days and the shape approximated by a triax-
ial ellipsoid. For a few asteroids there is evidence of a surface
albedo variegation (for example, spots on their surfaces); this
fact can be indicated in the column number 13. The last column
gives the reference codes fully described in the reference list.

In Table 1 we have spin vector solutions for seven asteroids.
For three of them (88 Thisbe, 107 Camilla and 125 Liberatrix)
the syntheses are the average values of the independent results.
In the case of 115 Thyra the maximum weight was given to the
latest pole determination, based on input data improved by the
lightcurves obtained during 4 new oppositions (Michałowski
et al., 2004). For three objects (108 Hecuba, 110 Lydia, 121
Hermione) the amount of the input data was insufficient to ob-
tain a reliable sense of rotation and a sidereal period: future
observations are required.

In the course of compiling published pole solutions, we have
developed a “certainty scale” as follows: 0—either wrong or
very uncertain determination, 1—possible but not certain pole
determination, 2—good determination, based on a large dataset,
two equally probable solutions are available (different in both
latitude and longitude), 3—very good determination, based on
a large dataset, an ambiguity of about 180◦ in pole longitude
might appear, 4—excellent determination, pole position con-
firmed by the methods based on independent datasets (for ex-
ample, lightcurves and radar data, lightcurves and spacecraft
fly-by).

Our assignment of a code is based on the quality of the data,
the pole solution method used, and on the consistency of re-
sults from multiple analyses. These assignments are necessarily
somewhat subjective, but we feel necessary in order to limit our
analysis to only reasonably reliable determinations. Most of the
poles we used for our analyses have reliability codes 3, and
none less than 2. The data are also given in Appendix A.

3. Previous analyses and physical problems

The first analyses of the asteroid spin-vector distribution
(done by, e.g., Zappala and Knezevic, 1984; Barucci et al.,
1986), based on small number of objects, suggested a depop-
ulation of poles close to the ecliptic plane. The analysis of the
earlier data (Magnusson, 1986, 1989, 1990) showed evidence
of a significant deviation from an isotropic distribution in eclip-
tic latitude of the spin vector orientations, being preferentially
clustered toward the ecliptic poles. At the time it seemed pos-
sible that this might be due to a selection effect related to the
method of analysis. A more recent analysis has been presented
by Pravec et al. (2002), based on 83 asteroids, with many poles
re-determined with more extensive lightcurve data sets and
good pole determination algorithms. However, the qualitative
scenario remains the same. The first suggestion of a deviation
from isotropy with respect to ecliptic longitudes is due to Binzel
(1987, unpublished presentation at a workshop on catastrophic
disruption, in Belgrade), relating to pole orientations of mem-
bers of the Koronis family. More recently, Samarasinha and
Karr (1998) have suggested some degree of anisotropy in the
general main-belt population. The clustering of poles suspected
by Binzel has been confirmed by Slivan (2002), and explained
by Vokrouhlicky et al. (2003). A recent analysis by La Spina et
al. (2004a) has found only small deviations from isotropy for
the longitude distribution of MBAs, while showing a bi-modal
behavior for near-Earth asteroids (NEAs); however, the poor
statistics do not allow definite conclusions.

A detailed analysis has been presented by Skoglov and Erik-
son (2002), based on a set of 73 asteroids. They discuss the
depopulation of spin vectors close to the ecliptic plane, and in-
troduce a possible explanation based on a correlation with the
orbital inclination.

They divide their input data into two groups with respect
to the orbital inclinations of the objects, those with inclination
I < 10◦ and those with I > 10◦. The asteroids with high orbital
inclinations were found to exhibit a depopulation of vectors
close to the ecliptic plane, whereas asteroids with orbits closer
to the ecliptic plane (small inclinations) were found to have a
more regular spin-vector distribution.

http://pdssbn.astro.umd.edu/
http://www.astro.amu.edu.pl/Science/Asteroids/
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Table 1
The fragment of the main table of the asteroid spin vector determinations data set

Basic data Spin vector solutions (ecliptic coordinates of equinox 1950) Sidereal
period
(days)

Ellipsoidal albedo
model variegation

Reference
codeλ0 β0 γ0 β0 λ0 β0 λ0 β0

a/b b/c

88 Thisbe
AM 32◦ +69◦ 205◦ +54◦ 25◦ −54◦ 212◦ −69◦ – 1.13 1.01 Za + 86b
EAM 129◦ +78◦ E E E E 0.2517222 1.12 1.30 Dr + 88b
EA 40◦ +70◦ 200◦ +70◦ E E E E 0.2517223 1.13 Mag90a
EAM 110◦ +58◦ E E E E 0.2517222 1.15 1.16 Dru + 91
EA 243◦ +74◦ E E E E 0.2517224 1.11 1.22 DeA95
L 207◦ +48◦ 0.2517208 1.1 1.231 Tor + 03

Synthesis 190◦ +64◦ E E E E 0.25172 1.1 1.2 Synthesis

107 Camilla
EAM 71◦ +61◦ 233◦ +74◦ E E E E 0.2018306 1.45 1.72 Dr + 88b
EAM 74◦ +55◦ 239◦ +76◦ E E E E 0.2018305 1.46 1.6 Mag90a
EAM 229◦ +73◦ E E E E 0.2018305 1.47 1.49 Dru + 91
EA 230◦ +69◦ E E E E 0.2018307 1.46 1.58 DeA95
L 72◦ +51◦ 0.2018304 1.4 1.2 Tor + 03

Synthesis 72◦ +56◦ 232◦ +72◦ E E E E 0.2018306 1.46 1.6 Synthesis

108 Hecuba
AM 79◦ +13◦ 259◦ −13◦ – 1.180 1.101 Bla + 98
AM 79◦ +6◦ 259◦ −6◦ – 1.180 1.101 Bla + 98

110 Lydia
EAM 24◦ +75◦ 210◦ +78◦ – 1.17 Mic96a

115 Thyra
EA 175◦ +60◦ 330◦ +60◦ E E E E 0.301565 1.14 1.30 Dot + 95
AM 197◦ +30◦ 358◦ +35◦ 17◦ −30◦ 178◦ −35◦ – 1.224 1.088 Bla + 98
EAM 182◦ −43◦ 0.3017940 1.21 1.03 Mic + 03
EAM 7◦ +34◦ 0.3017257 1.23 1.03 Mic + 04
L 23◦ +33◦ 0.3016652 1.1 1.131 Mic + 04

Synthesis 15◦ +34◦ 0.30169 1.2 1 Synthesis

121 Hermione
EA 163◦ +12◦ 342◦ +30◦ 162◦ −30◦ 343◦ −12◦ – 1.10 1.00 DeA95
AM 40◦ +32◦ 220◦ −32◦ – 1.294 1.288 Bla + 96
AM 240◦ +42◦ 60◦ −42◦ – 1.294 1.393 Bla + 98

125 Liberatrix
EAM 80◦ +74◦ E E E E 0.1653422 1.28 2.68 Dr + 88b
E +70◦ +70◦ E E E E 0.1653425 Mag90a
EAM 228◦ +71◦ E E E E 0.1653420 1.35 1.23 Dru + 91
EA 15◦ +47◦ 181◦ +53◦ E E E E 0.1653418 1.55 1.10 DeA95

Synthesis 48◦ +64◦ 205◦ +65◦ E E E E 0.1653422 Synthesis
This fact was explained as due to differences in the dynamic
evolution of the spin vectors between objects with high and low
orbital inclinations. However, as we will discuss later, a similar
analysis involving the objects included in the present dataset
does not confirm the significance of the inclination effect on
the distribution of pole latitudes.

As mentioned in Section 1, from the theoretical point of
view, it is reasonable to envisage a nearly isotropic distribution
of poles, with—maybe—a very small excess of prograde rota-
tors due to a small directed component of spin, presumed to be
prograde-upright.

