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Abstract— One of the most basic capabilities for an agent
with a vision system is to recognize its own surroundings. Yet
surprisingly, despite the ease of doing so, many robots store
little or no record of their own visual surroundings. This paper
explores the utility of keeping the simplest possible persistent
record of the environment of a stationary torso robot, in the
form of a collection of images captured from various pan-tilt
angles around the robot. We demonstrate that this particularly
simple process of storing background images can be useful for
a variety of tasks, and can relieve the system designer of certain
requirements as well. We explore three uses for such a record:
auto-calibration, novel object detection with a moving camera,
and developing attentional saliency maps.

I. INTRODUCTION

Background subtraction is a simple technique for detecting
changes in image or video data, and hence for detecting the
appearance of novel objects, the disappearance of objects,
the motion of objects, or changing imaging conditions. Back-
ground subtraction is among the most basic and widespread
techniques used in computer vision, and the basic algorithm
is easy to implement. As such, it has found widespread use
in robotics and other systems, especially in systems with
stationary cameras [4], [1].

While many robotics systems make use of background
subtraction in some fashion, our experience suggests that
most robotics platforms do not use backgrounding to its
fullest potentional. In particular, when it is used, it frequently
comes with some or all of the following limitations:

• it is only used when cameras are in a fixed position;
• the user of the robot is required to explicitly and

manually re-acquire a background image prior to each
use of background subtraction (any background images
are thrown out at the end of an experimental session,
or upon powering down the robot); and

• backgrounding is not used for any purpose beyond the
immediate goal of detecting motion or novel objects.

We argue in this paper that backgrounding techniques
can form a widely useful subsystem in robotics systems,
especially non-mobile systems such as humanoid torsos and
in mobile systems that spend large amounts of time in the
same environment, such as a particular lab.

The motivation for our system stems from the human
visual system–when humans awake from sleep, they can
immediately orient themselves by the familiar structures and
objects which they see around themselves. The visual mem-
ory of the environment around them gives them immediate
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information about their current situation including their phys-
ical orientation, the time of day (estimated by differences in
lighting), new people or objects that have appeared in the
scene, and a visual “index” into prior memories, visual and
otherwise, associated with their current location.

Our goal is to endow our humanoid torso with similar
capabilities. In particular, our goals in this paper are to use
a backgrounding system to

• perform certain simple callibration procedures for the
robot on power-up;

• perform basic novel-object detection tasks, even in the
presence of camera motion; and

• gather useful statistics and build a model of areas of the
probable appearance of new objects in the environment.

While we focus on just these three tasks in this paper,
we believe a well-designed backgrounding system can also
provide many other basic capabilities, such as determining
time of day, playing a role in color constancy (by providing
a consistent “reference” for relative color measurements
under varying lighting conditions) and self-diagnosis (e.g.
detecting sensor drift). We refer to the storage of a collection
of background images on a permanent storage device and
software for using these images to accomplish various tasks,
collectively, as persistent backgrounding.

The following section introduces the hardware setup and
discusses the first of the three applications: the use of SIFT
features to localize the position of the BiSight head of our
robot. Section III then discusses a technique that enables
the differentiation of foreground and background using a
moving camera. Finally, section IV introduces an application
that allows us to model stable versus unstable regions in
the humanoid torso’s visual space. All of these applications
operate on the same set of data, the persistent background
of images.

II. LOCALIZATION OF THE BISIGHT HEAD

Our application platform is the UMass humanoid torso
robot, Dexter (Figure 1). Dexter is equipped with two
seven degree-of-freedom Barrett Whole Arm Manipulators
(WAMs), each with a three-fingered Barrett hand mounted
at its wrist. More relevant for our purposes is Dexter’s TRC
BiSight head (Figure 2). The BiSight camera system has
four degrees of freedom, two of which lie in the pan and
tilt angles for the mount, with the other two consisting of
the horizontal verge angles for each camera. The horizontal
verge angles for each camera are fixed at 0 radians so that
the optical axes are parallel, and so the task is reduced to
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determining the pan and tilt angles of the mount given the
current image.

For our first application the task is to utilize a visual
background model to infer the position of the BiSight mount
given a fresh image. We have two motivations for solving
this problem.

