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Abstract Time series analysis is an important part of

geodetic and geodynamic studies, especially when continu-

ous GPS observations are used to explore areas with a low

rate of deformation. In this domain, having precise and

robust tools for processing and analyzing position time

series is a prerequisite. To meet this requirement, a new

software package called GPS Interactive Time Series

Analysis was developed using the MATLAB language.

Along with calculating basic statistics and quality parame-

ters such as mean and variance, the software is capable of

importing and visualizing different time series formats,

determining and removing jumps and outliers, interpolating

data, and producing numerical and publication quality

graphical outputs. Furthermore, bivariate statistical analysis

(such as correlation coefficients, curvilinear and nonlinear

regression), residual analysis, and spectral analysis (such as

auto-spectrum, Lomb–Scargle spectrum, evolutionary power

spectrum, and wavelet power spectrum) form the main

analysis features of the software.

Keywords GPS time series analysis � Jump detection �
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Introduction

Continuous GPS observations in the form of time series are

often used to monitor crustal deformations. Depending on

the nature of the signal and other contributing factors within

the time series, various methods are required to distinguish

signals originating from the tectonic displacement and the

other non-tectonic signals such as seasonal variations. These

methods can be used for the following: (1) visual interpre-

tation such as spectrogram, wavelet power spectrum, and

recurrence plots (Trauth 2010), (2) time series processing

such as convolution and filtering, impulse, and frequency

responses of filters, and (3) statistical analysis such as auto-

spectral and cross-spectral analysis, interpolation and anal-

ysis of unevenly spaced data, evolutionary power spectrum,

and wavelet power spectrum.

Several software programs are known to have been

specifically developed or published freely and made

available for the time series analysis, among them,

GAMIT/GLOBK MATLAB� (GGMatlab) (Herring 2003),

Create and Analyze Time Series (CATS) (Williams 2008),

and iGPS (Tian 2011). Despite the good efforts done, more

functionalities are still demanded for the time series anal-

ysis in Geodesy and Geodynamics studies. For example,

tools for data spacing and interpolation, jump detection and

removal, and spectral analysis, especially when the data are
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unevenly spaced, are not available. This becomes crucial for

analysis of a large number of time series files with relatively

long observation periods, for instance, more than 10 years.

In order to provide a comprehensive, open source, and

scientific software for processing and analysis of time

series in earth Science studies, the GPS Interactive Time

Series Analysis (GITSA) software was recently developed

at the Center for Research in Geomatics (CRG), Laval

University, using the MATLAB programming language

(‘‘Programming language and the software installation’’

section). Although the software is basically developed for

visualization and analysis of GPS time series in geodetic

and geodynamic studies, it can be used for investigating

other time series in earth sciences (‘‘Time series conversion

and visualization’’ section), when the aim of analysis is to

investigate the temporal behavior of one of several time-

dependent variables within the time series. Examples

include the study of long-term record of mountain uplift,

sea level fluctuations, millennium-scale variations in the

atmosphere-ocean system and so on. In the rest of the

paper, we focus on (1) introducing the newly developed

software for analysis of GPS time series in general and (2)

discussing the new methods and features of the software.

Programming language and the software installation

GITSA was developed using the MATLAB programming

language with a Graphical User Interface (GUI). MATLAB

provides a high number of tested and ready-to-use algo-

rithms for most data analysis methods and also allows the

existing routines to be modified and expanded, or new

software to be developed rapidly. In addition, MATLAB is

a cross-platform programming language for Windows,

Macintosh, and Unix/Linux operating systems. Many

applications developed under MATLAB are portable and

can be readily run under major operating systems. More-

over, the MATLAB code can be compiled into an exe-

cutable program, in order to increase the run-time speed.

In order to reduce the computational costs for some

algorithms such as Lomb–Scargle or wavelet spectral

analysis, GITSA requires the benefit of the MATLAB

parallel computing toolbox (PCT). The PCT toolbox pro-

vides a maximum of eight MATLAB computational

engines to execute applications locally on a multicore

desktop. As a direct result, computationally intensive

algorithms such as Lomb–Scargle (‘‘Lomb–Scargle power

spectrum’’ section) or wavelet power spectrum (‘‘Wavelet

power spectrum’’ section) can be run up to eight times

faster by PCT using multicore processors (Sharma and

Martin 2008).