According to recent analyses, the processes connected with
reflection or reemission of solar radiation from an asteroid
surface, and in particular the Yarkovsky effect, can affect the
asteroids’ dynamical evolution, causing orbital changes. The
Yarkovsky effect can indirectly affect the spin vector properties
as well. For instance, it has been argued that the excess of retro-
grade rotators among near-Earth asteroids can be explained in
terms of a selection of the asteroids transferred into the NEA re-
gion, due to the Yarkovsky effect (La Spina et al., 2004b). The
amount of the retrograde excess that they have found confirms
the quantitative estimates on the relative importance of the dif-
ferent injection channels, presented in earlier theoretical studies
(Bottke et al., 2002; Morbidelli and Vokrouhlicky, 2003). The
knowledge of the spin vector might also be useful to identify
the region, in the main belt, from which a given NEA has orig-
inated (Marchi et al., 2005).

A process related to the Yarkovsky effect, the so-called
YORP (Yarkovsky–O’Keefe–Radzievskii–Paddack) effect, has
been shown to be capable of directly affecting the spin rates and
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spin axis orientations of moderately sized asteroids (Rubincam,
2000). A process of this kind might dominate the spin evo-
lution of bodies smaller than about 40 km in diameter and
has been claimed to explain the spin vector properties of the
Koronis family asteroids (Slivan, 2002; Vokrouhlicky et al.,
2003).

4. Pole distribution analysis

4.1. Latitude distribution

The distribution of the latitudes is strongly anisotropic. In
Fig. 1 we show the updated distribution of the ecliptic lati-
tudes for 92 MBAs, following the same conventions adopted in
Pravec et al. (2002). We treat as MBAs all objects with semima-
jor axes from 2.20 to 3.91 AU that are not indicated in the last
column of Table 2 as Amor, Apollo or Aten. The distribution
shows a moderate excess of prograde spins and a strong de-
population of poles close to the ecliptic plane, thus confirming
previous findings. The excess of prograde spins in the sample
is, according to simple statistical considerations, not far from a
“2-σ ” significance (σ 2 � Np(1−p), where N is the total num-
ber of objects in the sample and p = 0.5 is the probability—
a priori—of being prograde or retrograde). The deficit of bodies
close to the ecliptic (bin 4) is definitely significant (1.5 objects
instead of the expected 13 or 14). In the figure we also plot the
distribution of the “orbital latitudes,” computed with reference
to the real orbital plane of each asteroid. In case of an ambigu-
ous pole solution (most often the ambiguity concerns only the
pole longitude) each value is counted with a weight of 0.5. We
also plot the ecliptic latitude distribution for those asteroids for
which an unambiguous assignment of the latitude zone is possi-
ble. The qualitative properties of the three distributions are very
similar to each other.

Magnusson (1986) suggested that a part of the effect of de-
population of poles close to the ecliptic plane could be due to
a systematic error introduced by the amplitude and magnitude
methods of pole determination and also suspected that there ex-
ists an observational bias introduced by the epoch method’s
inability to use near-zero-amplitude lightcurves obtained for
objects with the spin axis near the ecliptic plane.

However, the techniques of analysis have continued to im-
prove and the available data set to increase, thus one would
expect that the significance of a selection effect such as the
one mentioned above would decrease with time. Instead the
depopulation appears to remain, and in fact gain in statistical
significance, suggesting that it is real.

In a recent paper (La Spina et al., 2002) the distribution has
been compared with a bi-variate one, allowing a best-fit mean
value different from zero and a different variance in one direc-
tion. For the discussion of this point and of the other possible
consequences, see the above quoted paper.

We have also tested the often repeated claim that there is
a prograde excess among the very largest asteroids, as a rem-
nant of the formation processes. In Fig. 2 we have plotted the
cumulative excess of prograde vs retrograde asteroids larger
than a given size, as a function of the size (thus the number
Fig. 1. The histogram shows (solid lines) the distribution of the ecliptic latitude
for the poles of 92 main belt asteroids (MBAs). Whenever the computations
give an ambiguous (two-fold) pole designation either value is counted with a
weight of 0.5. The zones referred to in the abscissa are defined with the same
conventions as in Pravec et al. (2002), representing approximately equal sur-
faces on the λ,β sphere; region 1 means retrograde, from −90◦ to −45◦ ,
2 means −45 to −25, 3 means −25 to −8, 4 means −8 to 8 (prograde) and
so on. The histogram shows also the latitude distribution computed with re-
spect to the asteroid orbital plane (long dashed lines) and the ecliptic latitude
distribution for the cases in which, also in presence of ambiguous determina-
tions, the latitude zone is uniquely identified (dotted lines).

of included bodies increases with decreasing size). We com-
pare the curve to an estimate of the standard statistical error
(essentially the square root of the number of bodies). It can
be seen that the excess is within—or close to—the standard
error for the largest bodies, while undergoing a sudden—and
formally significant—increase around 100–150 km. We have
analyzed in some detail this group of bodies, looking for an
explanation of this feature. At the moment we have not found
any physical explanation nor any significant correlation with
other properties (even if we recall that in this region the spin
rate distribution is rather perturbed—the minimum of the mean
spin rate as function of the size is close to 100 km). Thus it is
not clear whether it is due to a chance statistical fluctuation, of
about “2.5-σ ” significance at its peak, or due to a real—but not
yet understood—physical process. Perhaps the most important
result coming out of this analysis is the lack of any significant
preference for prograde spin among the largest asteroids, down
to a diameter of about 200 km or even smaller. Thus, if the spins
of the largest asteroids keep, at least partially, memory of their
primordial properties (and probably it is so), one must conclude
that those spins were essentially isotropic, in agreement with
the theory (Bertotti et al., 2003).

In Fig. 3 we plot the latitude distributions for 21 NEAs (the
same cases presented for MBAs). The NEAs exhibit a strong
excess of retrograde, instead of prograde, bodies. This discrep-
ancy, which is statistically meaningful, has already been dis-
cussed by La Spina et al. (2004b).
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Table 2

βmin βmax M Taxonomy,
family

57. 81. 0 C, G Ceres
9 −42. 26. 0 B

15. 47. 0 Sk
40. 61. 0 V
35. 64. 0 S
36. 66. 0
19. 58. 0 S
22. 38. 0 S

3.5 16. 0
14. 49. 0 S Flora
20. 36. 0 S

4. 16. 0
−39. −32. 0 C Hygiea
−40. −34. 0

19. 58. 0 L, S Victoria
−83. −65. 0 S
−71. −53. 0
−18. −12. 0 X, M
−13. −7.2 0

5.1 18. 0 Sl
19. 34. 0

−29. −15. 0 S
−41. −29. 0

50. 53. 0 Ch, G
51. 54. 0
58. 60. 0 S Massalia
59. 61. 0
6.5 13. 0 Xk, M
6.6 13. 0

−34. −8.4 0 X, M
12 −14. 14. 0

−59. −45. 0 S
5.4 28. 0 S

30. 60. 0
−34. −23. 0 S
−79. −34. 0 Cb, C

32. 52. 0 S
50. 76. 0

−29. −23. 0 S
−37. −31. 0

19. 44. 0 S
23. 35. 0 S
29. 42. 0

−46. −17. 0 Ch, C
−49. −20. 0

(continued on next page)
Summary of the data used in the analysis

Asteroid λe βe q ze D λo βo zo ν I e A Ω Ω̇ a/b b/c 〈ψ̇〉

1 Ceres 332 70 3 7 848 234 80 7 2.6446 10.6 0.08 2.77 80 −59.185 1.08 1.06 7.4
2 Pallas 44 −9 3 3 498 229 18 5 3.0717 34.9 0.23 2.77 173 −45.554 1.10 1.05 −0.4
3 Juno 106 34 3 6 234 301 45 6 3.3289 13.0 0.26 2.67 170 −61.820 1.20 1.30 11.

4 Vesta 326 53 4 7 468 213 57 7 4.4926 7.1 0.09 2.36 104 −39.590 1.10 1.20 13.

5 Astraea 123 51 3 7 119 348 52 7 1.4285 5.4 0.19 2.57 142 −59.347 1.30 1.15 36.

319 49 7 171 48 7 37.

6 Hebe 355 41 3 6 185 203 48 7 3.2992 14.8 0.20 2.43 139 −41.973 1.17 1.10 9.7
7 Iris 15 28 2 6 200 114 23 5 3.3619 5.5 0.23 2.39 260 −46.353 1.20 1.20 13.

196 10 5 297 15 5 4.5
8 Flora 140 22 3 5 136 31 19 5 1.8751 5.9 0.16 2.20 111 −35.280 1.05 1.20 25.

