Applied Mathematical Sciences, Vol. 6, 2012, no. 20, 987-994

Existence of Common Coupled Fixed Point for a Class of Mappings in Partially Ordered Metric Spaces

Vahid Parvaneh
Department of mathematics
Gilan-E-Gharb Branch, Islamic Azad University
Gilan-E-Gharb, Iran
vahid.parvaneh@kiau.ac.ir

Abstract

In this paper we introduce the class of P -contraction mappings, analogous to the concept of C-contraction [2]. Also, we obtain a fixed point result for this class of contractions in complete metric spaces.

Mathematics Subject Classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$

Keywords: Fixed point, Multivalued mapping, Complete metric space

1 Introduction

In recent years, extension of the Banach's contraction principle [2] has been considered by many authors in different metric spaces. In [3], Bhaskar and Lakshmikantham presented coupled fixed point results for mixed monotone operators in partially ordered metric spaces and in 2009, Lakshmikantham and Ciric [6] proved coupled coincidence and coupled common fixed point theorems for nonlinear contractive mappings in this spaces.

2 Main results

Definition 2.1 ([6]) Let (X, \preceq, d) be a partially ordered set and $F: X \times$ $X \rightarrow X$ and $g: X \rightarrow X$ be two self mappings. F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument, that is, if for all $x_{1}, x_{2} \in X$; $g x_{1} \preceq g x_{2}$ implies $F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right)$ for any $y \in X$ and for all $y_{1}, y_{2} \in X$; $g y_{1} \succeq g y_{2}$ implies $F\left(x, y_{1}\right) \preceq F\left(x, y_{2}\right)$ for any $x \in X$.

Definition 2.2 ([1]) The mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ are called w-compatible if $g(F(x, y))=F(g x, g y)$, whenever $g(x)=F(x, y)$ and $g(y)=F(y, x)$.

Definition 2.3 ([6], [1]) An element $(x, y) \in X \times X$ is called:
(1) a coupled coincidence point of mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ if $g(x)=F(x, y)$ and $g(y)=F(y, x)$, and $(g x, g y)$ is called coupled point of coincidence, and,
(2) a common coupled fixed point of mappings $F: X \times X \rightarrow X$ and g : $X \rightarrow X$ if $x=g(x)=F(x, y)$ and $y=g(y)=F(y, x)$.

Theorem 2.4 Let (X, \preceq, d) be a partially ordered complete metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings such that F has the mixed g-monotone property and satisfy

$$
\begin{align*}
d(F(x, y), F(u, v)) & \leq \frac{1}{5}(d(g x, g u)+d(F(x, y), g y)+d(F(x, y), g u) \\
& +d(F(u, v), g x)+d(F(u, v), g u)) \tag{1}\\
& -\varphi(d(g x, g u), d(F(x, y), g x), d(F(x, y), g u) \\
& , d(F(u, v), g x), d(F(u, v), g u)),
\end{align*}
$$

for every two pairs $(x, y),(u, v) \in X \times X$ such that $g x \preceq g u$ and $g y \succeq g v$, where $\varphi:[0, \infty)^{5} \rightarrow[0, \infty)$ be a continuous function such that $\varphi(x, y, z, t, u)=0$ if and only if $x=y=z=t=u=0$. Also suppose X has the following properties:
i. If a non-decreasing sequence $x_{n} \rightarrow x$; then $x_{n} \preceq x$ for all $n \geq 0$.
ii. If a non-increasing sequence $y_{n} \rightarrow y$; then $y_{n} \succeq y$ for all $n \geq 0$.

Let $F(X \times X) \subseteq g(X)$ and $g(X)$ is a complete subset of X. If there exists $\left(x_{0}, y_{0}\right) \in X \times X$ such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \succeq F\left(y_{0}, x_{0}\right)$, then F and g have a coupled coincidence point in X.

