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Abstract— This paper presents the new concept of a descrip-
tion language for modular robots called module description
language (MDL). A specific implementation of this concept
has been designed and tested to describe the capabilities of
modules of a chained heterogeneous robot (both from the point
of view of movements and tasks it can perform). Thanks to
MDL each module is able to report dynamically what is able
to do (capabilities like rotate, extend, push forward, measure
temperature or distance) to other modules or to a central
control, and it is also possible to set up new actions for the whole
robot, like combined movements. The description of current
capabilities of modules allows the robot to react to failures at
runtime.

I. INTRODUCTION
This article describes the concept of a Module Description

Language for Chained Heterogenous Modular Robots. Het-
erogeneous modular robots are robots composed by different
types of modules. They are called n-modular [13], being
n the number of different modules. On the other hand,
homogeneous modular robots are robots composed by one
single type of modules. ”Chained” means that modules are
connected in a row, as opposed to lattice robots, in which
modules can be connected in a lattice.

Regarding the types of modules robots are
composed of, most modular designs are homogeneous
[7][14][10][15][9][3], at least in a locomotion sense
(Polypod [12] and I-Cubes[11] have two types of modules,
but one of them is passive, its function is mainly to carry the
power supply, Molecule [5][4] have two different modules
but performing the same type of movement). There is a lack
of heterogeneous drive module combination. Thus, there is
no clear state of the art regarding heterogeneous modular
robots.

The robot proposed in our research [2] is composed by dif-
ferent types of modules. Heterogenous modular robots have
several advantages: robots can be more compact, cheaper to
design (expensive actuators and sensors are only used where
needed), can perform specific tasks, just to say a few. For
this robot an specific architecture has been designed (that
will be reviewed in section II). One very important part of
this architecture is MDL, which this article is dedicated to.
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Abascal 2. 28006 Madrid. Spain. miguel.hernando@upm.es;
ernesto.gambao@upm.es; joseemilio.torres@upm.es

A. Brunete has developed part of his work at the CeDInt (Research
Centre for Smart Buildings and Energy Efficiency), Universidad Politécnica
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Fig. 1. Prototypes already developed

Since not all modules are the same, there is a need to find
a way in which modules can communicate its capabilities to
other modules, to a central control or to an operator (modules
may be damaged or they may lose some functionalities at any
time). And that is what MDL is designed for, as it will be
explained in section III.

The idea is to set a procedure for module capabilities
description so it is possible to develop new modules that are
able to easily cooperate with the modules already developed.

MDL is essential to infer functions or skills for the whole
robot from module features, thanks to rules and inference
engines previously defined. MDL is very useful to develop
new behaviors by combining module skills.

MDL has been designed as a part in the control architec-
ture of the Microtub microrobot, but it can be used in any
chained modular robot or even extended to lattice robots.

Finally, in section IV some of examples of use will be
explained.

II. PREVIOUS WORK - SET UP

A. Robot description

MICROTUB is a semi-autonomous multi-configurable
micro-robot for small-diameter pipe inspection and mainte-
nance. It has been designed to explore pipes with a camera
to detect breakages, holes, leaks and any type of defect.
This micro-robot is composed of different modules, each of
which performs a different task. Thus, multi-configurability
is an essential characteristic that allows these modules to be
easily interchanged depending on the task, without the need
for reprogramming the micro-robot.

The different types of module developed (fig. 1) will be
briefly described next, but more information can be found
in [2] and [1]. The diameter of each module is 27 mm. The
thickness of some parts is less than 1 mm. Table I shows a
chart comparing the dimensions of all the modules.

The micro-robot is heterogeneous and modular, meaning
that it is composed of different types of active (they are able
to move) and passive (they have to be acted on) modules.
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To assemble them together, a common interface has been
built. This interface allows for the mechanical and electrical
connection between modules. The electrical bus is composed
of eight wires:

• Power (5v) and ground
• I2C communication: data and clock
• Two synchronism lines (in and out) for low-level com-

munication between adjacent modules
• Two auxiliary lines for general purposes (for example,

to transmit the video signal from the camera).
Each module includes an electronic control board which

performs the following tasks:
• Control of actuators
• Communication via I2C, or with adjacent modules
• Manage several types of sensors
• Auto-protection and adaptable motion
• Self-orientation detection
• Low-level embedded control
Microtub modules are:
1) Camera/Contact module: This module plays two roles.

