

POLICY-BASED COOPERATION OF SERVICES
IN UBIQUITOUS ENVIRONMENTS

Toshio Tonouchi, Tomohiro Igakura, Naoto Maeda, Yasuyuki Beppu, and
Yoshiaki Kiriha
Network Laboratories, NEC

Abstract: Various kinds of nodes, including cellular phones and information appliances,
are to become popular and are expected to provide a variety of services.
Cooperation of these services will result in more convenient services than
keeping them isolated would. A ubiquitous network is characterized by
changeable system configurations. Because of this and the fact that a node is
so frequently connected to and disconnected from the network, the global
cooperation of services is difficult to describe in flow languages such as Web
Services Flow Language (WSFL). One of the solutions to this problem is a
policy technology. A policy attached to a node can be added or removed when
the node is connected or disconnected. The policies can re-configure a
changed system.

Keywords: Management of Grid Computing, Clusters, Peer-to-Peer Applications, and
Ubiquitous Computing Environments, Policy, Message-oriented system

1. INTRODUCTION

The ubiquitous network environment is maturing. Cellular phones with
Internet access, personal data assistants (PDAs), and wireless local area
networks (LANs) are becoming more and more popular. About 10 years ago,
Weiser developed an original PDA called ‘Tab’ and invented a proprietary
protocol for wireless communication [1].

Some ubiquitous nodes, especially information appliances, provide
simple services. For example, an air conditioner with network access
function can be turned on and off or can have the temperature set by a

 Toshio Tonouchi et al

remote user. Cooperation of these simple services provides a valuable
service. For example, a cellular phone with a global positioning system
(GPS) can automatically give the location of the user to the network-
connected air conditioner, which is automatically set to turn on when the
user (e.g. Tom) comes near his house.

One of the characteristics of ubiquitous networks is that some of the
ubiquitous nodes constituting the systems are not always operational. A
cellular phone may be off when the battery is dead or the network-connected
air conditioner breaks down. We call this characteristic fickle. A fickle node
may suddenly disappear, and the system suddenly stops due to this. For
example, when the air conditioner breaks down, the cellular phone cannot
communicate with the air conditioner. A fan should work instead of the air
conditioner when the air conditioner breaks down.

We propose a policy-controlled message-oriented system that overcomes
the fickle-node problem.

2. RELATED WORK

A partial solution to the fickle-node problem is a publisher-subscriber
system[2]. A publisher-subscriber system has a message router that
automatically forwards a message to some of the nodes registered with the
message router. Stopped and disconnected nodes will be manually
unregistered. They can forward a message to adequate nodes in normal
cases but they cannot handle the message when an error occurs. It is,
therefore, difficult for the publisher-subscriber system to realize the example
of the broken air-conditioner, which replies an error message.

Web Services Flow Language (WSFL[3]) and XLANG[4] were
interesting trials for specifying the workflow among Web services. However,
these technologies encounter the fickle-node problem because the
description in the control flow languages requires deterministic routing
information. The unplanned appearance and disappearance of nodes totally
affects the workflow. The programmer therefore must rewrite the workflow.

3. ARCHITECTURE

Our architecture is basically the same as that for publisher-subscriber
systems. The architecture is shown in Figure 1. A message router called the
distributor is connected to a network. All the messages that the ubiquitous
nodes (e.g., personal computers, PDAs, and cellular phones) send go through
the distributor. The distributor determines where the messages go next.

POLICY-BASED COOPERATION OF SERVICES IN UBIQUITOUS
ENVIRONMENTS

Just as for the publisher-subscriber message-oriented systems, nodes that
receive messages must be registered with the distributor a priori. In our
system, policies describing which messages the joined nodes accept are also
registered with the distributor.

Network

Distributor

Node Manager

Nodes

Ｍessage

Database

Cellular Phone PC PDA

Node
Policy

Information appliance

Figure 1. Architecture

Policies are the key to our architecture. We give an example of policies
in Figure 2 (a). A policy is composed of a matcher (before “|”) and a
generator (after “|”). A matcher specifies what kind of message a node
accepts. P1 and P2 accept any message because the matcher does not specify
any condition. P1 and P2 could even accept the same message. However, the
distributor non-deterministically chooses one of them.

The interesting syntax of our policy language is the generator. Generator
“*” creates a copy of an accepted message and distributes it to the other
policies. Suppose that P1 accepts a message. P1 forwards it to Node N1. P1

then generates an internal message copied from the original message with
attribute “after=P1”. An internal message is a pseudo message that is used to
explain the behavior of the policy processing of the distributor. Policy P2
accepts the generated internal message because P1 has already been used and
only P2 can be matched with the internal message. Next, suppose that P2 is
matched earlier than P1. P1 will match the message generated by P2. In either
case, N1 and N2 are chosen in the case of the example in Figure 2 (a).

N3 is a ‘fickle’ backup server, whose policy, P3, accepts messages that
include “after=P2”. This means that a message to Node N2 is copied to the
backup server. N1 and N2 work well even if fickle node N3 is removed.
Only the backup function does not work. However, the backup of N2 will
work automatically when N3 is connected to the distributor with Policy P3.
This shows that our policy approach solves the fickle-node problem.

 Toshio Tonouchi et al

(a) Back-up service (b) Air conditioner and fan

Three nodes (N1, N2, and N3)
are connected to Policies P1,
P2, and P3.
P1 := | * after=P1
P2 := | * after=P2
P3 := after=P2 | *

Pa is connected to the air-conditioner
and Pf is a policy to the fan.
Pa := sender=tom’s-phone

distance =10?
Pf := message=error

receivers=air-conditioner

Figure 2. Examples of policies

Figure 2 (b) shows the policies of the example in Section 1. Policy Pa is
fired when the distance between Tom’s cellular phone and his house is less
than 110 meters and more than 100 meters (“distance=10?”). If the air
conditioner is broken, the error message is issued. The Pf is fired because it
matches the error message. Notice that both Pa and Pf have no generator.
These do not generate internal messages, and no more policy is fired.

4. CONCLUSION

We proposed a policy-based message system. We showed, using the
examples, that this system solves the fickle-node problem. Nevertheless, the
syntax and semantics of our policy language are inadequate. We are trying
to improve the policy language without losing its simplicity. Another
challenge is the effectiveness of policy processing. A distributor may have
to handle a lot of ubiquitous nodes. In such a situation, fast policy
processing is required. Therefore, we are now studying an optimization
method for policy processing. The correctness of the optimization method is
proved based on the operational semantics of our policy language.

REFERENCES

[1] Weiser, M.: Some Computer Science Issues in Ubiquitous Computing,
Communication of the ACM, Vol. 36, No. 7, pp.74-84, July 1993

[2] Sun Microsystems, Inc: Java Message Service, 1999
[3] Leymann, F.: Web Services Flow Language (WSFL Ver 1.0), May 2001
[4] Thatta, S.: XLANG – Web Services for Business Process Design, 2001

