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Abstract

In this paper we introduce the class of P-contraction mappings, anal-
ogous to the concept of C-contraction [2]. Also, we obtain a fixed point
result for this class of contractions in complete metric spaces.
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1 Introduction

In recent years, extension of the Banach,s contraction principle [2] has been

considered by many authors in different metric spaces. In [3], Bhaskar and

Lakshmikantham presented coupled fixed point results for mixed monotone

operators in partially ordered metric spaces and in 2009, Lakshmikantham and

Ciric [6] proved coupled coincidence and coupled common fixed point theorems

for nonlinear contractive mappings in this spaces.

2 Main results

Definition 2.1 ([6]) Let (X,�, d) be a partially ordered set and F : X ×
X → X and g : X → X be two self mappings. F has the mixed g-monotone

property if F is monotone g-non-decreasing in its first argument and is mono-

tone g-non-increasing in its second argument, that is, if for all x1, x2 ∈ X;

gx1 � gx2 implies F (x1, y) � F (x2, y) for any y ∈ X and for all y1, y2 ∈ X;

gy1 � gy2 implies F (x, y1) � F (x, y2) for any x ∈ X.
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Definition 2.2 ([1]) The mappings F : X × X → X and g : X → X are

called w-compatible if g(F (x, y)) = F (gx, gy), whenever g(x) = F (x, y) and

g(y) = F (y, x).

Definition 2.3 ([6], [1]) An element (x, y) ∈ X × X is called:

(1) a coupled coincidence point of mappings F : X×X → X and g : X → X

if g(x) = F (x, y) and g(y) = F (y, x), and (gx, gy) is called coupled point of

coincidence, and,

(2) a common coupled fixed point of mappings F : X × X → X and g :

X → X if x = g(x) = F (x, y) and y = g(y) = F (y, x).

Theorem 2.4 Let (X,�, d) be a partially ordered complete metric space.

Let F : X × X → X and g : X → X be two mappings such that F has the

mixed g-monotone property and satisfy

d(F (x, y), F (u, v)) ≤ 1
5
(d(gx, gu) + d(F (x, y), gy) + d(F (x, y), gu)

+d(F (u, v), gx) + d(F (u, v), gu))

−ϕ(d(gx, gu), d(F (x, y), gx), d(F (x, y), gu)

, d(F (u, v), gx), d(F (u, v), gu)),

(1)

for every two pairs (x, y), (u, v) ∈ X×X such that gx � gu and gy � gv, where

ϕ : [0,∞)5 → [0,∞) be a continuous function such that ϕ(x, y, z, t, u) = 0 if

and only if x = y = z = t = u = 0. Also suppose X has the following

properties:

i. If a non-decreasing sequence xn → x; then xn � x for all n ≥ 0.

ii. If a non-increasing sequence yn → y; then yn � y for all n ≥ 0.

Let F (X × X) ⊆ g(X) and g(X) is a complete subset of X. If there exists

(x0, y0) ∈ X × X such that gx0 � F (x0, y0) and gy0 � F (y0, x0), then F and

g have a coupled coincidence point in X.

Proof 2.5 Let x0, y0 ∈ X be such that gx0 � F (x0, y0) and gy0 � F (y0, x0).

Since F (X × X) ⊆ g(X), we can define x1, y1 ∈ X such that gx1 = F (x0, y0)

and gy1 = F (y0, x0), then gx0 � F (x0, y0) = gx1 and gy0 � F (y0, x0) = gy1.

Since F has the mixed g-monotone property, we have F (x0, y0) � F (x1, y0) �
F (x1, y1) and F (y0, x0) � F (y1, x0) � F (y1, x1). In this way we construct the

sequences zn and tn inductively as zn = gxn = F (xn−1, yn−1), and tn = gyn =

F (yn−1, xn−1), for all n ≥ 0.

We know that for all n ≥ 0, zn−1 � zn, and tn−1 � tn. This can be done as

in Theorem 3.1. of [4], so we omit the proof of this part.

Step I. We will prove that limn→∞ d(zn, zn+1) = limn→∞ d(tn, tn+1) = 0.
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Using 1 (which is possible since gxn−1 � gxn and gyn−1 � gyn), we obtain

that

d(zn, zn+1) = d(F (xn−1, yn−1), F (xn, yn))

≤ 1
5
(d(gxn−1, gxn) + d(F (xn−1, yn−1), gxn−1) + d(F (xn−1, yn−1), gxn)

+d(F (xn, yn), gxn−1) + d(F (xn, yn), gxn))

−ϕ(d(gxn−1, gxn), d(F (xn−1, yn−1), gxn−1), d(F (xn−1, yn−1), gxn)

, d(F (xn, yn), gxn−1), d(F (xn, yn), gxn))

= 1
5
(d(zn−1, zn) + d(zn, zn−1) + d(zn, zn) + d(zn+1, zn−1) + d(zn+1, zn))

−ϕ(d(zn−1, zn), d(zn, zn−1), d(zn, zn), d(zn+1, zn−1), d(zn+1, zn))

≤ 1
5
(d(zn−1, zn) + d(zn, zn−1) + d(zn, zn) + d(zn+1, zn−1) + d(zn+1, zn))

≤ 1
5
(3d(zn−1, zn) + 2d(zn+1, zn)),

(2)

hence, d(zn+1, zn) ≤ d(zn, zn−1).