9 Metis 182 26 2 6 170 112 21 5 4.7252 5.6 0.12 2.39 69 −41.994 1.30 1.30 11.

360 11 5 291 16 5 4.2
10 Hygiea 111 −36 3 2 407 190 −35 2 0.8688 3.8 0.12 3.14 284 −94.345 1.29 1.10 −22.

298 −37 2 11 −38 2 −23.

12 Victoria 150 50 3 7 113 275 58 7 2.7712 8.4 0.22 2.33 236 −40.856 1.30 1.20 23.

15 Eunomia 106 −74 3 1 255 211 −71 1 3.9456 11.7 0.19 2.65 293 −51.995 1.42 1.10 −16.

353 −60 1 45 −69 1 −15.

16 Psyche 35 −15 3 3 253 245 −12 3 5.1798 3.1 0.14 2.92 150 −73.064 1.25 1.25 −2.7
216 −10 3 66 −13 3 −1.9

17 Thetis 58 12 2 5 90 293 17 5 1.9566 5.6 0.13 2.47 126 −46.396 1.30 1.00 4.6
240 25 5 113 20 5 10.

18 Melpomene 190 −20 2 3 141 36 −26 2 2.0741 10.1 0.22 2.30 151 −39.596 1.20 1.20 −17.

355 −37 2 210 −32 2 −27.

19 Fortuna 80 52 3 7 226 228 53 7 3.2244 1.6 0.16 2.44 211 −45.208 1.20 1.00 8.3
260 52 7 50 51 7 8.4

20 Massalia 23 59 3 7 146 175 59 7 2.9638 0.7 0.14 2.41 207 −45.050 1.15 1.10 16.

203 60 7 357 60 7 16.

21 Lutetia 42 10 3 5 96 321 12 5 2.9390 3.0 0.16 2.44 81 −44.656 1.25 1.20 5.1
225 10 5 144 8 4 5.2

22 Kalliope 21 −22 2 3 181 312 −12 3 5.7856 13.7 0.10 2.91 66 −62.930 1.30 1.20 −3.1
193 0 4 128 −11 3 0.0

23 Thalia 7 −55 3 1 108 294 −46 1 1.9489 10.1 0.23 2.63 67 −64.361 1.20 1.30 −32.

28 Bellona 83 18 2 5 121 300 26 6 1.5291 9.4 0.15 2.78 145 −66.854 1.20 1.20 9.9
275 40 6 126 33 6 24.

29 Amphitrite 136 −28 4 2 212 142 −32 2 4.4526 6.1 0.07 2.55 357 −47.131 1.10 1.10 −4.3
31 Euphrosyne 273 −60 3 1 256 253 −36 3 4.3387 26.3 0.23 3.15 31 −60.400 1.09 1.60 −8.8
32 Pomona 92 45 3 6 81 227 49 7 2.5403 5.5 0.08 2.59 221 −50.366 1.30 1.30 22.

262 58 7 47 54 7 29.

37 Fides 85 −26 2 2 108 78 −29 2 3.2727 3.1 0.18 2.64 7 −57.680 1.10 1.05 −3.7
264 −34 2 257 −31 2 −4.6

39 Laetitia 324 31 3 6 150 161 28 6 4.6709 10.4 0.11 2.77 157 −56.403 1.40 1.40 8.8
40 Harmonia 17 31 2 6 108 284 35 6 2.6937 4.3 0.05 2.27 94 −35.182 1.30 1.00 10.

204 33 6 109 29 6 12.

41 Daphne 194 −31 3 2 174 6 −34 2 4.0080 15.8 0.27 2.76 178 −76.619 1.30 1.10 −6.3
342 −34 2 175 −37 2 −6.9
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Table 2 (continued)

˙ ˙ 〉 βmin βmax M Taxonomy,
family

.3 −27. −11. 0 L, S

.4 −27. −12. 0

.6 −18. −13. 0 Sk Flora

. 45. 58. 0 Xc, E Nysa

. 46. 60. 0

. −39. −28. 0 C, FC

. −33. −22. 0

. 27. 40. 0 B, C

.7 13. 24. 0

.9 −72. −55. 0 Ch, CU

.7 −70. −53. 0

.1 19. 35. 0 C, CF Hygiea

. 34. 51. 0

.9 31. 58. 0 C

. 40. 68. 0

.2 30. 46. 0 X, M

.2 19. 34. 0

. 38. 45. 2 S

. 28. 38. 2

. −32. −24. 0 Sa

. −36. −29. 0

.2 28. 31. 0 Xe, E

.5 25. 28. 0

.6 −44. −37. 0 Xc, P Cybele

. −45. −38. 0 X

. −39. −31. 0

.7 −57. −34. 0 B, FC Eunomia

. −27. −3.5 0

.7 44. 66. 0 X, P Cybele

. 57. 69. 0 B, CF

.3 4.6 22. 0 C, CU

.2 45. 66. 0 X, C Cybele

.4 64. 85. 0

.1 22. 49. 0 S

.9 58. 69. 0 X, M Liberatrix

. 60. 71. 0

.6 53. 80. 0 X, M
) −74. −65. 3 Ch, G
.3 −59. −17. 0
. 50. 58. 0 Xk, M Nysa
. 45. 53. 0
. −68. −67. 0 S Koronis
. −70. −69. 0
. −75. −72. 0 Sk Koronis
. −73. −70. 0
Asteroid λe βe q ze D λo βo zo ν I e A Ω Ω a/b b/c 〈ψ

42 Isis 119 −18 3 3 100 31 −23 3 1.7651 8.5 0.22 2.44 85 −47.284 1.10 1.00 −3
291 −20 3 208 −16 3 −3

43 Ariadne 252 −16 3 3 66 346 −15 3 4.1652 3.5 0.17 2.20 265 −35.363 1.60 1.15 −9
44 Nysa 100 53 3 7 71 332 55 7 3.7375 3.7 0.15 2.42 132 −46.311 1.40 1.20 21

296 52 7 160 51 7 22
45 Eugenia 119 −34 3 2 215 327 −31 2 4.2112 6.6 0.08 2.72 148 −58.282 1.40 1.50 −12

301 −27 2 156 −30 2 −10
47 Aglaja 139 33 3 6 127 134 29 6 1.8197 5.0 0.13 2.88 3 −69.591 1.21 1.20 15

313 19 5 311 23 5 8
51 Nemausa 160 −64 3 1 148 327 −60 1 3.0836 10.0 0.07 2.37 176 −39.294 1.15 1.00 −7

356 −62 1 198 −60 1 −7
52 Europa 69 28 3 6 303 303 34 6 4.2629 7.5 0.10 3.10 129 −86.972 1.20 1.20 4

258 42 7 125 36 6 6
54 Alexandra 160 45 3 6 166 194 49 7 3.4157 11.8 0.20 2.71 314 −60.428 1.30 1.00 6

290 55 7 353 58 7 8
55 Pandora 30 38 3 6 67 24 35 6 4.9958 7.2 0.14 2.76 11 −59.791 1.25 1.20 7

228 27 6 214 31 6 5
60 Echo 95 34 3 6 60 263 38 6 0.9540 3.6 0.18 2.39 192 −46.474 1.50 1.40 97

275 42 6 83 38 6 79
63 Ausonia 120 −27 3 2 103 145 −30 2 2.5813 5.8 0.13 2.40 338 −41.788 2.10 1.00 −22

308 −34 2 327 −31 2 −26
64 Angelina 119 29 3 6 140 169 29 6 2.7414 1.3 0.12 2.68 309 −59.756 1.40 1.00 8

299 27 6 351 27 6 7
65 Cybele 28 −41 3 2 237 234 −38 2 5.9398 3.6 0.10 3.44 156 −159.264 1.07 1.60 −4
83 Beatrix 4 −42 3 2 81 332 −40 2 2.3732 5.0 0.08 2.43 28 −43.625 1.24 1.10 −18

172 −34 2 147 −37 2 −16
85 Io 106 −46 2 1 155 264 −34 2 3.4908 12.0 0.19 2.65 203 −53.166 1.10 1.00 −2