Proof 2.5 Let $x_{0}, y_{0} \in X$ be such that $g x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $g y_{0} \succeq F\left(y_{0}, x_{0}\right)$. Since $F(X \times X) \subseteq g(X)$, we can define $x_{1}, y_{1} \in X$ such that $g x_{1}=F\left(x_{0}, y_{0}\right)$ and $g y_{1}=F\left(y_{0}, x_{0}\right)$, then $g x_{0} \preceq F\left(x_{0}, y_{0}\right)=g x_{1}$ and $g y_{0} \succeq F\left(y_{0}, x_{0}\right)=g y_{1}$. Since F has the mixed g-monotone property, we have $F\left(x_{0}, y_{0}\right) \preceq F\left(x_{1}, y_{0}\right) \preceq$ $F\left(x_{1}, y_{1}\right)$ and $F\left(y_{0}, x_{0}\right) \succeq F\left(y_{1}, x_{0}\right) \succeq F\left(y_{1}, x_{1}\right)$. In this way we construct the sequences z_{n} and t_{n} inductively as $z_{n}=g x_{n}=F\left(x_{n-1}, y_{n-1}\right)$, and $t_{n}=g y_{n}=$ $F\left(y_{n-1}, x_{n-1}\right)$, for all $n \geq 0$.

We know that for all $n \geq 0, z_{n-1} \preceq z_{n}$, and $t_{n-1} \succeq t_{n}$. This can be done as in Theorem 3.1. of [4], so we omit the proof of this part.

Step I. We will prove that $\lim _{n \rightarrow \infty} d\left(z_{n}, z_{n+1}\right)=\lim _{n \rightarrow \infty} d\left(t_{n}, t_{n+1}\right)=0$.

Using 1 (which is possible since $g x_{n-1} \preceq g x_{n}$ and $g y_{n-1} \succeq g y_{n}$), we obtain that

$$
\begin{align*}
d\left(z_{n}, z_{n+1}\right) & =d\left(F\left(x_{n-1}, y_{n-1}\right), F\left(x_{n}, y_{n}\right)\right) \\
& \leq \frac{1}{5}\left(d\left(g x_{n-1}, g x_{n}\right)+d\left(F\left(x_{n-1}, y_{n-1}\right), g x_{n-1}\right)+d\left(F\left(x_{n-1}, y_{n-1}\right), g x_{n}\right)\right. \\
& \left.+d\left(F\left(x_{n}, y_{n}\right), g x_{n-1}\right)+d\left(F\left(x_{n}, y_{n}\right), g x_{n}\right)\right) \\
& -\varphi\left(d\left(g x_{n-1}, g x_{n}\right), d\left(F\left(x_{n-1}, y_{n-1}\right), g x_{n-1}\right), d\left(F\left(x_{n-1}, y_{n-1}\right), g x_{n}\right)\right. \\
& \left., d\left(F\left(x_{n}, y_{n}\right), g x_{n-1}\right), d\left(F\left(x_{n}, y_{n}\right), g x_{n}\right)\right) \\
& =\frac{1}{5}\left(d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n-1}\right)+d\left(z_{n}, z_{n}\right)+d\left(z_{n+1}, z_{n-1}\right)+d\left(z_{n+1}, z_{n}\right)\right) \\
& -\varphi\left(d\left(z_{n-1}, z_{n}\right), d\left(z_{n}, z_{n-1}\right), d\left(z_{n}, z_{n}\right), d\left(z_{n+1}, z_{n-1}\right), d\left(z_{n+1}, z_{n}\right)\right) \\
& \leq \frac{1}{5}\left(d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n-1}\right)+d\left(z_{n}, z_{n}\right)+d\left(z_{n+1}, z_{n-1}\right)+d\left(z_{n+1}, z_{n}\right)\right) \\
& \leq \frac{1}{5}\left(3 d\left(z_{n-1}, z_{n}\right)+2 d\left(z_{n+1}, z_{n}\right)\right) \tag{2}
\end{align*}
$$

hence, $d\left(z_{n+1}, z_{n}\right) \leq d\left(z_{n}, z_{n-1}\right)$.
Again, since $g y_{n} \preceq g y_{n-1}$ and $g x_{n} \succeq g x_{n-1}$,