Although we tried to develop GITSA independent of

operating system (OS), there are still some utility features

such as exporting table data to MicrosoftTM Excel� format,

or copying figures to clipboard memory, which rely on the

OS. Since GITSA has a GUI, in UNIX like OS’s, an

X-Window environment should be also installed, and

MATLAB should be started with the Java Virtual Machine

(JVM) enabled. GITSA also requires the following

MATLAB tool boxes: statistics, signal processing and

wavelet.

GITSA is freely available as open source software

(Weber 2004) under the BSD license (available at

www.opensource.org/licenses/bsd-license.php). The source

code can be downloaded from http://sourceforge.net/

projects/gitsa. The GITSA package includes a set of

MATLAB m-files (functions), fig-files (GUIs), icons and

documents as well as a separate folder for some sample time

series files in different formats. To install the software,

the downloaded package should be unpacked, and then, the

main folder should be added to the MATLAB search path.

Additionally, a package called ‘‘GUI Layout Toolbox’’

freely available from MATLAB Central website (at http://

www.mathworks.com/matlabcentral/fileexchange/27758)

needs to be installed as a MATLAB toolbox. After the

installation, typing gitsa in the MATLAB command

prompt will bring up the GITSA main window (Fig. 1).

Features and analysis

The functionality of GITSA covers a broad range from

time series data file import and conversion to wavelet

spectral analysis. It also comes with some utilities such as a

GPS date converter that can convert six different date

formats which are often used in GPS applications. How-

ever, only the main features of the software are briefly

explained here, and more discussion is left for the wiki

page of the GITSA software available at http://sourceforge.

net/p/gitsa/wiki/Home/.

Time series conversion and visualization

GPS position time series are becoming increasingly pop-

ular in earth sciences, and many national-scale organiza-

tions or research centers publish daily GPS positions in

different formats. Despite the popularity, there is no com-

mon standard among them. The following list shows the

formats supported by GITSA:

• Scripps Institution of Oceanography (SIO) format

distributed by Scripps Orbit and Permanent Array

Center (SOPAC).

• Plate Boundary Observatory (PBO) format.

• NASA Jet Propulsion Laboratory (JPL) format.

• GAMIT/GLOBK format (Herring et al. 2010).
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GITSA can read and process time series only in its

native format (GITSA Time Series format, or GTS). It is an

ASCII text format, in which the time series data are stored

in 15 space-separated columns including decimal year,

year, day-of-year, North, East, and Up coordinates, asso-

ciated errors to the coordinates (sigma), the corresponding

jumps size in coordinates, and the coordinates outlier tags.

Lines starting with # are considered as comment and are

skipped.

Despite the limitation in reading only the GTS format,

GITSA comes with a converter tool to convert these

standard formats to each other or to the GTS format. An

option called ‘‘Arbitrary format’’ was also implemented in

this tool for reading non-standard formats. Using this

option, time series in almost any other format can be read.

To do this, the user should just determine the correspond-

ing column number of time, coordinates, and the associated

errors in the input file.

After having time series files in the GTS format, they

can be displayed simply by double clicking on the time

series file in the navigation pane (Fig. 1). The North, East,

and Up components of the selected time series are then

shown in the corresponding drawing area. It is worth

mentioning that all the important plot features such as

symbol, color, and thickness can be customized through a

preferences file. Following that, the descriptive and statis-

tical information about the time series such as name, mean,

standard deviation, maximum residual and so on is shown

in the information table.

There are a couple of tools in the toolbar to ease the data

visualization, such as Zoom In, Zoom Out, Pan, and

Redraw. Inheriting from MATLAB standard toolbar,

zooming tools have free and constrained horizontal and

vertical options. The pan tool can slide time series freely or

constrained to horizontal or vertical directions. Right

clicking on the drawing area provides some more visual

features such as drawing vertical and horizontal lines,

showing dotted lines parallel to time and coordinate axes,

or synchronizing time and coordinate limits of the drawing

areas. The current position of the mouse pointer over the

current drawing area is shown in the status bar of the main

window. This is especially useful to highlight a

Fig. 1 The GITSA main window showing North, East, and Up

components of the ALGO station time series separately (in the

drawing area). The left side pane shows the available files in the

current directory (the navigation pane). The top right table shows

basic descriptive and statistical information about the time series (the

information table). The table below that is reserved to show detected

jumps in the time series (the jump table)
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problematic point such as an outlier in the time series.