293 −15 3 90 −27 2 −1
87 Sylvia 82 55 3 7 261 23 52 7 4.6299 10.9 0.08 3.49 73 −130.867 1.40 1.10 4
88 Thisbe 190 64 3 7 201 274 69 7 3.9727 5.2 0.16 2.77 277 −63.896 1.10 1.20 11
93 Minerva 196 13 3 5 141 190 15 5 4.0120 8.6 0.14 2.75 4 −61.189 1.10 1.05 1
107 Camilla 72 56 2 7 223 255 66 7 4.9547 10.0 0.08 3.48 173 −140.774 1.45 1.50 7

232 74 7 70 65 7 8
115 Thyra 15 34 3 6 80 68 23 5 3.3147 11.6 0.19 2.38 309 −41.919 1.20 1.00 6
125 Liberatrix 48 64 3 7 44 233 68 7 6.0481 4.7 0.08 2.74 169 −58.175 1.45 1.16 9

205 65 7 43 62 7 10
129 Antigone 200 65 3 7 125 72 54 7 4.8415 12.2 0.21 2.87 136 −78.213 1.30 1.04 6
130 Elektra 190 −84 2 1 182 283 −71 1 4.5936 22.9 0.21 3.12 146 −69.141 1.40 1.20 (78

243 −36 2 101 −59 1 −5
135 Hertha 100 52 3 7 79 115 50 7 2.8552 2.3 0.21 2.43 344 −46.665 1.15 1.20 22

292 50 7 310 52 7 21
158 Koronis 27 −67 3 1 35 98 −68 1 1.6894 1.0 0.06 2.87 289 −65.696 1.45 1.60 −46

211 −70 1 281 −69 1 −47
167 Urda 39 −74 3 1 40 237 −72 1 1.8375 2.2 0.04 2.85 166 −64.596 1.25 1.00 −13

225 −71 1 55 −73 1 −13
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−35. −8.5 0 Xk, C
−47. −20. 0

12. 28. 0 S
−33. −23. 0 M
−27. −16. 0
−67. −65. 0 S Koronis
−68. −66. 0

0.96 30. 0 X, M
22. 55. 0
11. 89. 0 Sl
16. 76. 4

−69. −67. 0 S Koronis
53. 58. 2 S

−80. −79. 1 S Koronis
−78. −77. 1

36. 44. 0 S Koronis
39. 47. 0

−64. −60. 0 S Koronis
−67. −62. 0

30. 40. 0 C Hilda
45. 55. 0
34. 63. 0 X

−66. −56. 0
13. 26. 0 Xk, M
26. 44. 0 R

3.1 20. 0
−0.96 37. 0 Sl
34. 61. 0 C

4 −27. 20. 0 B, BFC
−26. −17. 0 S
−38. −30. 0

58. 75. 0 M
45. 76. 0 Sl

6.9 35. 0
48. 73. 0 C Eos
0.48 18. 5 S Amor
5.5 36. 0 CU
9.4 40. 0

−42. −30. 0 S
18. 51. 0 C
−0.084 36. 0 S
40. 50. 0 Sq Koronis
45. 55. 0

(continued on next page)
Table 2 (continued)

Asteroid λe βe q ze D λo βo zo ν I e A Ω Ω̇ a/b b/c 〈ψ̇〉

173 Ino 178 −14 2 3 154 26 −21 2 3.9238 14.2 0.21 2.74 148 −59.574 1.10 1.10 −3.

344 −30 2 203 −25 3 −4.5
196 Philomela 277 20 3 5 136 201 23 5 2.8772 7.3 0.02 3.11 73 −80.274 1.30 1.20 5.

201 Penelope 85 −29 3 2 68 287 −23 3 6.4043 5.8 0.18 2.68 157 −58.331 1.50 1.20 −6.

260 −21 3 104 −27 2 −4.8
208 Lacrimosa 162 −65 3 1 41 161 −66 1 1.7049 1.8 0.01 2.89 5 −67.359 1.35 1.70 −44.

346 −68 1 337 −67 1 −45.

216 Kleopatra 72 16 2 5 135 212 23 5 4.4566 13.1 0.25 2.79 216 −72.155 2.60 1.30 6.3
232 37 6 25 32 6 14.

230 Athamantis 83 36 3 6 109 196 39 6 1.0006 9.4 0.06 2.38 240 −38.017 1.10 1.10 26.

239 40 6 7 40 6 (14)

243 Ida 262 −68 4 1 28 297 −67 1 5.1795 1.1 0.05 2.86 324 −65.235 1.80 1.20 −14.

270 Anahita 293 59 3 7 51 42 57 7 1.5936 2.4 0.15 2.20 254 −33.950 1.25 1.28 70.

277 Elvira 53 −79 3 1 27 187 −79 1 0.8083 1.2 0.09 2.89 232 −67.159 1.40 1.50 −95.

245 −78 1 7 −78 1 −94.

311 Claudia 24 40 3 6 24 305 43 6 3.1867 3.2 0.01 2.90 81 −67.575 1.80 1.00 12.

209 43 6 126 40 6 12.

321 Florentina 94 −62 3 1 27 51 −64 1 8.3598 2.6 0.04 2.89 40 −66.874 1.45 1.50 −8.3
265 −65 1 229 −63 1 −8.5

334 Chicago 15 35 3 6 156 242 39 6 2.6093 4.7 0.03 3.91 131 −246.300 1.88 1.40 7.5
184 50 7 56 46 7 10.

337 Devosa 204 51 2 7 59 198 54 7 5.1598 7.9 0.14 2.38 356 −42.415 1.25 1.56 19.

195 −62 1 212 −59 1 −23.

338 Budrosa 162 20 3 5 63 233 25 5 5.2174 6.0 0.12 2.91 288 −65.671 1.54 1.20 4.2
349 Dembowska 153 34 2 6 140 118 27 6 5.1051 8.2 0.09 2.93 33 −67.037 1.31 1.17 5.3

330 12 5 298 19 5 1.9
354 Eleonora 360 18 3 5 155 212 29 6 5.6112 18.4 0.11 2.80 141 −59.549 1.20 1.10 1.9
360 Carlova 106 48 3 7 116 346 52 7 3.8775 11.7 0.18 3.00 133 −79.060 1.45 1.26 11.

372 Palma 65 −3 3 4 189 99 −27 2 2.7936 23.9 0.26 3.14 327 −78.036 1.15 1.18 −0.5
376 Geometria 57 −22 3 2 35 116 −26 2 3.1058 5.4 0.17 2.29 302 −39.549 1.10 1.10 −6.9

240 −35 2 296 −30 2 −10.

382 Dodona 86 66 3 7 58 123 60 7 5.8349 7.4 0.18 3.12 314 −101.073 1.50 1.30 8.9
416 Vaticana 132 58 2 7 85 78 45 6 4.4673 12.9 0.22 2.79 58 −76.274 1.50 1.20 13.

310 22 5 250 34 6 5.6
423 Diotima 155 59 3 7 209 86 48 7 5.0265 11.2 0.04 3.07 70 −73.396 1.15 1.26 6.8
433 Eros 17 11 4 5 23.6 73 1 4 4.5539 10.8 0.22 1.45 304 −21.099 2.00 1.00 (21)

451 Patientia 39 21 3 5 225 315 32 6 2.4638 15.2 0.08 3.06 89 −67.979 1.00 1.00 68.

163 25 5 75 10 5 68.

487 Venetia 264 −27 3 2 63 165 −38 2 1.8072 10.2 0.09 2.67 115 −51.436 1.17 1.80 −33.

511 Davida 300 34 4 6 326 181 36 6 4.6789 15.9 0.18 3.17 108 −92.640 1.24 1.12 3.5
532 Herculina 287 17 3 5 222 174 16 5 2.5519 16.3 0.18 2.77 108 −62.487 1.20 1.20 6.1
534 Nassovia 55 46 3 7 33 324 48 7 2.5346 3.3 0.06 2.88 94 −67.067 1.35 1.45 21.