First, the process of zeroing the BiSight is tedious and
slow. Upon powering up the robot, a special program must
be invoked which slowly moves the BiSight until it is at
the extreme of its tilt angle, and subsequently moves until
it is at the extreme of the pan angle. This must be done
sufficiently slowly so that there is no risk of gear damage
when the BiSight reaches its limit of motion and encounters
a physical stop. After reaching the physical limits of its pan
and tilt range, the counters for these variables are set to their
initial values. This process takes more than 30 seconds and is
done many times a day when the robot is in regular use. Our
first motivation is to bypass this procedure completely and
initialize the pan-tilt variables from the background images
by simply “recognizing” the position and angle of the head
from what it is looking at.

Second, while robotic video systems can be built with
encoders that sense absolute position and hence do not need
explicit initialization, there are typically trade-offs in cost and
accuracy that come with such devices. In addition, encoders
and other hardware with moving parts are prone to failure
(we have had multiple encoder failures in our own lab).
Thus, a second motivation is to replace the functionality of
encoders with parts that serve multiple purposes, namely
video cameras with pan-tilt capability. This reduces the
number of moving parts of the system and will hopefully
lead to more robust design in the long term.

Fig. 1. Dexter

We start with a set of background images taken over a
range of known BiSight pan and tilt values. These values are
determined using the existing calibration procedure. Now,
when given a new image, the idea is to utilize feature
correspondences between the new image and the background
images to infer the new image’s position. While there are

Fig. 2. BiSight Head

many choices of features that can be used effectively for this
purpose, we have chosen SIFT features. SIFT features are a
suitable choice both because they demonstrate a high degree
of affine invariance and because they are highly distinctive,
reducing the possibility of false matches [6].

As a first approximation, by varying pan and tilt on
the BiSight we would seem to be mapping out an image
sphere. The relationship between BiSight pan/tilt angle and
pixel column/row of a particular feature would then be very
simple. By computing the spherical warp of the background
images and the new image we should be able to position
the new image with a high degree of precision among the
panorama of background images.

The set of acquired background images, however, does
not form a neat spherical image in our system. In particular,
the rotational center of the BiSight is offset from the optical
center of each camera causing the camera to translate as
the BiSight pans. However, helping to some extent is the
fact that the tilt axes of the BiSight and of the cameras
are approximately aligned. For the analysis that follows, we
make the assumption that this alignment is exact.

Despite the translation of the camera during panning, it
is easy to derive from stored background images and a
single newly acquired image reasonably accurate estimates
of the “true” pan/tilt angles. The basic algorithm is simple:
when given a new image, find the two closest background
images in the set as judged by the number of feature
correspondences. Next, find SIFT features that are present
in all three images (the two background images and the new
“query” image). In all three images, a given feature will be at
a certain horizontal and vertical pixel offset, corresponding
to a certain horizontal and vertical angle displacement from
the camera’s optical axis. To determine pan angle, we simply
linearly interpolate the pan of the two known background
images to get the pan of the new image, weighting the
contribution of each background image by its horizontal
angle distance to the new image. Determining tilt is similar,
though an extra step is needed, as will be explained below.
First to justify the algorithm for pan, examine Figure 3.

Figure 3 shows a bird’s eye view of the BiSight. In the
figure, A represents the rotational center of the BiSight, F
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Fig. 3. A model of BiSight panning and its relation to the optical center
of the camera used to acquire images. See text for details.

represents the position of a feature in space projected onto
the rotational plane, while AD represents the offset from the
rotational center to the optical center of the right camera of
the BiSight. Letting θ represent pan, by the Law of Sines:

r

sinφ
=

b

sinψ
(1)

=
b

sin(2π − (ρ− θ) − φ)

=
b

sin((ρ− θ) + φ)

=
b

sin(ρ− θ) cos(φ) + sin (φ)cos(ρ− θ)
.

φ, which is approximately linearly related to the horizontal
position of a feature in an image (see Figure 3), can then be
expressed as a function of θ:

(
b

r

)
sinφ = sin(ρ− θ) cos(φ) + sin (φ) cos(ρ− θ)

0 = sin(ρ− θ) cos(φ) +
(
b

r
− cos (ρ− θ)

)
sinφ

tanφ =
sin(ρ− θ)(

b
r − cos (ρ− θ)

)
φ = arctan

(
sin(ρ− θ)(

b
r − cos (ρ− θ)

)
)
. (2)

Figure 4 shows that for r >> b, pan varies almost linearly
with φ, justifying the use of linear interpolation. Also, for
relatively small r, local linearity is a fair approximation.
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Fig. 4. Graphs showing the nearly linear relationship between φ and the
bisight mount’s pan angle (θ), justifying our linear interpolation method of
identifying pan angle from horizontal image position of a located feature.

For tilt the situation is slightly different because the
vertical angle displacement of a feature depends on both pan
and tilt.