First, as a camera, is used for environment information
acquisition, to detect holes, breakages or cracks in the pipes.
Second, as a contact sensor, it is able to detect if the
microrobot is facing an obstacle.

The module is provided with a CMOS B&W camera
which allows to visualize the inner part of the pipe and with
three contact sensors which allow to detect obstacles.

2) Rotation module: The rotation module is a two degrees
of freedom module that allows rotations in the horizontal
and vertical planes. A set of these modules put together can
perform an undulatory movement (snake-like) that makes the
robot go forward. It is composed by two commercial mini-
servomotors.

3) Inchworm modules: Two modules have been developed
to perform inchworm (or worm-like) movements: an exten-
sion module and a support module. The inchworm mode of
locomotion allows the robot to maneuver in small spaces.
Another advantage of this kind of motion is that the robot
manages to maintain a firm grip on the surface at all times.
The support module is used to fix the microrobot to the pipe,
so this module does not move. And the extension module is
used to extend the robot (make it go forward), and to turn
right and left.

4) Helicoidal module: The helicoidal module was de-
signed to be a fast drive module able to push other modules.
It is composed of two parts: a body and a rotating head.

When the head turns, it goes forward in a helicoidal
movement (helped by the distribution of the wheel making a
15 degrees angle with the vertical) that pulls the body of the
microrobot forward. The wheels of the body help to keep the
module centered in the pipe and avoid the turn of the body.

B. Control architecture description
For the proposed microrobot a semi-distributed control has

been chosen with a central control (CC) that takes decisions
for the whole robot and an embedded behavior-based control
in every module, capable to react in real time to unpredicted

TABLE I
MODULES CHARACTERISTICS

Module Length[mm] Diameter[mm] Weight[g]
Camera 25 27 6,5
Support 27 27 12,5

Extension 30 27 16
Rotation 64 27 27

Helicoidal 28 27 15

Fig. 2. Control Scheme

events (figure 2). There is also an interpreter acting between
the central control and the behaviors, the heterogeneous
agent.The heterogeneous agents of all modules form the
heterogeneous layer. It is called a middle layer because it
acts between the CC (highest level layer) and the onboard
control (lowest level layer). Thus, control is divided in (figure
3) as follows:

• Central Control (CC): It could be a PC or one of the
modules. Nowadays it is a PC. In the future it will
be one of the modules in order to make the robot
autonomous. It includes the High Control Layer, that
collects information from the modules, process it, and
sends information (on the situation and state of the
robot) and commands (with objectives) back to the
modules. It also helps modules to take decisions and
to coordinate them. It is also in charge of planning. It
is composed of several parts, amongst which it is an
inference engine and a behavior-based control.

• Onboard Control: it is embedded in each module and it
is based on behaviors. It includes the layers:

– Heterogeneous (middle) Layer: agent that translates
commands coming from the CC into specific mod-
ule commands. For example, it translates the com-
mand ”extend” into movements of the servomotors.

– Low Control Layer: composed of behaviors. It
allows modules to react in real time (for example
to sense external and internal stimuli, as over-
heating, unreachable positions, adapt to the pipe
shape, etc.) and to perform tasks that don’t need
the CC (movements, communication with adjacent
modules, simple tasks, etc.).

MDL has a very important role in the architecture, because
it is the way modules can tell the CC what movements and
tasks they are able to do, both at configuration and run time.

C. Simulator description
A simulation environment has been developed to provide

an efficient scenario for prototype testing and for verification



Fig. 3. Control Layers

of control algorithms, hardware design, and exploration of
system deployment scenarios.

It can also be used to verify the feasibility of system
behaviors using realistic morphology, body mass and torque
specifications for servos.