241 49 7 144 47 7 22.
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5. −54. −38. 0 Sl
7. −60. −45. 0
3. −49. −33. 0 S
5. −58. −43. 0
3.9 −71. −36. 0 C
3.8 −69. −34. 0
0. 18. 58. 0 CP
3. −59. −33. 0
2.9 4.2 41. 0 B, F
5. 39. 45. 0 Sq Koronis
4. 35. 41. 0
4.7 1.6 41. 0 Cgh, C
7. 17. 32. 0 S Flora
6. −86. −55. 0 S Amor
7. 42. 49. 0 S Koronis
5. 38. 45. 0
4. −14. −4.7 1 SUQ Apollo
9.4 −78. −54. 0
) −29. 77. 4 C Amor
0. −59. −57. 1 S Apollo
) −0.65 58. 5 S Amor
0. 51. 52. 2 S Apollo
7. −34. −30. 1 Q Apollo
) −87. −85. 3 Sl, SU Amor
0. −25. −24. 1 Sq Apollo
0. 29. 30. 2 Xc, C Aten
0. −40. −31. 1 Xe, E Apollo
2.8 −39. 12. 0 Sq Amor
0.0 −33. 11. 0 B, F Apollo
0.0 −37 7 0
7. 69. 75. 0 V Amor
6. 66. 73. 0
0. −49. −47. 1 Apollo
8. −84. −56. 0 S Amor
3. −31. −30. 0 S
4. −77. −56. 0 Sq Amor
1.4 −25. 16. 0 Sq Amor
6.3 −35. 2.2 0
1. −48. −44. 0 Q Apollo
0. −87. −86. 1 S Apollo
0. −83. −82. 1
Table 2 (continued)

Asteroid λe βe q ze D λo βo zo ν I e A Ω Ω̇ a/b b/c 〈ψ̇

584 Semiramis 113 −47 3 1 54 201 −44 2 4.7347 10.7 0.23 2.37 282 −41.864 1.30 1.20 −1
335 −50 1 43 −58 1 −1

675 Ludmilla 16 −39 3 2 100 117 −48 1 3.1099 9.8 0.20 2.77 263 −64.613 1.30 1.20 −1
210 −52 1 301 −44 2 −1

683 Lanzia 16 −53 3 1 82 135 −68 1 5.0912 18.5 0.05 3.12 260 −64.313 1.40 1.00 −
190 −53 1 285 −35 2 −

694 Ekard 98 40 2 6 91 216 51 7 4.0527 15.8 0.32 2.67 230 −56.843 1.30 1.20 1
89 −48 1 229 −37 2 −1

704 Interamnia 51 22 3 5 317 127 8 4 2.7500 17.3 0.15 3.07 281 −63.933 1.10 1.10
720 Bohlinia 48 41 3 6 34 14 41 6 2.6910 2.4 0.01 2.89 36 −67.212 1.40 1.25 1

236 38 6 198 39 6 1
776 Berbericia 8 23 3 5 151 292 40 6 3.1299 18.2 0.16 2.93 80 −62.551 1.14 1.24
951 Gaspra 19 21 4 5 15.5 125 18 5 3.4081 4.1 0.17 2.21 253 −35.707 1.60 1.10 1
1036 Ganymed 208 −76 3 1 38.5 297 −58 1 2.3274 26.6 0.54 2.66 216 −74.660 1.00 1.50 −4
1223 Neckar 72 45 3 6 22 33 44 6 3.0686 2.6 0.06 2.87 41 −65.698 1.50 1.30 1

247 42 6 204 43 6 1
1566 Icarus 214 5 3 4 1.3 127 −13 3 10.5558 22.9 0.82 1.08 88 −24.953 1.23 1.40 −9
1572 Posnania 46 −65 3 1 34 10 −71 1 2.9816 13.3 0.21 3.10 6 −91.781 1.35 1.04 −
1580 Betulia 136 22 3 5 3.9 73 −28 2 3.9098 52.1 0.49 2.19 62 −48.739 1.10 1.40 (51
1620 Geographos 55 −46 4 1 2.6 74 −59 1 4.5947 13.3 0.34 1.25 337 −21.974 2.60 1.10 −24
1627 Ivar 333 43 3 6 6.9 192 45 6 5.0050 8.4 0.40 1.86 133 −36.703 1.90 1.30 (13
1685 Toro 210 43 3 6 3 301 51 7 2.3540 9.4 0.44 1.36 274 −28.793 2.10 1.80 43
1862 Apollo 47 −31 3 2 1.4 7 −32 2 7.8275 6.4 0.56 1.47 36 −39.551 2.08 1.80 −8
1980 Tezcatlipoca 334 −66 3 1 6.7 285 −87 1 3.3093 26.9 0.36 1.71 246 −22.242 1.40 1.40 (150
2063 Bacchus 24 −26 3 2 1.2 347 −24 3 1.5337 9.4 0.35 1.08 33 −30.493 2.09 1.06 −46
2100 Ra-Shalom 73 13 3 5 2.5 261 29 6 1.2121 15.8 0.44 0.83 171 −22.987 1.20 1.30 130
3103 Eger 10 −50 3 1 2.5 249 −31 2 4.2055 20.9 0.35 1.41 129 −18.656 1.50 1.00 −6
3199 Nefertiti 197 −22 3 3 1.8 223 −1 4 7.9466 33.0 0.28 1.57 340 −17.416 1.10 1.10 −
3200 Phaeton 97 −11 3 3 5.1 195 −6 4 6.6841 22.2 0.88 1.27 265 −32.454 1.0 1.0

276 −15 3 4 −18 3
3908 Nyx 43 71 2 7 0.9 136 70 7 5.4224 2.2 0.46 1.93 262 −51.299 1.20 1.00 1

291 69 7 34 68 7 1
4769 Castalia 235 −56 3 1 1.4 269 −47 1 5.8624 8.9 0.48 1.06 326 −32.846 2.00 1.00 −25
4957 Brucemurray 358 −50 3 1 3.0 153 −81 1 8.2981 35.0 0.22 1.57 255 −14.031 1.10 1.10 −1
4979 Otawara 50 −30 3 2 2.0 340 −30 2 8.8671 0.9 0.14 2.17 70 −33.718 1.20 2.30 −1
5587 1990 SB 253 −60 3 1 6.5 33 −74 1 4.7504 18.1 0.55 2.39 191 −63.957 2.00 1.20 −4
6053 1993 BW3 178 −7 3 4 3.1 219 7 4 9.3257 21.6 0.53 2.15 319 −44.736 1.10 1.50 −

354 −16 3 28 −27 2 −
6489 Golevka 205 −46 4 1 0.4 352 −46 1 3.9805 2.3 0.61 2.50 211 −155.704 1.20 1.00 −1
25143 Itokawa 39 −87 3 1 0.4 308 −86 1 1.9782 1.7 0.28 1.33 71 −129.424 1.95 1.25 −47

355 −84 1 281 −82 1 −47
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Fig. 2. The figure represents the cumulative excess of prograde asteroids (vs
the retrograde one) larger than a given size, as function of the size itself. The
standard expected deviation (i.e., the square root of the bodies of known spin
vector latitude larger than the corresponding size value) is also represented, for
comparison.

Fig. 3. The histogram shows the latitude distributions for the poles of near-Earth
asteroids (NEAs) with the same conventions and symbols as those adopted in
Fig. 1.

4.2. The inclination effect

Skoglov and Erikson (2002) claim to have found a correla-
tion between the orbital inclination and the latitude distribution.
According to their data the depopulation of close-to-the-ecliptic
plane poles is, for the most part, due to the presence of high
(>10◦) inclination bodies. We have redone the same compu-
tation using our dataset. We have found no significant correla-
tion between the inclination and the latitude distribution. The
only qualitative difference is a better symmetry, in the high-
Fig. 4. The histogram compares the latitude distribution for all MBAs with that
concerning the high inclination ones (I > 10◦). The latitude binning is defined
in accordance with Skoglov and Erikson (2002), i.e., taking 10 equal spacings
in sin(β).