$$
\begin{align*}
d\left(t_{n+1}, t_{n}\right) & =d\left(F\left(y_{n}, x_{n}\right), F\left(y_{n-1}, x_{n-1}\right)\right) \\
& \leq \frac{1}{5}\left(d\left(g y_{n}, g y_{n-1}\right)+d\left(F\left(y_{n}, x_{n}\right), g y_{n}\right)+d\left(F\left(y_{n}, x_{n}\right), g y_{n-1}\right)\right. \\
& \left.+d\left(F\left(y_{n-1}, x_{n-1}\right), g y_{n}\right)+d\left(F\left(y_{n-1}, x_{n-1}\right), g y_{n-1}\right)\right) \\
& -\varphi\left(d\left(g y_{n}, g y_{n-1}\right), d\left(F\left(y_{n}, x_{n}\right), g y_{n}\right), d\left(F\left(y_{n}, x_{n}\right), g y_{n-1}\right)\right. \\
& \left., d\left(F\left(y_{n-1}, x_{n-1}\right), g y_{n}\right), d\left(F\left(y_{n-1}, x_{n-1}\right), g y_{n-1}\right)\right) \\
& =\frac{1}{5}\left(d\left(t_{n}, t_{n-1}\right)+d\left(t_{n+1}, t_{n}\right)+d\left(t_{n+1}, t_{n-1}\right)+d\left(t_{n}, t_{n}\right)+d\left(t_{n}, t_{n-1}\right)\right. \\
& -\varphi\left(d\left(t_{n}, t_{n-1}\right), d\left(t_{n+1}, t_{n}\right), d\left(t_{n+1}, t_{n-1}\right), d\left(t_{n}, t_{n}\right), d\left(t_{n}, t_{n-1}\right)\right) \\
& \leq \frac{1}{5}\left(3 d\left(t_{n}, t_{n-1}\right)+2 d\left(t_{n+1}, t_{n}\right)\right) \tag{3}
\end{align*}
$$

hence, $d\left(t_{n+1}, t_{n}\right) \leq d\left(t_{n}, t_{n-1}\right)$.
It follows that the sequences $d\left(z_{n+1}, z_{n}\right)$ and $d\left(t_{n+1}, t_{n}\right)$ are monotone decreasing sequences of non-negative real numbers and consequently there exist $r, s \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(z_{n+1}, z_{n}\right)=r$, and $\lim _{n \rightarrow \infty} d\left(t_{n+1}, t_{n}\right)=s$.

From 2 we have

$$
\begin{align*}
d\left(z_{n+1}, z_{n}\right) & \leq \frac{1}{5}\left(d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n-1}\right)+d\left(z_{n}, z_{n}\right)+d\left(z_{n+1}, z_{n-1}\right)+d\left(z_{n+1}, z_{n}\right)\right) \\
& \leq \frac{1}{5}\left(3 d\left(z_{n-1}, z_{n}\right)+2 d\left(z_{n+1}, z_{n}\right)\right) \tag{4}
\end{align*}
$$

If $n \rightarrow \infty$ in 4, we have $r \leq \lim _{n \rightarrow \infty} \frac{1}{5}\left(3 r+d\left(z_{n-1}, z_{n+1}\right)\right) \leq r$, hence $\lim _{n \rightarrow \infty} d\left(z_{n-1}, z_{n+1}\right)=2 r$.

We have proved in (2)

$$
\begin{align*}
d\left(z_{n}, z_{n+1}\right) & \leq \frac{1}{5}\left(d\left(z_{n-1}, z_{n}\right)+d\left(z_{n}, z_{n-1}\right)+d\left(z_{n}, z_{n}\right)+d\left(z_{n+1}, z_{n-1}\right)+d\left(z_{n+1}, z_{n}\right)\right) \\
& -\varphi\left(d\left(z_{n-1}, z_{n}\right), d\left(z_{n}, z_{n-1}\right), d\left(z_{n}, z_{n}\right), d\left(z_{n+1}, z_{n-1}\right), d\left(z_{n+1}, z_{n}\right)\right) \\
& \leq \frac{1}{5}\left(3 d\left(z_{n-1}, z_{n}\right)+2 d\left(z_{n+1}, z_{n}\right)\right) . \tag{5}
\end{align*}
$$

Now, if $n \rightarrow \infty$ and since φ is continuous, we can obtain

$$
r \leq r-\varphi(r, r, 0,2 r, r) \leq r
$$

Consequently, $\varphi(r, r, 0,2 r, r)=0$. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(z_{n+1}, z_{n}\right)=r=0 \tag{6}
\end{equation*}
$$

In a same way, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(t_{n+1}, t_{n}\right)=s=0 \tag{7}
\end{equation*}
$$

Now, we show that $\left\{z_{n}\right\}$ and $\left\{t_{n}\right\}$ are Cauchy sequences in X.
Let $\left\{z_{n}\right\}$ is not a Cauchy sequence, then there exists $\varepsilon>0$ for which we can find subsequences $\left\{z_{m(k)}\right\}$ and $\left\{z_{n(k)}\right\}$ of $\left\{z_{n}\right\}$ such that $n(k)>m(k)>k$ and $d\left(z_{m(k)}, z_{n(k)}\right) \geq \varepsilon$, where $n(k)$ is the smallest index with this property, i.e.,

$$
\begin{equation*}
d\left(z_{m(k)}, z_{n(k)-1}\right)<\varepsilon . \tag{8}
\end{equation*}
$$