There is a more advanced alternative for this feature in the

toolbar called ‘‘Data Cursor’’. This tool can give more

information about the selected point using ‘‘Update Func-

tions’’. These functions can be developed by users

according to their own needs.

Jump detection and removal

In the GPS time series, jumps or discontinuities in position

can be caused mainly by a change in the antenna reference

point (ARP) value at the processing time, while other

reasons such as tectonic jerk have a secondary level of

contribution. The detection of jumps in the time series is a

challenging problem either visually or by mathematical

methods. The former needs considerable experience and

judgment and is therefore subjective, but has the advantage

of providing inside details into the device or the station

behavior. The latter is more impartial and consistent and

can be implemented in the form of a computer code.

Two methods for jump detection, namely ‘‘block

averaging’’ (BLKAVG) and ‘‘sequential averaging’’

(SEQAVG), are known from the work of Riley (2008). The

emphasis of these algorithms is on detecting jumps in

reasonably white frequency residuals after outlier and

deterministic drift have been removed from the data. These

two algorithms are well explained in Riley’s work, but they

are briefed here to give an idea about their performance.

The BLKAVG algorithm compares the average values

within two non-overlapping moving analysis windows, and

declaring a jump if their difference exceeds a certain limit

that remains the same through the data set. The SEQAVG

algorithm is based on the Rodionov Sequential t Test

Analysis of Regime Shifts (STARS) algorithm (Rodionov

2004). It does not use fixed analysis windows, but rather

scans the data sequentially. If a suspect point is found that

exceeds the jump threshold, the next block of data is

examined to confirm or reject the jump. Instead of using a

jump threshold based on the Student’s t test, the SEQAVG

method uses a fractional frequency jump limit.

These two algorithms as well as our algorithm called

‘‘sigma averaging’’ (SIGAVG) and the ‘‘cumulative sum’’

(CUSUM) algorithm have been implemented in GITSA.

The SIGAVG algorithm works in a different way compared

to the other approaches. Instead of detecting jumps, it

constructs segments without jumps by joining iteratively

two statistically compatible segments. This bottom-up

algorithm starts by considering all data points as individual

segments and stops when there are no longer any consec-

utive segments which can be joined. The jumps correspond

to the border of the segments. This algorithm is still under

development. The CUSUM algorithm is well explained by

Taylor (2000). It is effective for locating and quantifying

single jumps in otherwise well-behaving frequency data.

Interestingly, it is identical to the corresponding normal-

ized (mean-removed) phase data, where a sharp slope

change denotes a frequency jump.

Outlier detection and removal

According to Grubbs (1969), an outlier is an observation

that considerably deviates from other members of the

sample in which it occurs. In all of the existing criteria for

testing outliers, the suspicious observation is included in

the calculation of the numerical value of a sample statistic,

which is then compared with a critical value based on the

theory of random sampling to decide whether to keep or to

reject the suspicious value. The critical value is the value of

the sample criterion which would be exceeded by chance

with some specified small probability called ‘‘significance

level’’, based on the assumption that all the observations

constitute a random sample.

For detecting outliers in GITSA, a straight line is fitted

to the data, and then, errors are estimated. A lower and an

upper confidence bounds are computed for the polynomial.

Eventually, the data points are evaluated with the confi-

dence bounds, and all the data points that fall out of the

bounds are identified as outliers.

Data interpolation

Unevenly spaced data are very common in earth sciences.

For example, observations of GPS permanent stations can

be subject to malfunctioning of the GPS antenna, receiver,

or the communication link with the data center. In this

case, interpolation methods become important since spec-

tral analysis methods, such as standard and evolutionary

power spectrum, require the interpolated or the evenly

spaced data.

Interpolation techniques for x(t) data aims at estimation

of x-values for an equally spaced t vector from the irreg-

ularly spaced actual measurements (Trauth 2010). There

are many methods for interpolation of the unevenly spaced

data or time series, such as nearest neighborhood interpo-

lation, linear interpolation, cubic-spline interpolation, and

piecewise cubic-Hermite interpolation. However, interpo-

lation methods introduce different types of artifacts. For

example, high-frequency components of the signal can be

lost in the linear interpolation, or steep gradients in the data

sequence can cause false amplitudes in the time series

interpolated by the cubic-spline interpolation method. For

this reason, it is advised to (1) keep the same number of

actual data points before and after the interpolation, (2)

explicitly note the interpolation method, and (3) analyze

the effect of the interpolation on the variance of the data

(Trauth 2010).
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GITSA has a tool to examine the data spacing of the

time series to see whether it is evenly or unevenly spaced.