Referring to Figure 5, by the Law of Cosines:

w2 = b2 + r2 − 2br cos (ρ− θ). (3)

Letting σ represent tilt, we also have:

σ + λ = arctan(
h

w
). (4)

Combining these two:

σ = arctan

(
h√

b2 + r2 − 2br cos (ρ− θ)

)
− λ. (5)

Tilt is clearly a linear function of λ, the vertical angle
displacement, but tilt also depends nonlinearly on changes

in pan. Letting ψ = arctan
(

h√
b2+r2−2br cos (ρ−θ)

)
, we

can determine ψ for the background images using the sum
ψ = σ + λ. Using both background images we can linearly
interpolate to find an estimate of ψnew for the new image.
With ψnew in hand we can then use the verticle angle
displacement to determine σnew for the new image. Thus,
the tilt estimate for the new image becomes:

σnew = ψnew − λ. (6)

Because ψ is approximately a linear function of pan
Figure 6, the linear interpolation technique yields reasonable
estimates.

A. Results for Pan/Tilt Determination

To demonstrate the technique, we took 20 images across
a range of random BiSight pan and tilt values. We wanted to
see how close the pan/tilt values fed to the controller would
match those inferred from a small database of background
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Fig. 5. The geometry of the bisight tilt. σ represents the angle of tilt,
while λ represents the additional vertical angle displacement of the ray to
the feature F. ψ (not shown) is the sum of σ and λ.

Ground Found Difference
Pan Tilt Pan Tilt Pan Tilt
-40.5 -8.8 -40.0 -8.9 -0.4 0.1
-42.0 17.2 -41.8 17.2 -0.2 0.0
-37.2 -3.7 -36.9 -3.7 -0.3 -0.0
-38.5 1.8 -38.3 1.9 -0.2 -0.1
..... ..... ..... ..... ..... .....
32.4 23.8 32.7 23.9 -0.3 -0.1

mean: 0.19 0.08

TABLE I

TABLE SHOWING GROUND TRUTH AND ESTIMATED PAN AND TILT

ANGLES, USING COMPUTATIONS VIA BACKGROUND IMAGES. ANGLES

ARE SHOWN IN DEGREES.

images. Our database consisted of 56 images with the range
for pan from -0.8 to 0.75 radians and the range for tilt
from -0.4 to 0.75 radians, with each image spaced apart by
approximately 0.2 radians in both pan and tilt directions. The
range for the 20 random images was the same. This range
represents the typical working range of our BiSight.

Using our technique we were able to come within one
degree of ground truth in all 20 test images. Typically the
difference in both pan and tilt was on the order of a few
tenths of a degree (see table below).

III. BACKGROUNDING WITH A MOVING CAMERA

Many applications of computer vision call for a division of
a scene into a background and a foreground. The background
consists of areas in the scene that either are stable or vary in
a predictable way. The foreground areas of a scene are those
that cannot be explained from the background model.
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Fig. 6. Graph showing approximately linear relationship between ψ and
the bisight mount’s pan angle (θ) (see text).

In a typical implementation the camera is fixed so that
each image pixel corresponds to the same ray in space.
While this simplifies the problem considerably it also places
artificial limitations on robotic platforms equipped with a
moving camera. The camera may be needed to perform some
other task other than backgrounding, such as guiding a reach
or tracking a moving object, thus making it impossible to
use standard techniques. At the same time, knowledge of
changes in the visual scene is no less desirable. What we
want is the ability to move the camera during a task while
simultaneously monitoring changes in the visual scene.

The basic idea behind the technique is to use a background
consisting of many images taken at given camera positions.
In principle, the idea is simple, but there are two difficulties
that can arise. One, the given camera position is only known
to a certain precision. This may be due to fundamental
precision limits in the BiSight, calibration errors in the
camera, a time lag between the reporting of camera position
and capturing the image, and in our case a shaky camera
verge controller. Two, even if the camera position were
known precisely, in our setup the changes in the visual scene
as the camera moves depend upon the depth of objects in the
scene. Such a difficulty would not arise if our camera could
pan and tilt about its optical center [7], [8], but alas that is not
the configuration we are working with. In other words, we
must address the issue of parallax caused by the translation
of the camera as it rotates.