From triangle inequality

$$
\begin{align*}
\varepsilon \leq d\left(z_{m(k)}, z_{n(k)}\right) & \leq d\left(z_{m(k)}, z_{n(k)-1}\right)+d\left(z_{n(k)-1}, z_{n(k)}\right) \tag{9}\\
& <\varepsilon+d\left(z_{n(k)-1}, z_{n(k)}\right) .
\end{align*}
$$

If $k \rightarrow \infty$, Since $\lim _{n \rightarrow \infty} d\left(z_{n}, z_{n+1}\right)=0$, from 9 we can conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(z_{m(k)}, z_{n(k)}\right)=\varepsilon . \tag{10}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\left|d\left(z_{n(k)}, z_{m(k)+1}\right)-d\left(z_{n(k)}, z_{m(k)}\right)\right| \leq d\left(z_{m(k)+1}, z_{m(k)}\right), \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|d\left(z_{n(k)+1}, z_{m(k)}\right)-d\left(z_{n(k)}, z_{m(k)}\right)\right| \leq d\left(z_{n(k)+1}, z_{n(k)}\right), \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|d\left(z_{m(k)+1}, z_{n(k)+1}\right)-d\left(z_{m(k)+1}, z_{n(k)}\right)\right| \leq d\left(z_{n(k)+1}, z_{n(k)}\right) \tag{13}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} d\left(z_{n}, z_{n+1}\right)=0$, and 11, 12 and 13 are hold, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(z_{m(k)+1}, z_{n(k)}\right)=\lim _{k \rightarrow \infty} d\left(z_{m(k)+1}, z_{n(k)+1}\right)=\lim _{k \rightarrow \infty} d\left(z_{n(k)+1}, z_{m(k)}\right)=\varepsilon \tag{14}
\end{equation*}
$$

Again, as $n(k)>m(k)$, we have $g x_{m(k)} \preceq g x_{n(k)}$, and $g y_{m(k)} \succeq g y_{n(k)}$. So, from 1 , for all $k \geq 0$, we have

$$
\begin{align*}
& d\left(z_{m(k)+1}, z_{n(k)+1}\right)=d\left(F\left(x_{m(k)}, y_{m(k)}\right), F\left(x_{n(k)}, y_{n(k)}\right)\right) \\
& \leq \frac{1}{5}\left(d\left(g x_{m(k)}, g x_{n(k)}\right)+d\left(F\left(x_{m(k)}, y_{m(k)}\right), g x_{m(k)}\right)+d\left(F\left(x_{m(k)}, y_{m(k)}\right), g x_{n(k)}\right)\right. \\
& \left.+d\left(F\left(x_{n(k)}, y_{n(k)}\right), g x_{m(k)}\right)+d\left(F\left(x_{n(k)}, y_{n(k)}\right), g x_{n(k)}\right)\right) \\
& -\varphi\left(d\left(g x_{m(k)}, g x_{n(k)}\right), d\left(F\left(x_{m(k)}, y_{m(k)}\right), g x_{m(k)}\right), d\left(F\left(x_{m(k)}, y_{m(k)}\right), g x_{n(k)}\right)\right. \\
& \left., d\left(F\left(x_{n(k)}, y_{n(k)}\right), g x_{m(k)}\right), d\left(F\left(x_{n(k)}, y_{n(k)}\right), g x_{n(k)}\right)\right) \\
& =\frac{1}{5}\left(d\left(z_{m(k)}, z_{n(k)}\right)+d\left(z_{m(k)+1}, z_{m(k)}\right)+d\left(z_{m(k)+1}, z_{n(k)}\right)\right. \\
& \left.+d\left(z_{n(k)+1}, z_{m(k)}\right)+d\left(z_{n(k)+1}, z_{n(k)}\right)\right) \\
& -\varphi\left(d\left(z_{m(k)}, z_{n(k)}\right), d\left(z_{m(k)+1}, z_{m(k)}\right), d\left(z_{m(k)+1}, z_{n(k)}\right)\right. \\
& \left., d\left(z_{n(k)+1}, z_{m(k)}\right), d\left(z_{n(k)+1}, z_{n(k)}\right)\right) . \tag{15}
\end{align*}
$$

If $k \rightarrow \infty$, from 10 and 14 we have, $\varepsilon \leq \frac{1}{5}(3 \varepsilon)-\varphi(\varepsilon, 0, \varepsilon, \varepsilon, 0)$, hence, we have $\varepsilon=0$, which is a contradiction and it follows that $\left\{z_{n}\right\}$ is a Cauchy sequence in X. Analogously, it can be proved that $\left\{t_{n}\right\}$ is a Cauchy sequence in X.