The simulator is built upon an existing open source imple-
mentation of rigid body dynamics, the Open Dynamics En-
gine (ODE), an open-source physics simulation API, which
allows to perform on-line simulation of rigid body dynamics,
and to define a wide variety of experimental environments
and actuated models. Based on ODE, a whole simulation sys-
tem has been developed from scratch, including mechanical
features of modules, DOF, movement ranges, servomotors,
communications, processing units, etc.

In addition to simulating the dynamic behavior of the
robot, the simulator is able to emulate electronics, control,
communications and processing system. Thus, protective
behaviors such as preventing overheating of the motors can
be tested. In the same way, the fact that each simulated
microcontroller has its own thread assigned in the simulator
has facilitated the implementation of synchronization mech-
anisms between modules.

Although there are several built modules, due to the
limitation in the number of modules and some of their
functionalities, most of the experiments regarding MDL have
been developed in the simulator. The simulator has been
previously validated through several experiments including
servomotor, friction, speed and locomotion tests.

III. MODULE DESCRIPTION LANGUAGE (MDL)
MDL is a language created to describe the capabilities of

one module to the CC and other modules.
MDL is essential for inferring functions or skills for the

entire robot from the module features through rules and
inference engines. With MDL, it is possible to create units
(groups of modules) that are able to perform more complex
tasks.

MDL is useful for developing new behaviors by combining
module skills. It is based on a series of indicators that
describe the tasks that the module can perform and a range
of values that indicate the level of performance for each
indicator.

It is important to note that module MDL indicators are
dynamic and that they may vary during the development of
a task. Thus, MDL indicators can malfunction or even stop
working in the module. For example, the servomotor of a

TABLE II
MDL INDICATORS

Position
in
structure

Acronym Name

1 Ext Extend/Contract
2 Sup Support
3 Push Pipe Push in pipe
4 Push Flat Push in open air
5 RotX Rotate in its x axis
6 RotY Rotate in its y axis
7 RotZ Rotate in its z axis
8 Att Attach / Detach to / from other modules
9 Sense Front Sense proximity front
10 Sense Back Sense proximity backwards
11 Sense Side Sense proximity lateral
12 Sense Temp Sense temperature
13 Sense Humi Sense humidity
14 Sense Grav Sense gravity
15 Grab Grab
16 Drill Drill
17 PS Power supply

module may become stuck and may be able to turn only a
percentage of its nominal range of motion. When the module
detects this, it can communicate the issue to the robot via
MDL commands.

A. Indicators
Indicators are presented in Table II. Extend/Contract refers

to the capability of a module to increase or decrease its
length. By contrast, support refers to the capability of a
module to become fixed to the pipe.

Push in pipe indicates that the module can go forwards by
itself inside a pipe, whereas Push in open air refers to large
spaces (including large-diameter pipes).

Rotate in its x/y/z axis means it has a DOF along that
axis.

Attach and Detach to/from other modules is designed
for self-reconfigurable modules with active links (SMAs or
electromechanical latches)[6] [8].

Sense proximity front/backwards/lateral refers to any sen-
sor that may detect obstacles. Sense temperature/humidity
refers to the capacity for measuring temperature/humidity.
Sense gravity indicates that it has accelerometers.

Grab indicates that it is able to grab objects. Drill indicates
that it is able to make a hole.

Power supply indicates that it has a power supply to share.

B. Values
Each indicator is associated to a value that shows the level

in which the module can perform such a task (III). This value
is divided in four levels, from 0 to 3 (from no competence
to good competence).

C. Packaging
The values corresponding to each module are packed into a

single structure, an array of values from 0 to 3. For example,
for the rotation module it would be:

MDL (Rot_mod) = [00003300000003000]



TABLE III
MDL VALUES

Value Indicator
0 no competence for that skill
1 little competence
2 medium competence
3 good competence

and the helicoidal module:

MDL (Heli_mod) = [00310000000000000]

D. Communication protocol
Every time each module is demanded about its capabilities,

it will send this array corresponding to the tasks that it
can or cannot do. But in order to obtain the whole robot
configuration and capabilities, a more complex sequence has
been implemented (it is interesting to point out that the
synchronism lines are needed to obtain the relative position
of each module along the robot):

• The CC sends a MDS message (MDL starts) to all
modules.