Then, four interpolation methods including (1) nearest

neighborhood, (2) linear, (3) cubic-spline, and (4) piece-

wise cubic are available. There is also an option to keep

number of data points constant. Finally, the standard

deviation of the data before and after the interpolation is

reported.

Trend analysis

Trend analysis is a method to explore the strength of the

relationship between two variables by a single parameter

and is usually limited to a rectilinear trend in the bivariate

data. The parameter or the ‘‘correlation coefficient’’ is

often used in the early stage of a statistical analysis as a

preliminary test for linear relationships.

Among different correlation coefficients, GITSA cal-

culates ‘‘Pearson’s coefficient’’, ‘‘Kendall’s tau’’, and

‘‘Spearman’s rho’’ as well as their p values for testing the

hypothesis of no correlation against the alternative that

there is a nonzero correlation. When the p value is small,

for example less than 0.05, the correlation value is signif-

icantly different from zero. For Pearson’s correlation,

p values are computed using a Student’s t distribution for a

transformation of the correlation. When the input data is

normal, this correlation is exact. For Kendall’s tau and

Spearman’s rho, p values are computed using the exact

permutation distributions for either small sample sizes or

large-sample approximations.

Residual analysis

Small-scale variability in the data can be modeled as fol-

lows: data = fit ? residual. The residual is analyzed as a

new data set to give: residual = new fit ? new residual,

and so on (Sarma 2009). In other words, the statistics of the

residuals gives valuable information about the quality of a

model fitted to the data. Residuals have ideally Gaussian

distribution with zero mean, that is, they are purely random

variables. Based on this fact, the model does not well

describe the data when a significant trend is perceived in

the residuals. So, in residual analysis, the hypothesis that

the residuals have Gaussian distribution is tested using v2

test. Because this test is independent of the distribution that

is being used, it can be utilized to test the hypothesis that

the observations were drawn from a specific theoretical

distribution (Trauth 2010).

In GITSA, the current data in the drawing area are

assumed to be residuals. Therefore, trends or outliers

should be already removed from the time series. The n data

points are divided into a number of classes equal to the

number of data divided by a constant defined in the

preferences file. Then, classes with frequencies \4 are

eliminated. A theoretical or expected frequency distribu-

tion is then created with the mean and standard deviation of

the residuals. The theoretical distribution is normalized and

then scaled to be similar to the distribution of the residuals.

After that, both of the distributions are plotted in the cor-

responding drawing areas. A v2 test is performed at a

significance level specified by the user, and then, the crit-

ical and the calculated v2 values are reported.

Regression analysis

Linear regression is the relationship between the response

variable y and the input variable x (Ross 2010). Linear

models obtained by regression analysis allow the predic-

tion of y value for any given x within the data range (Trauth

2010). Regression analysis allows one to predict the

response variable from any arbitrary input variable within

the range of the original data value used for the regression

analysis. This becomes crucial when one of the two

parameters is difficult to measure.

Three widely used regression models in earth sciences,

namely (1) reduced major axis (RMA) regression, (2)

curvilinear regression, and (3) nonlinear regression, have

been implemented in GITSA. There are cases in earth

sciences where both x and y variables can be considered

independent and therefore subject to error. The RMA

regression is one of the common methods used in this case

to minimize the distance from both variables in order to

compute the best-fitting line. In this method, the area of the

triangle constructed by the two perpendicular lines in x and

y direction from every data point and the regression line

(0.5 9 Dx 9 Dy) is minimized (Borradaile 2003). Then,

the slope and intercept of the best-fit line are reported along

with their standard deviations. The RMA method does not

need any input from the user.

The other case, in which values of the input variable are

defined or considered to be free of errors, is more common

in earth sciences. In this case, the response variable con-

tains errors since its magnitude cannot be determined

accurately. The curvilinear regression minimizes the

deviations Dy between the response variables of the data

points y and the value predicted by the best-fit line/curve

ypre, in the least squares sense. In this case, the user has

option to choose degree of the polynomial for every

component of the time series independently up to 10, and

the goodness of fit of one-, two-, or three sigma. Then,

coefficients of the best-fit polynomial, as well as the

covariance matrix, are reported to the user.