Since (X, d) is complete and $\left\{z_{n}\right\}$ is Cauchy, there exists $z \in X$ such that $\lim _{n \rightarrow \infty} z_{n}=\lim _{n \rightarrow \infty} g x_{n}=z$, and since $g(X)$ is closed and $\left\{z_{n}\right\} \subseteq g(X)$, we have $z \in g(X)$ and hence there exists $u \in X$ such that $z=g u$. Similarly, there exist $t, v \in X$ such that $t=\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} g y_{n}=g v$.

We prove that (u, v) is a coupled coincidence point of F and g.
We know that $g x_{n}$ and $g y_{n}$ are non-decreasing and non-increasing in X, respectively and $g x_{n} \rightarrow z=g u$ and $g y_{n} \rightarrow t=g v$. From conditions of our theorem, $g x_{n} \preceq g u$ and $g y_{n} \succeq g v$. So, using 1 we obtain that

$$
\begin{align*}
d\left(z_{n+1}, F(u, v)\right) & =d\left(F\left(x_{n}, y_{n}\right), F(u, v)\right) \\
& \leq \frac{1}{5}\left(d\left(g x_{n}, g u\right)+d\left(F\left(x_{n}, y_{n}\right), g x_{n}\right)+d\left(F\left(x_{n}, y_{n}\right), g u\right)\right. \\
& \left.+d\left(F(u, v), g x_{n}\right)+d(F(u, v), g u)\right) \\
& -\varphi\left(d\left(g x_{n}, g u\right), d\left(F\left(x_{n}, y_{n}\right), g x_{n}\right), d\left(F\left(x_{n}, y_{n}\right), g u\right)\right. \\
& \left., d\left(F(u, v), g x_{n}\right), d(F(u, v), g u)\right) \\
& =\frac{1}{5}\left(d\left(z_{n}, z\right)+d\left(z_{n+1}, z_{n}\right)+d\left(z_{n+1}, z\right)+d\left(F(u, v), z_{n}\right)+d(F(u, v), z)\right) \\
& -\varphi\left(d\left(z_{n}, z\right), d\left(z_{n+1}, z_{n}\right), d\left(z_{n+1}, z\right), d\left(F(u, v), z_{n}\right), d(F(u, v), z)\right) . \tag{16}
\end{align*}
$$

If in (16) $n \rightarrow \infty$,

$$
\begin{align*}
d(z, F(u, v)) & \leq \frac{1}{5}(d(z, z)+d(z, z)+d(z, z)+d(F(u, v), z)+d(F(u, v), z)) \\
& -\varphi(d(z, z), d(z, z), d(z, z), d(F(u, v), z), d(F(u, v), z)) \tag{17}
\end{align*}
$$

and hence $\varphi(0,0,0, d(F(u, v), z), d(F(u, v), z)) \leq-\frac{3}{5} d(z, F(u, v)) \leq 0$, and therefore, $d(z, F(u, v))=0$. So, $F(u, v)=z=g(u)$ and in a similar way
we can obtain that $F(v, u)=t=g(v)$. That is, g and F have a coupled coincidence point.

Theorem 2.6 Adding the following conditions to the hypotheses of Theorem 2.4, we obtain the existence of the common coupled fixed point of F and g.
(i) If any nondecreasing sequence z_{n} in X converges to z, then we assume $g z \preceq z$, and also, if any nonincreasing sequence t_{n} in X converges to t, then we assume $g t \succeq t$.
(ii) g and F be w-compatible continuous mappings.

Proof 2.7 We know that the nondecreasing sequence $g x_{n}=z_{n} \rightarrow z$ and by our assumptions $g z_{n} \preceq g z \preceq z=g u$.

Also, the noninreasing sequence $g y_{n}=t_{n} \rightarrow t$ and by our assumptions $g t_{n} \succeq g t \succeq t=g v$.