• All modules activate their synchronism lines.
• The one which is the first (it knows that it is the first

because its S
in

synchronism line is down) replies with
a PC1 (Position in chain first) message including the
MDL parameters (as shown previously).

• The first module puts the S
out

synchronism line down,
so the second module knows it goes next (because now
its S

in

synchronism line is down).
• The second module sends a PC1 message message and

puts its S
in

synchronism line down, so the first module
knows it has finished.

• The CC keeps collecting all the messages.
• It goes the same way for all modules.
• When it is the turn of the last module (it knows it is

the last because its S
out

synchronism line is down) it
sends its a a PCL (Position in chain last) message also
with its MDL parameters.

• The CC send a MDF message (MDL finishes) , so the
last module knows it has finished.

Then, if a rotation module is next to some other modules
that can ”rotate” in the same axis as it does, they can
form a unit that moves as a snake. If a extension module
is preceded and followed by modules that have the ability
to ”expand/contract”, they can form a unit that moves as a
worm.

E. Inference engine
The capabilities of the whole microrobot are the conse-

quence of the combination of the capabilities of all modules
and its position in the chain. It is not the same having
a extension module in between two support modules, that
having the extension module at the side of two support
modules in a row. In the first case the chain could perform
an inchworm movement while in the second one it is not
possible.

To know what are the capabilities of the microrobot, a set
of rules has been implemented. This rules can be extended
either by writing new rules when new features appear or by
developing new rules by learning.

In a general way, rules can be described as:

P
sequential(MDL) +

P
adjacent(MDL) +P

anywhere(MDL) =>
P

robot(MDL)

For example, the rotation module does not have
extension/contraction capabilities, but a unit composed of
three rotation modules together do have that feature:

ADJACENT (Rot mod + Rot mod +
Rot mod) + ANYWHERE(Open air) =>
Extension/Contraction (grade 3)

ADJACENT (Rot mod + Rot mod +
Rot mod) + ANYWHERE(Pipe) =>
Extension/Contraction (grade 1)

To explain it clearly, let us suppose that a chain is com-
posed by three module with the following MDL structures:

MDL(module 1) = [00003203001003000]
MDL(module 2) = [00003302130003000]
MDL(module 3) = [00003000200003111]

Each MDL structure is merged with each of the in-
dicators masks to know if the module has that specific
capability. For example, the mask for indicator RotX is
[00001000000000000]. Merging each of the modules’ MDL
with the masks, gives [00003000000000000].

Afterwards, capabilities are inserted in the rules, and those
which are fullfilled are activated. In this case the activated
rules are:
SEQUENTIAL(00003000000000000,

00003000000000000, 00003000000000000) +
ANYWHERE(Open air) => 30000000000000000
SEQUENTIAL(00003000000000000,

00003000000000000, 00003000000000000) +
ANYWHERE(Pipe) => 10000000000000000

Thus, new capabilities are obtained, which can fill, in its
turn, new rules to obtain newer capabilities.

Through these rules, the CC can deduce or infer the
capabilities of a robot. It goes through all of the rules
and selects those that are fulfilled. Then, the procedure is
repeated by incorporating previously obtained conclusions.
This procedure continues until there are no new rules fulfilled
in a cycle.

The CC can also deduce or infer which modules are
needed for a specific task. For example, if a robot needs
to split into two, it can decide the optimal point at which
to split such that each part of the robot keeps the necessary
modules to accomplish the task to be executed.

F. Offline algorithms
A way to train the inference engine and to develop new

rules are GA based offline algorithms. One of the use cases



Fig. 4. Results of GA algorithm in a pipe with an elbow (configuration
demand)

of the Microtub microrobot is the “configuration demand”,
in which, for a specific mission, the CC selects the best
modules to use and its position. For different tasks and
scenarios (elbows, bifurcations, undulated terrain, etc.) the
algorithm combines all types of modules to choose the
optimal configuration and chain position.