Fig. 5. As in Fig. 4, but the latitude binning is the one usually adopted in the
present paper (see caption of Fig. 1). We plot also the corresponding cases
where the latitude bin is defined with respect to the asteroid orbital plane.

inclination sample, between prograde and retrograde bodies.
However, the statistical significance of this difference is low.
In Figs. 4 and 5 we compare the latitude distribution for all
MBAs with that for the high inclination ones, according both to
the latitude binning used in the above quoted paper of Skoglov
and Erikson (Fig. 4) and our definition (Fig. 5). Some of the
data used in the Skoglov and Erikson analysis has never been
published and thus may not be included in our dataset. Without
knowing which asteroids were included in their analysis and
what pole positions were used, we cannot make a detailed com-
parison between their results and ours to determine whether the
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Fig. 6. With the 7-regions latitude binning, we represent the latitude distribu-
tions for the cases in which one takes into account the latitude librations. “Ecl”
refers always to ecliptic quantities, while “min,” “max” and “mean” are referred
to the minimum, maximum and mean value of the latitude during its libration
period. Note that the ecliptic and orbital latitudes librate around the same cen-
tral value.

differences in results are due to the data used or to the analy-
sis.

Nevertheless, deeper analysis of this discrepancy and of
the related theoretical ideas is required. The underlying ideas
are based on the concept of pole precession with time, and
on the possible correlations between the properties of this ef-
fect (rate and amplitude) and the orbital parameters. For this
reason, we have analyzed the precession properties of the ob-
jects in our database with a simplified analytical approach (see
Appendix B), obtaining the precessional data listed in the gen-
eral Table 2 (Appendix A).

The analytical model we use, known as the Colombo’s top
(Colombo, 1966; Peale, 1969; Henrard and Murigande, 1987),
is a compromise between the simplistic assumption that the
spin axes are fixed in space, and the elaborate numerical in-
tegration of the full spin-orbit problem. Thus the results are
less accurate, but—in contrast to numerical integration—they
can be quickly repeated (or recomputed with new data) by all
readers. The Colombo’s top model has few limitations: most of
all, it excludes a priori all resonances between the orbital mo-
tion and precession of the spin axis; it also hinges upon the
reliability of proper elements. Nevertheless, the model captures
the qualitative features of the spin axis evolution and in typi-
cal non-chaotic situations the precession period and amplitude
computed according to this model will only be modulated by
the oscillations of mean orbital elements around their proper
elements values.

This analysis allows us to estimate the amplitude of varia-
tion of both ecliptic and orbital spin vector latitudes. In agree-
ment with the conclusions obtained by Skoglov and Erikson
as a result of their numerical simulations, we obtain a general
correlation between the amplitude of the pole libration with re-
spect to the orbital plane and the inclination. The correlation
results from the properties of the roots of Eq. (B.7) in Appen-
dix B. As one can see from the equations presented and from
the data (most MBAs have “motion identifier” M = 0), this
almost linear correlation cannot be extended to the ecliptic lat-
itude in general. Thus, with respect to the orbital latitude, its
variation is rather large, and larger for high inclination bodies.
The variation of the ecliptic latitude is in general rather small,
and not naturally correlated to the inclination. One may plot the
latitude distribution taking into account, instead of the present
latitude, the minimum, maximum or mean values during the
libration. It turns out (Fig. 6) that the distributions of all eclip-
tic latitudes are qualitatively similar, with the same properties;
with respect to the distribution of orbital latitudes significant
(but obvious) differences are present for the minimum-latitude
and maximum-latitude distributions. Due to the relevant varia-
tion amplitudes the features, in particular the central depleted
region—are moved to the previous or to the following latitude
bin. All these results show that the present ecliptic latitude dis-
tribution is fully representative of the distribution observed at
different times. Due to statistical considerations (the phases are
randomly distributed) also the present orbital latitude distribu-
tion is very similar to that related to the ecliptic. Both distri-
butions are very similar to that obtained computing the mean
ecliptic or orbital latitudes (the mean values are the same). Fi-
nally, within our model, we have looked for the correlation
between the initial (i.e., present) latitude and its variation am-
plitude. According to Skoglov and Erikson (2002) small (in
absolute value) orbital latitudes entail larger variations. They
claim also that a similar, even if weaker, correlation exists with
respect to the ecliptic latitude value (more exactly, their analy-
sis concerns trigonometric functions of the quantities above).
This effect might be responsible of the scarcity of bodies with
latitudes close to zero.

In Figs. 7 and 8 we plot our results, for the orbital and eclip-
tic latitudes. In this latter case, to have a more direct insight into
the possible inferences related to the observed latitude distrib-
ution, we plot cos(β)	β � 	 sin(β) versus sin(β). In fact the
binning we use is in terms of sin(β), which is the relevant quan-
tity whenever we wish to estimate the deviations from isotropy
(cos(β)dβ dλ is the surface element on a unit sphere, where λ

and β are the coordinates). With respect to the orbital latitudes,
a weak correlation can be found, while no one comes out in the
case of ecliptic latitudes. The effect seems unable to explain the
depletion of close-to-zero latitudes.1

Since the libration amplitudes in the ecliptic frame are gener-
ally smaller than in the orbital frame we may conclude that the
precession takes place around the normal to the ecliptic rather
than around the normal to the orbit.

1 At this place we take also an opportunity to indicate a weak point in the
argument provided by Skoglov and Erikson (2002). Using an analogue of
Eq. (B.5) they claimed that Ẋ is small for large |X|, hence most of the time
is spent by spin axes close to the maximum of |X|. But the principal reason of
the small Ẋ value close to both exteemes is sinφ ≈ 0, and any asymmetry be-
tween Ẋ at Xmax and Xmin is also flattened by the fact that φ̇ is proportional
to X as seen in Eq. (B.4).
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Fig. 7. The plot represents the libration amplitude vs the present orbital latitude
(absolute value, degrees). A rough r.m.s. linear fit is represented, for compari-
son.

Fig. 8. The plot is similar to Fig. 7, but is referred to ecliptic quantities. More-
over the amplitude is expressed in terms of cos(β)	β � 	 sin(β) and, in the
abscissa, sin(β) is represented.

4.3. Longitude distributions

We have examined the distribution of longitudes for both
MBAs and NEAs. The distribution of longitudes for MBAs
(see Fig. 9) is not far from being uniform, with only very mod-
erate gaps in the regions 120/180◦ and 300/360◦. These dips
are only of about “1-σ ” significance, only just the level of de-
viations expected from a random distribution. The relevance
of the irregularities in the longitude distribution claimed by
Samarasinha and Karr (1998) is thus not confirmed. In turn,
NEAs appear to exhibit two sharp maxima (Fig. 9), in the re-
gions 0/60◦ and 180/240◦. Again, they are only of about “1-σ ”
Fig. 9. The histogram shows the distribution of the longitude for the poles of
92 MB and 21 near-Earth asteroids. The MBAs (solid line) are divided into
twelve equally spaced bins (again, with the same convention with respect to
double values). We plot also the distribution divided into six double-sized bin
(60◦ each, long-dashed line). For sake of comparison, the values are divided
per two. The NEA distribution (dotted line) is represented with double-sized
bins and normalized to the same value as MBAs. The true numbers are also
explicitly written.

significance and thus more likely just random fluctuations in the
distribution.

The results presented above may be also relevant in connec-
tion with other recent results and theoretical analyses. In partic-
ular, YORP effect has been claimed to have relevant observable
consequences (Rubincam, 2000; Slivan, 2002; Vokrouhlicky et
al., 2003). In principle, these processes can lead to clustering of
the spin vector directions; they might also contribute to the de-
population of poles close to the ecliptic plane. Note, however,
that most MBAs in our sample are too large to be substantially
affected by solar radiation, although some minor statistical ef-
fect might still be apparent. This point will be discussed also in
Section 4.4.

4.4. Bi-dimensional distributions

In Fig. 10 we give a bi-dimensional representation of aster-
oid poles.

In the figure we present, with separate symbols, the Ko-
ronis family asteroids and all the non-Koronis MBAs smaller
than 100 or 60 km. These rather larger limits for “small” bod-
ies have been chosen in order to have a significant number of
bodies in the sample. The figure confirms the previously dis-
cussed scenario and the peculiar properties, already known, of
the so-called Slivan asteroids (the stars in the top half and at the
bottom). However one can note that the few “small” bodies for
which D < 60 km seem overdense in the extreme latitude bins,
and underdense (also in comparison to the whole sample) in the
latitude region close to 0◦, consistently with previous theories
(Vokrouhlicky et al., 2003).
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Fig. 10. The figure represents, in a sinusoidal equal-area cartographic represen-
tation, the bi-dimensional pole distributions of asteroids. The vertical dashed
lines separate the latitude-bins previously discussed, and the horizontal curves
separate the longitude-bins (here the longitude values range from −180◦ to
180◦ , thus the values of Fig. 1 have to be diminished by 180◦). The NEAs
are represented as filled squares, while the MB asteroids are represented as
small circles. Koronis family asteroids are starred. The MB-non-Koronis aster-
oids with a estimated diameter smaller than 100 km are encircled. Those whose
diameter is also smaller than 60 km are encircled twice. The asteroids with am-
biguous pole determination (see text) are represented twice.