So, from (1) we have

$$
\begin{align*}
d\left(F\left(z_{n}, t_{n}\right), F(u, v)\right) & \leq \frac{1}{5}\left(d\left(g z_{n}, g u\right)+d\left(F\left(z_{n}, t_{n}\right), g z_{n}\right)+d\left(F\left(z_{n}, t_{n}\right), g u\right)\right. \\
& \left.+d\left(F(u, v), g z_{n}\right)+d(F(u, v), g u)\right) \\
& -\varphi\left(d\left(g z_{n}, g u\right), d\left(F\left(z_{n}, t_{n}\right), g z_{n}\right), d\left(F\left(z_{n}, t_{n}\right), g u\right)\right. \\
& \left., d\left(F(u, v), g z_{n}\right), d(F(u, v), g u)\right) . \tag{18}
\end{align*}
$$

Since F and g are w-compatible, and $F(u, v)=g u=z$ and $F(v, u)=g v=$ t we have that $g z=g(g u)=g(F(u, v))=F(g u, g v)=F(z, t)$.

Now, if in (18), $n \rightarrow \infty$, we obtain

$$
\begin{align*}
d(g z, z) & \leq \frac{1}{5}(d(g z, z)+d(g z, g z)+d(g z, z)+d(z, g z)+d(z, z)) \\
& -\varphi(d(g z, z), d(g z, g z), d(g z, z), d(z, g z), d(z, z)) \tag{19}
\end{align*}
$$

Hence, $\varphi(d(g z, z), d(g z, g z), d(g z, z), d(z, g z), d(z, z))=0$ and so, $d(g z, z)=$ 0 . Therefore $g z=z$ and from $F(z, t)=g z$, we conclude that $F(z, t)=g z=z$. Analogously, we can prove that $F(z, t)=g t=t$.

Note that if (X, \preceq) be a partially ordered set, then we endow $X \times X$ with the following partial order relation:

$$
(x, y) \preceq(u, v) \Longleftrightarrow x \preceq u, y \succeq v
$$

for all $(x, y),(u, v) \in X \times X .([7])$
Theorem 2.8 Let all the conditions of theorem 2.6 be fulfilled.
F and g have a unique common coupled fixed point provided that the common coupled fixed points of F and g are comparable.

Proof 2.9 Let (x, y) and (u, v) be two common coupled fixed points of F and g, i.e., $x=g(x)=F(x, y), y=g(y)=F(y, x)$, and $u=g(u)=F(u, v), v=$ $g(v)=F(v, u)$.

Suppose that (x, y) and (u, v) are comparable.
Since (u, v) is comparable with (x, y), we may assume that $(x, y) \preceq(u, v)$.
Now, applying 1 one obtains that

$$
\begin{align*}
d(x, u) & =d(F(x, y), F(u, v)) \\
& \leq \frac{1}{5}(d(g x, g u)+d(F(x, y), g x)+d(F(x, y), g u) \\
& +d(F(u, v), g x)+d(F(u, v), g u)) \\
& -\varphi(d(g x, g u), d(F(x, y), g x), d(F(x, y), g u) \\
& , d(F(u, v), g x), d(F(u, v), g u)) \tag{20}\\
& =\frac{1}{5}(d(g x, g u)+0+d(g x, g u)+d(g u, g x)+0) \\
& -\varphi(d(g x, g u), 0, d(g x, g u), d(g u, g x), 0) \\
& =\frac{1}{5}(d(x, u)+0+d(x, u)+d(u, x)+0) \\
& -\varphi(d(x, u), 0, d(x, u), d(u, x), 0) .
\end{align*}
$$

Therefore, $\varphi(d(x, u), 0, d(x, u), d(u, x), 0) \leq-\frac{2}{5} d(x, u) \leq 0$. Hence $x=u$. In a similar way, we have $y=v$.

References

[1] M. Abbas, M. Ali Khan and S. Radenovic, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Applied Mathematics and Computation, 217, (2010), 195-202.
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3, (1922), 133-181.
[3] T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., TMA, 65, (2006), 1379-1393.
[4] B. S. Choudhury and A. Kundu, A coupled coincidence point result in partially ordered metric spaces for compatible mappings, Nonlinear Analysis, 73, (2010), 2524-2531.
[5] J. Harjani, B. Lopez and K. Sadarangani, Fixed point theorems for weakly C-contractive mappings in ordered metric spaces, Computers and Mathematics with Applications, 61(4), 2011, 790-796.
[6] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., 70(12), (2009), 4341-4349.
[7] N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Analysis, 74, (2011), 983-992.
[8] A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Amer. Math. Soc., 132, (2004), 1435-1443.

Received: August, 2011