Many bivariate data in earth sciences have a more

complicated trend than a linear or curvilinear trend. For

example, in a viscoelastic deformation, the strain rises

exponentially to a limiting value, or the restoration of the
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earth surface after removal of a load (which is accompa-

nied by uplift) is expressed by an exponential relaxation

equation (Lowrie 2007). In order to model such cases,

GITSA provides some basic nonlinear functions to fit to the

data. Users should enter a vector of initial coefficient val-

ues. The size of this vector equals the number of parame-

ters of the selected function. A poor set of values of the

vector can lead to a poor estimation of parameters, that is,

one with large residual error. The user should also define

the maximum number of iterations allowed and select the

robust fitting option. After all, coefficients of the selected

function are estimated as well as the covariance matrix and

variance of the errors.

Spectral analysis

Determination of the main frequencies in a time series and

finding an explanation of the system from which the

measurements were derived are the main objectives of

spectral analysis (Shumway and Stoffer 2011). In other

words, spectral analysis methods aim to find frequency

patterns in the time series. Since real time series in earth

sciences are influenced by various phenomena other than

the primary signal or have an uneven time space, GITSA

provides different methods to detect and measure the cyclic

behavior of the time series. These methods are introduced

in this section. It should be noticed that time series in earth

sciences are often subject to a long-term linear trend. This

trend is wrongly interpreted as a signal with a very long

period by the spectral analysis methods and produces a

large peak with a frequency close to zero in the spectra. As

a result, it is recommended to remove the trend of the data

(‘‘Trend analysis’’ and ‘‘Regression analysis’’ sections)

before the spectral analysis.

Auto-spectral analysis

Auto-spectral analysis describes the distribution of vari-

ance incorporated in a single signal as a function of fre-

quency or wavelength. GITSA computes the power

spectral density (PSD) of the time series using the peri-

odogram method. This method is a special case of the

Blackman and Tukey method (Blackman and Tukey 1959),

with the lag parameter equal to unity (Muller and Mac-

Donald 2002). A set of parameters including window

vector, length of the Fast Fourier Transformation (FFT),

and sampling frequency should be defined by the user

when using this method. The window vector defines the

coefficients of the window used in computing a modified

periodogram of the input time series. The window allows

one to overcome the spectral leakage. The window vector

should have the same length as the time series. A rectan-

gular window equivalent to the standard periodogram is

used if the user does not define the window vector. Length

of the FFT is equal to the larger of 256 and the next power

of two greater than the length of the time series. In general,

it determines the length of the PSD and the range of the

corresponding normalized frequencies. When the length of

FFT is longer than the length of the time series, it is padded

with zeros. The sampling frequency is specified as an

integer in Hertz (Hz) to compute the PSD and the corre-

sponding vector of frequencies.

Eventually, the PSD is plotted in the corresponding

drawing area in the ‘‘Spectral Analysis’’ tab, and then, the

first three significant peaks equivalent to the first three

major signals in the time series are highlighted. The period

related to each peak can be determined using the Data

Cursor tool in the toolbar or the Annotate tool in the

context menu.

Amplitude spectral analysis

The phase shift of the signal cannot be computed in the

auto-spectral analysis. In this case, amplitude spectral

analysis is applied to calculate the amplitude, frequency,

and the phase shift of the signal using the FFT method.

Similar to the auto-spectral analysis, the PSD is computed

and then scaled by the length of the time series. The PSD is

also multiplied by two in order to keep the same energy as

in the symmetric spectrum, except for the first data point

(Trauth 2010).

This method requires the length of FFT and the sam-

pling frequency to be defined by the user. Same as the auto-

spectral analysis, the PSD is plotted in the corresponding

drawing area in the ‘‘Spectral Analysis’’ tab (Fig. 2), and

then, the first three significant peaks are highlighted. In this

method, however, it is possible to draw the cosine curve

corresponding to that frequency peak on the time series.

Evolutionary power spectrum

Although the auto-spectral and amplitude spectral analysis

reveal the significant frequency patterns in the time series,

they do not provide any information about variability in the

amplitudes of these peaks through time. Evolutionary

power spectrum (EPS) maps changes in frequency patterns

through time. In other words, if the amplitude of spectral

peaks change with time, this method is able to map it in

the frequency domain using the short-time FFT (SFFT).