Fig. 11. We plot the latitude—computed with respect to the orbital plane—vs
the spin rate of the asteroids in our sample. NEAs and MBAs smaller than
60 km are plotted with separate symbols (filled squares and diamonds, re-
spectively). The distribution of “small” bodies (NEAs and small MBAs) seems
marginally different from that of the large bodies.

Finally, we have performed a different test, plotting the lat-
itude vs the spin rate. The rationale of this comparison follows
from a general overview of the YORP effect (see, for instance,
Capek and Vokrouhlicky, 2004, and references therein). Even if
the present understanding of the effect entails different possible
evolutions of the spin vector, also in connection with competing
dynamical effects (Vokrouhlicky et al., 2006), and depending
on the shape of the body, some general features come out: the
effects on the spin rates and on the pole orientation act together,
on similar timescales. Depending also on the initial conditions,
the spin rate may significantly decrease or increase, while the
pole orientations are often clustered close to both poles of the
orbital plane. Thus, the bodies which have been intensely af-
fected by YORP should exhibit a structure in the spin–latitude
plane, the clustering towards the poles being related to a sig-
nificant increase or decrease of the period. In Fig. 11 we plot
the latitude computed with respect to the orbital plane (i.e., the
obliquity) vs the spin rate. We represent with different symbols
the NEAs, the MBAs smaller than 60 km (“small MBAs”) and
the “large MBAs” (larger than 60 km). The figure shows some
differences between the behavior of NEAs + “small MBAs”
and “large” bodies; among the small ones we find some fast
spinners (mainly NEAs) which are more abundant at small
obliquities, while the high—positive or negative—obliquities
are typical of slower spins. We do not find the combination
very-fast spin and high obliquity. However, one may suggest
that small bodies have, as their original properties, a fast spin
and that a further increase due to YORP may rapidly cause their
bursting fission. Thus the structure of “small” bodies might be
consistent with the consequences of YORP effect. Note also
that most of the fast spinners are retrograde. Since most of the
involved bodies are NEAs, the finding, even if, in principle in-
teresting, may be not independent on the already known excess
of retrograde NEAs (La Spina et al., 2004b).

No structure is present for large bodies. However, the dif-
ferences among the samples are not sufficient to show an un-
ambiguous fingerprint of the YORP effect in the general spin
vector properties. Note also that, apart from NEAs, the size of
the “small” asteroids in our sample is often larger (usually 50–
60 km) than the 40 km, upper limit sometimes assumed in the
literature for a significant YORP-driven evolution (see the refer-
ences above). Moreover we have to remark that the presence of
some NEAs with short period and small latitude might be also
due to the dynamical disturbances of a recent close encounter
with some of the inner planets. The present results can be con-
sidered as a further suggestion of the potential relevance of spin
vector data, especially if extended to include smaller MBAs and
members of asteroid dynamical families, other than Koronis.

5. Conclusions

A qualitative analysis of the latitude data shows an essen-
tial difference between MBAs and NEAs with respect to pro-
grade vs retrograde rotations. A dynamical “filtering” of MBAs
transferred by resonance into Earth-crossing orbits appears to
explain this difference (La Spina et al., 2004b), due to the
Yarkovsky effect (Vokrouhlicky, 1998, 1999; Vokrouhlicky and
Farinella, 1998; Spitale and Greenberg, 2001; Morbidelli and
Vokrouhlicky, 2003). Among MBAs, there is no significant pro-
grade excess among the very largest asteroids, instead there is
only a moderately significant excess in the limited size range
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from 100 to 150 km diameter. This latter excess is without phys-
ical explanation.

We confirm the ecliptic-plane depopulation, already found
by past analyses. A final explanation is, in our opinion, not
available. Selection effects, the role of inclination, and YORP
effects might be invoked; however, according to the previous
discussion, their relevance can be questioned.

We do not confirm a statistically significant clustering in lon-
gitude of poles of either MBAs or NEAs.

The analysis of the bi-dimensional distribution might be use-
ful for understanding the role of various known and new effects.
Note that a complex structure for the pole angular distribution
might even affect the spin distribution (La Spina et al., 2002,
2004a).

There are probably several different mechanisms shaping the
distribution of spin rates of small MBAs and NEAs, leading
us to expect that the distributions may be non-Maxwellian, and
possibly even bi-modal. For a discussion see Pravec et al. (2002,
and references therein). Also, due to the YORP effect we may
expect a correlation between spin rates and pole orientations.

However, note that these effects are presumably dominant
for small bodies, while the present dataset contains, at least
for MBAs, mainly large or medium-sized bodies. We remark
that further spin vector data are urgently needed, especially for
NEAs and small and family MBAs.
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Appendix A

Table 2 contains summary of the data used in our analysis
for 113 asteroids. The information included is:

Asteroid the permanent number and name (or provisional des-
ignation)

λe, βe ecliptic longitude and latitude of the asteroid pole (in
degrees)

q reliability code for pole determination: 4—excellent
determination, 3—very good determination, 2—good
determination with two equally probable solutions

ze zone referred to the ecliptic latitude of the pole
D diameter (km)
λo, βo orbital longitude and latitude of the asteroid pole (de-

grees)
zo zone referred to the orbital latitude of the pole
ν asteroid rotational frequency in cycles per day, i.e., the

inverse of the rotation period
I inclination of the asteroid orbit (degrees)
e eccentricity of the asteroid orbit
A semimajor axis of the asteroid orbit (AU)
Ω proper orbital node (degrees)
Ω̇ proper rate of the orbital node (′′/y)
a/c, b/c asteroid semiaxes ratio
〈ψ̇〉 mean angular rate of the precession argument in ′′/y;

the values in brackets stand for the frequency of libra-
tion in λo when 〈ψ̇〉 = −Ω̇ . The details are given in
Appendix B

βmin, βmax minimum and maximum values of the spin axis lat-
itude (in degrees) with respect to the orbital plane; see
Appendix B

M spin axis motion type (see Appendix B)
taxonomy, family this column contains additional information

about taxonomic type of the asteroid and indicates the
membership in the dynamical family.

Appendix B

The Colombo’s top is a basic model for the precession of the
spin axis if we assume that: (i) the angular momentum vector
permanently coincides with the maximum inertia axis, (ii) the
asteroid moves on a heliocentric elliptic orbit with eccentricity
e and constant inclination I , and the orbit’s line of nodes rotates
with a constant rate Ω̇ in some invariant plane, (iii) the torque
due to the Sun can be averaged over the orbital and revolution
periods (Colombo, 1966; Peale, 1969; Henrard and Murigande,
1987). Introducing a canonically conjugate pair (ϕ,X), where
the angle

(B.1)ϕ = 90◦ − λo = ψ + Ω,

is the sum of the usual precession angle ψ (cf. Kinoshita, 1977;
Laskar and Robutel, 1993) and the longitude of the orbital as-
cending node Ω , and the momentum is the cosine of the spin
axis colatitude in the orbital frame

X = cos (90◦ − βo) = sinβo,

we can write the Hamiltonian function of the Colombo’s top

H = α

2
X2 + cos IΩ̇X + sin IΩ̇

√
1 − X2 cosϕ

(B.2)= E = const.

The parameter α is a function of orbital elements and of the
body shape; assuming the homogeneous ellipsoid model for the
moments of inertia, we obtain

(B.3)α = 3

2

k2M	
2πνA3(1 − e2)3/2

(
1

2
− 1

[1 + (a/b)2](b/c)2

)
,

where a � b � c are the semiaxes of the ellipsoid, M	 is the
solar mass, k stands for the Gaussian constant, A is the proper
semimajor axis of the orbit, and ν is the asteroid rotation fre-
quency (in cycles per time unit). Thus all quantities present in
H can be computed from the data given in Table 2. The ini-
tial conditions ϕ0 and X0 can also be computed from λo and βo
taken from Table 2; they serve to evaluate the value of E.