The first step of the algorithm is to approximately align the
new image (Figure 7, first column) with a stored background.
To do this we pick the background image that has pan/tilt
coordinates nearest to those of the new image (Figure 7,
second column). Given the respective pan/tilt values of the
background image and the new image, a rough estimate can
then be made of the horizontal and vertical pixel offsets
that will align the images as closely as possible. Next, we
try to refine our estimate by searching for correspondences
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using normalized cross correlation between random patches
in the new image and those of the background image. This
step is very quick, as our initial estimate should be fairly
good, so the search for matches can take place in a restricted
range; moreover it is sufficient to use a sample of only 1000
patches. Of the 1000 matches found, the mode of horizontal
and vertical pixel displacement pairs is chosen as the best
global estimate.

After alignment, the new image is compared to the back-
ground image. Because the new image and the background
image were taken from slightly different camera positions,
there will be some disparities in the images due to differences
in depths of objects in the scene, even if no new objects are
present in the scene. The third column of Figure 7 shows
binarized difference images after the best global match of the
images in the first two columns has been made. In each row,
the only new object in the image is the human figure near the
center of the image. The simple difference image contains
both gaps that should be shown as forground but are not
(missing portions in silhouette of the person) and extraneous
detections that represent false detected novel objects.

There are a number of approaches for dealing with these
disparities before performing simple background subtraction.
One approach is to use stereo or other cues to estimate the
depth of objects in the image, and use this depth and the
stored images to try to estimate the proper appearance of
an image from the newly acquired imaging position. If this
image can be generated accurately (in other words, if we
can infer what the background image should look like from
a new position), then traditional background subtraction can
be applied to understand image changes. Unfortunately the
process of estimating the appearance of an image from a new
point of view is extremely difficult. We take an alternative
approach which largely avoids the problem of the exact
computation of an image from a new point of view.

Our method, which depends upon detecting differences in
a scene based upon images from two slightly different points
of view, relies on the following observation: even though
there is no single simple transformation on one image which
will accurately reproduce the other image (due to disparities),
each patch of a new image is likely to have a close match
in one of the stored background images, since disparities
frequently do not disrupt local correspondences.

To implement a matching technique based upon this
observation, for each pixel in the new image, we search
within a 3x3 pixel area of the background image for the
closest match in terms of sum of squared differences (SSD)
of local patches. After this search, the lowest valued SSD
found is set to be the distance between the new image and the
background image at that pixel. If this SSD is low then there
is agreement between the images at that pixel and it is likely
to be background, while a high SSD indicates incompatibility
between the images at that pixel making it likely that the
pixel is part of a foreground object. The binarized version
of these images is shown in the fourth column of Figure 7.

Finally, we take the results of this “local matching”
strategy and use a discriminative Markov random field, as

described below, to improve the results by leveraging the
spatial continuity of foreground and background patches.
This is a principled approach for incorporating information
about the mismatch of the images at each pixel and its
neighbors to reassess whether a pixel is a match or not.

Let w represent the stored background image and x
represent the aligned input observation. The corresponding
labels y indicate whether a particular image location is
predicted to be foreground. To make such predictions, we
use a discriminative Markov field [12], [11],

p (y | w,x,θ,γ) =
1

Z (w,x)
exp {U (y,w,x; θ,γ)} (7)

where Z (w,x) ensures the probability distribution is nor-
malized. Inside the exponent is an energy function U repre-
senting the compatibility between the segmentation hypothe-
sis and the observations. We decompose this into two terms:
local terms, which measure the compatibility between image
features and label for an individual pixel, and interaction
terms which measure the compatibility between a pair of
neighboring labels. Specifically,

U (y,w,x; θ,γ) =
∑

i

θ (yi) · Fi (w,x) +

∑
i∼j

γ (yi, yj) . (8)

The vector-valued function Fi returns features of the back-
ground and input image at pixel location i. Here, the feature
is the SSD between the intensity channel of the two images,
calculated as described above, as well as a constant bias
term. The class-specific parameters θ (y) act as weights on
these features. For contextual interaction, the parameters
γ model a bias for certain neighboring labels yi and yj .
If these interaction parameters γ are all zero, only local
information is used; this is equivalent to classification by
logistic regression.

Estimating the parameters for the model involves find-
ing the values of θ and γ that maximize their posterior
probability, given a prior p (θ,γ) and some labeled training
data D =

{(
y(k),w(k),x(k)

)}
k
. The log posterior objective

function is

L (θ,γ;D) =
∑

k

[
U
(
y(k),w(k),x(k)

)
−

logZ
(
w(k)x(k)

)]
− (9)

α ‖θ‖1 − β ‖γ‖1 , (10)

corresponding to using a Laplacian prior for θ and γ, which
we assume are independent a priori with parameters α and
β. The objective is convex and thus may be optimized with
standard techniques guaranteed to find a global optimum.
Given the parameter values and and the image features, we
predict the most likely labeling

ŷ = arg max
y

p (y | x,θ,γ) (11)

Unfortunately, the learning step and the prediction are in-
tractable due to exponential sums or search spaces. We
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approximate these using the standard sum-product and max-
product loopy belief propagation algorithms [10].