As an example, the following experiment was designed
to find the optimum configuration of a robot composed
of a touch module and 8 rotation and helicoidal modules.
The touch module should be in first place, and the other 8
modules could be either rotation or helicoidal.

In the experiment, starting from a population of 40
individuals randomly selected, the best individual was
THRHRHRHH where “T” stands for Touch, “H” for
Helicoidal and “R” for Rotation.

Figure 4 shows the evolution of the fitness value with each
generation. The highest value of the fitness function occurs
at the generation 17, corresponding to the configuration with
the maximum number of helicoidal modules that is able
to negotiate the elbow: helicoidal modules placed between
the rotation modules in order to turn. At the end of the
microrobot it is possible to have two consecutive helicoidal
modules since they can turn together with the previous
rotation module.

IV. EXAMPLES OF USE

In this section some examples of movements performed by
the heterogeneous modular robots are presented to prove the
efficiency of MDL. Without its use it wouldn’t be possible
to perform the combination of movements.

In the experiments, it will be mentioned the use of
“passive” modules, meaning modules without drive capabil-
ities. Passive modules will be represented by “battery” or
“traveler” modules.

A. Rotation plus Extension Modules
Rotation modules can be used as support modules. In

figure 5 a unit composed by three rotation modules can be
used as a support module. It can expand and contract as
support module. The configuration is three rotation modules
(support) + extension + three rotation modules (support).

Fig. 5. Inchworm gait performed by rotation and extension modules

Fig. 6. Example of extension modules in snake-like configurations

ANYWHERE(Rot X +Rot X +Rot X) => Sup

SEQUENTIAL(Sup + Ext + Sup) =>
Inchworm Gait

Also the extension module can be used in a snake-like
configuration, as shown in figure 6.

B. Rotation plus Support plus Extension plus Helicoidal
Modules

By combining several types of modules, several types of
gaits work together: snake-like, worm-like and helicoidal.
Each of them fits better for each situation in pipes or open
air.

Figure 7 shows an example of the camera/touch, rotation,
helicoidal, extension and support modules working together
and performing simultaneously vertical sinusoidal, helicoidal
and worm-like movements.

In this case the following MDL commands are used:
Sup and Ext in the right position to make inchworm
movements, several Rot Z modules in a row to make

Fig. 7. Example of heterogeneous configuration



Fig. 8. Example of rolling movement in heterogeneous configuration:
Rotation and inchworm modules

snake-like movements, and Push Pipe anywhere for the
helicoidal drive.

The MDL pseudocode is:P
SEQUENTIAL(Rot X)+

P
ADJACENT (Sup+

Ext) +
P

ANYWHERE(Push Pipe) =>
Heterogeneous Gait

C. Rotation plus Inchworm Unit plus Rotation Modules

This configuration allows the microrobot to perform an
inchworm movement inside pipes, and snake-like movements
(making use of the rotational degree of freedom of the
extension module) in the open air.

In figure 8 it is shown a chain composed by two rotation,
support, extension, support and two rotation modules
performing a rolling gait. This is very important because
it proves that the locomotion gaits of the homogeneous
snake-like configurations can be used with other module in
between them.

P
ANYWHERE(Rot X +

P
Rot Y ) =>

Rolling Gait

V. CONCLUSIONS AND FUTURE WORKS

In this article the new concept of Module Description
Language (MDL) has been presented. It is a language that
has been developed to allow modules of a robotic system to
transmit their capabilities. This information can be used by
other modules or by a central control to process it and choose
the best configuration and parameters for the microrobot.
This is specially relevant to give the system the ability of
recovering from permanent damages or temporal lose of
some of its functionalities.

MDL also allows modules to be grouped in units to have
different capabilities. Units can in turn be grouped in super-
units to have newer capabilities, and so on.

MDL has been tested in the modular chained heterogenous
microrobot Microtub and some examples of its use has been
shown.

Future work will focused in the development of rules and
algorithms that make used of the MDL parameters to develop
new locomotion gaits.
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