Canonical equations of motion derived from the Hamil-
tonian (B.2) take the form

(B.4)
dϕ =

(
α − Ω̇ sin I√

2
cosϕ

)
X + Ω̇ cos I,
dt 1 − X
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Fig. 12. Generic types of spin axis motion in the Colombo’s top problem. Bold lines are exemplary curves labeled by the values of M. The dashed line refers to the
separatrix of the resonance between the spin axis and the orbital node.
(B.5)
dX

dt
= Ω̇ sin I

√
1 − X2 sinϕ.

Solving Eq. (B.2) for cosϕ and using the solution to remove the
dependence of Ẋ on ϕ, we obtain Eq. (B.5) reduced to a quadra-
ture

(B.6)t2 − t1 = 2

α

X(t2)∫
X(t1)

dX√
W(X,E)

,

where

W(X,E) = −X4 − 4
Ω̇ cos I

α
X3 + 4

E − Ω̇2

α
X2

(B.7)+ 8
EΩ̇ cos I

α2
X + 4

(sin I )2Ω̇2 − E2

α2
.

W is a fourth degree polynomial in X and it may have up to
four real roots

X1 � X2 � X3 � X4,

that are the values of X, for which Ẋ = 0. In other words, if
Xi � X0 � Xi+1, then Xi and Xi+1 are the extremes of X(t)

for the given X0 and E. The orbital latitude oscillates within
the bounds set by Xi and Xi+1. Table 2 provides the minimum
and maximum latitudes with respect to the orbital plane

(B.8)βmin = arcsinXi, βmax = arcsinXi+1,

that the spin axis may attain within the Colombo’s top approxi-
mation.

Fig. 12 presents generic types of the spin axis motion plot-
ted as the curves of constant H on the phase plane (ϕ,X).
Six types of the X(ϕ) curves are labeled by the motion type
identifier M. For each set of rotational data given in Table 2,
the relevant value of M is given to facilitate the interpreta-
tion of other results. Knowing the type of motion, one may
quickly compute the extreme values of βe: observing that the
extremes of the spin axis latitude with respect to the orbit are
attained either at ϕ = 0◦ (i.e., λo = 90◦ and ψ = −Ω), or at
ϕ = ±180◦ (where λo = 270◦), one can easily deduce the fol-
lowing rules to compute the extremes of latitude referred to the
ecliptic Bmax = max(βe) and Bmin = min(βe): let

(B.9)B1 =
{

arcsin
[
sin(βmin + I )

]
for M = 0,1,4,5,

arcsin
[
sin(β − I )

]
for M = 2,3,
min
and

(B.10)B2 =
{

arcsin
[
sin(βmax + I )

]
for M = 2,4,5,

arcsin
[
sin(βmax − I )

]
for M = 0,1,3.

Then

(B.11)Bmax = max(B1,B2), Bmin = min(B1,B2).

It is worth noting that the point of maximum latitude in the or-
bital frame can be either the maximum or the minimum latitude
in the ecliptic plane and vice versa. This is related to the fact
that the sum or difference of β ± I can be larger than 90◦ in the
absolute value.

The period of oscillations in X, i.e., the period of latitude
variations, can be evaluated from

(B.12)TX = 4

α

Xi+1∫
Xi

dX√
W(X,E)

.

This integral can be either expressed in terms of the com-
plete elliptic integral of the first kind or evaluated by numerical
quadratures. The former approach, that was actually applied to
compute the values given in Table 2, requires a careful identifi-
cation of the ordering of the roots with respect to X0 (Byrd and
Friedman, 1954), so we checked each result with a numerical
integration of Eqs. (B.4) and (B.5). The period TX is equal to
the period of the angle ϕ, hence it is also the period of λo.

It is important to distinguish the circulation case M = 0,1,2,
when 0◦ � ϕ < 360◦, from the libration of ϕ (M > 2), when
the angle oscillates around 0◦ or 180◦ (Henrard and Murigande,
1987). For the circulation case mean rate of the precession angle
〈ψ̇〉 is, according to the definition (B.1),

(B.13)〈ψ̇〉 = sgn
[
ϕ̇(ϕ0,X0)

]2π

TX

− Ω̇.

The precession rate in Table 2 is computed according this for-
mula (after changing units to arcseconds per year). The sign of
ϕ̇ is evaluated from the right-hand side of Eq. (B.4) using ϕ0
and X0; it does not change during the motion if ϕ circulates.
In the libration case, λo has no secular drift with respect to the
ascending node, hence

(B.14)〈ψ̇〉 = −Ω̇,
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and in this case, instead of duplicating the value from another
column, we exceptionally replace 〈ψ̇〉 in Table 2 with the values
of the libration frequency

(B.15)ν = 2π

TX

,

always taken positive, regardless of the actual libration sense
on the (ϕ,X) plane, and enclosed in brackets “( )” to avoid
confusion.
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A., Dybczyński, P.A., Velichko, F.P., Erikson, A., Denchev, P., Fauvaud, S.,
Szabo, Gy.M., 2004. Photometry and models of selected main belt asteroids.
I. 52 Europa, 115 Thyra, and 382 Dodona. Astron. Astrophys. 416, 353–
366.

Morbidelli, A., Vokrouhlicky, D., 2003. The Yarkovsky-driven origin of near-
Earth asteroids. Icarus 163, 120–134.

Paolicchi, P., Burns, A., Weidenschilling, S.J., 2002. Side effects of collisions:
Spin rate changes, tumbling rotation states, and binary asteroids. In: Bottke,
W.F., Paolicchi, P., Binzel, R.P., Cellino, A. (Eds.), Asteroids III. Arizona
Univ. Press, Tucson, pp. 501–516.

Peale, S.J., 1969. Generalized Cassini’s laws. Astron. J. 74, 483–489.
Pravec, P., Harris, A.W., Michalowski, T., 2002. Asteroid rotations. In: Bottke,

W.F., Paolicchi, P., Binzel, R.P., Cellino, A. (Eds.), Asteroids III. Arizona
Univ. Press, Tucson, pp. 113–122.

Rubincam, D.P., 2000. Radiative spin-up and spin-down of small asteroids.
Icarus 148, 2–11.

Samarasinha, N.H., Karr, T., 1998. Orientation of asteroidal spin vectors. Bull.
Am. Astron. Soc. 30, 1035.

Skoglov, E., Erikson, A., 2002. Influence of the orbital evolution of main belt
asteroids on their spin vectors. Icarus 160, 24–31.

Slivan, S.M., 2002. Spin vector alignment of Koronis family asteroids. Na-
ture 419, 49–51.

Spitale, J., Greenberg, R., 2001. Numerical evaluation of the general Yarkovsky
effect: Effects on semimajor axis. Icarus 149, 222–234.

Vokrouhlicky, D., 1998. Diurnal Yarkovsky effect as a source of mobility of
meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335,
1093–1100.

Vokrouhlicky, D., 1999. A complete linear model for the Yarkovsky thermal
force on spherical asteroid fragments. Astron. Astrophys. 344, 362–366.

Vokrouhlicky, D., Farinella, P., 1998. The Yarkovsky seasonal effect on aster-
oidal fragments: A non-linearized theory for the plane–parallel case. As-
tron. J. 116, 2032–2041.

Vokrouhlicky, D., Nesvorny, D., Bottke, W.F., 2003. The vector alignments of
asteroid spins by thermal torques. Nature 425, 147–151.

Vokrouhlicky, D., Nesvorny, D., Bottke, W.F., 2006. Secular spin dynamics of
inner main-belt asteroids. Icarus 184, 1–28.

Zappala, V., Knezevic, Z., 1984. Rotation axes of asteroids: Results for 14 ob-
jects. Icarus 59, 435–455.


	New findings on asteroid spin-vector distributions
	Introduction
	Data
	Previous analyses and physical problems
	Pole distribution analysis
	Latitude distribution
	The inclination effect
	Longitude distributions
	Bi-dimensional distributions

	Conclusions
	Acknowledgments
	References