The result of the EPS is the short-term, time-localized

frequency content of the signal (Trauth 2010). This method

requires evenly spaced data.

To compute the changes in the power spectrogram with

time, GITSA requires a set of user-defined parameters such

as window vector, overlap size, length of FFT, and

sampling frequency. Except for the overlap size, they are
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similar to inputs of the auto-spectral analysis (‘‘Auto-

spectral analysis’’ section). By default, the time series is

divided into eight segments with 50 % overlap to other

segments. Each segment is then windowed with a Ham-

ming window to suppress the spectral leakage. The output

of the spectrogram is a colorful plot that displays vertical

stripes corresponding to the significant maxima at the

major frequencies in time series. The results have a lower

accuracy in this algorithm whenever the temporal resolu-

tion is higher.

Lomb–Scargle power spectrum

The previous analysis methods of power spectra require

evenly spaced data. These types of data are uncommon in

earth sciences, and therefore, data interpolation becomes

frequently mandatory (‘‘Data interpolation’’ section). In

this case, an alternative method called ‘‘Lomb–Scargle

algorithm’’ can solve the problem (Scargle 1981, 1982,

1989; Press 1992; Schulz and Stattegger 1997). This

algorithm evaluates the time series data just at the mea-

sured times and does not need any interpolation of the

unevenly spaced data. Furthermore, quantitative signifi-

cance testing of the results is also possible. Despite its

strength, this method has limitations in mapping temporal

changes in the frequency domain.

To compute the Lomb–Scargle spectrum, GITSA needs

the following parameters to be entered by the user: over-

sampling factor, highest frequency, Nyquist frequency, and

the test significance level. The over-sampling parameter

influences the resolution of the frequency axis. The highest

frequency is the maximum frequency that can be analyzed

by the Lomb–Scargle algorithm. For choosing the highest

frequency, Trauth (2010) recommends to take Nyquist

frequency that would be obtained if the data points were

evenly spaced over the same time interval.

It is also possible to compute the significance level of

the results suggested by Press (1992). In this method, the

equation for false-alarm probability of the null hypothesis

is inverted to compute the corresponding power of the

significance level (Trauth 2010).

Wavelet power spectrum

Wavelet power spectrum is an alternative method for the

evolutionary power spectrum to map temporal variations

in the spectrum. The wavelet transform uses base func-

tions called ‘‘wavelets’’ which have smooth ends by

themselves. Different to the FFT spectra, wavelets can

readily map changes in the time–frequency domain

because they can be stretched and translated in both fre-

quency and time with a flexible resolution (Trauth 2010).

As for the FFT methods, the wavelet transform requires

evenly spaced data.

To compute the wavelet power spectrum, GITSA needs

the following parameters to be defined by the user: the

wave type, scales, and the sampling period. The following

wavelet families are supported in GITSA: Haar wavelet,

Daubechies wavelets, symlets, coiflets, biorthogonal

wavelets, reverse biorthogonal wavelets, Meyer wavelet,

discrete approximation of Meyer wavelet, Gaussian

wavelets, Mexican hat wavelet, Morlet wavelet, complex

Gaussian wavelets, Shannon wavelets, frequency

B-Spline wavelets, and complex Morlet wavelets. The

scales determine how much a wavelet can be extended or

compressed in order to represent the variability of the

time series at different wavelengths. Low scale values

compress the wavelet and correlate better with high fre-

quencies. Therefore, details with rapid changes can be

mapped better with lower scales. High scale values stretch

the wavelet and correlate better with the low frequency

content of the signal. Consequently, higher scales are

more suitable for long-term variations. The sampling

period is used to convert the scales to the pseudo-

frequencies.

Fig. 2 The power spectral density for ALGO station using the FFT

function. The first three significant peaks have been highlighted using

circles, and the highest frequency peak has been annotated by the

context menu tool. It is also possible to add the highlighted peaks to

the jump table
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Future developments

GITSA is an active open source software project for imple-

menting different algorithms for GPS time series analysis. In

addition to what has been developed so far, there is a list of

features that will be implemented in near future. Considering

priority, the list comprises (1) filtering methods (including

convolution, recursive and non-recursive filtering, common-

mode errors filtering, impulse and frequency response, and

adaptive filtering) and (2) nonlinear time series analysis

including offsets and post-seismic decay modeling. However,

as an open source project, other innovative ideas and code

development contributions are welcomed.
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