A. Results of Backgrounding

The fifth column of Figure 7 shows the final results
of the foreground/background processing resulting from
the discriminative Markov random field. In the first two
rows, each step, both the local matching analysis and the
Markov random field method, seem to help improve the
foreground/background segmentation. The results in the first
two rows are good, with only minor extra detections in the
second case, and good filling of the foreground figure in both
cases. The third row shows a more problematic example,
caused by a dramatic lighting change due to sunshine coming
in the window. The raw input to our local matching method is
simply not good enough, and we need to incorporate specific
techniques to deal with strong lighting changes before han-
dling cases such as this. Still, we feel our techniques are quite
good given the extremely simple nature of the stored data,
namely a simple set of background images taken without
special preparation of the environment.

IV. ENVIRONMENT OVER TIME

The final use of our persistent backgrounding system is
to develop maps of activity in the visible environment of
our humanoid torso robot. Such maps have been developed
based upon detections of specific types of objects, as in [5]
and for foreground/background segmentation with stationary
cameras [3]. We are not aware of this having been done
with a translating camera. Since we have a method for easily
placing each acquired image in a global framework and clas-
sifying images into regions of foreground and background,
it is a trivial matter to accumulate statistics about frequency
of appearances of foreground objects in the environment.

Figure 8 shows the results after about an hour of monitor-
ing background and foreground in the lab. Few objects in the
scene were moved during the period so that the foreground
consists mostly of people as they move about the lab. As
might be expected, foreground objects are clustered around
the middle of the scene rather than at the extreme pan angles,
since users typically wish to interact with the robot in its
central workspace. Also, because The BiSight platform is
elevated, more foreground activity occurs at the higher tilt
angles. At low tilt angles the BiSight is gazing above most of
the activity in the room, and this results in a lack of changes
in that portion of the scene.

One of our immediate goals is to incorporate these
activity frequency maps back into the estimate of fore-
ground/background segmentations. We hope to eliminate
false detections by weighting our detections, so that higher
thresholds are required in areas of infrequent activity. This
should be fairly straightforward in the framework of Markov
random fields.

V. CONCLUSION

We have shown that a simple set of images taken of the
environment in which a humanoid robot works is enough in-
formation to perform a variety of interesting tasks, including
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Fig. 8. Likely positions of foreground objects in pan/tilt space.

intialization of pan/tilt coordinates, foreground-background
segmentation, and background activity modeling, even in the
presence of a moving camera. It is easy to update background
pictures, simply by waiting for a period of time during
which there are no detections in the foreground to increase
the probability that a stored set of background images does
not accidentally contain foreground objects. Fortunately, the
SIFT based methods for setting the intial pan/tilt settings are
not affected by a partially changed background anyway, as
spurious matches in SIFT features are quite unlikely.

There are a number of exciting directions for future work,
particularly in the area of backgrounding with a moving
camera. Among these are adapting these techniques to back-
ground models that use mixture distributions, as discussed
in [2], [9]. While these models were originally designed to
deal with small changes in the imaging environment (due
to effects like the waving of trees in the wind), we believe
they can also be used to add robustness to backgrounding
techniques when there are small changes in camera posi-
tion under rotation, as is common in many robotic vision
setups. Second, the initial global alignment between the new
image and background image can be improved by using a
more sophisticated motion model and point-based feature
matching. This addition should help reduce false positives
due to misregistration. Third, we are experimenting with
using local features in addition to image intensity with the
expectation of reducing errors due to camouflage and lighting
changes. Fourth, performance was not a primary concern
in our investigations but must be for any practical system.
The results shown were produced in less than 500ms, but,
if desired, faster results are possible by switching to a faster
discriminative Markov field inference algorithm such as ICM
(Iterative Conditional Modes). Finally, as mentioned above
we are interested in incorporating activity frequency maps
back into our foreground/background segmentation.
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(a) (b) (c) (d) (e)

Fig. 7. Three examples: (a) input image with foreground object, (b) closest background image from stored set of persistent background images, (c) image
differencing and threshold after global alignment, (d) image differencing after local matching, (e) classification of foreground/background by discriminative
Markov random field.
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