Again, since gyn � gyn−1 and gxn � gxn−1,

d(tn+1, tn) = d(F (yn, xn), F (yn−1, xn−1))

≤ 1
5
(d(gyn, gyn−1) + d(F (yn, xn), gyn) + d(F (yn, xn), gyn−1)

+d(F (yn−1, xn−1), gyn) + d(F (yn−1, xn−1), gyn−1))

−ϕ(d(gyn, gyn−1), d(F (yn, xn), gyn), d(F (yn, xn), gyn−1)

, d(F (yn−1, xn−1), gyn), d(F (yn−1, xn−1), gyn−1))

= 1
5
(d(tn, tn−1) + d(tn+1, tn) + d(tn+1, tn−1) + d(tn, tn) + d(tn, tn−1)

−ϕ(d(tn, tn−1), d(tn+1, tn), d(tn+1, tn−1), d(tn, tn), d(tn, tn−1))

≤ 1
5
(3d(tn, tn−1) + 2d(tn+1, tn)),

(3)

hence, d(tn+1, tn) ≤ d(tn, tn−1).

It follows that the sequences d(zn+1, zn) and d(tn+1, tn) are monotone de-

creasing sequences of non-negative real numbers and consequently there exist

r, s ≥ 0 such that limn→∞ d(zn+1, zn) = r, and limn→∞ d(tn+1, tn) = s.

From 2 we have

d(zn+1, zn) ≤ 1
5
(d(zn−1, zn) + d(zn, zn−1) + d(zn, zn) + d(zn+1, zn−1) + d(zn+1, zn))

≤ 1
5
(3d(zn−1, zn) + 2d(zn+1, zn)).

(4)

If n → ∞ in 4, we have r ≤ limn→∞ 1
5
(3r + d(zn−1, zn+1)) ≤ r, hence

limn→∞ d(zn−1, zn+1) = 2r.

We have proved in (2)

d(zn, zn+1) ≤ 1
5
(d(zn−1, zn) + d(zn, zn−1) + d(zn, zn) + d(zn+1, zn−1) + d(zn+1, zn))

−ϕ(d(zn−1, zn), d(zn, zn−1), d(zn, zn), d(zn+1, zn−1), d(zn+1, zn))

≤ 1
5
(3d(zn−1, zn) + 2d(zn+1, zn)).

(5)
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Now, if n → ∞ and since ϕ is continuous, we can obtain

r ≤ r − ϕ(r, r, 0, 2r, r) ≤ r.

Consequently, ϕ(r, r, 0, 2r, r) = 0. Hence

lim
n→∞ d(zn+1, zn) = r = 0. (6)

In a same way, we have

lim
n→∞ d(tn+1, tn) = s = 0. (7)

Now, we show that {zn} and {tn} are Cauchy sequences in X.

Let {zn} is not a Cauchy sequence, then there exists ε > 0 for which we can

find subsequences {zm(k)} and {zn(k)} of {zn} such that n(k) > m(k) > k and

d(zm(k), zn(k)) ≥ ε, where n(k) is the smallest index with this property, i.e.,

d(zm(k), zn(k)−1) < ε. (8)

From triangle inequality

ε ≤ d(zm(k), zn(k)) ≤ d(zm(k), zn(k)−1) + d(zn(k)−1, zn(k))

< ε + d(zn(k)−1, zn(k)).
(9)

If k → ∞, Since limn→∞ d(zn, zn+1) = 0, from 9 we can conclude that

lim
k→∞

d(zm(k), zn(k)) = ε. (10)

Moreover, we have

|d(zn(k), zm(k)+1) − d(zn(k), zm(k))| ≤ d(zm(k)+1, zm(k)), (11)

and

|d(zn(k)+1, zm(k)) − d(zn(k), zm(k))| ≤ d(zn(k)+1, zn(k)), (12)

and

|d(zm(k)+1, zn(k)+1) − d(zm(k)+1, zn(k))| ≤ d(zn(k)+1, zn(k)). (13)

Since limn→∞ d(zn, zn+1) = 0, and 11, 12 and 13 are hold, we get

lim
k→∞

d(zm(k)+1, zn(k)) = lim
k→∞

d(zm(k)+1, zn(k)+1) = lim
k→∞

d(zn(k)+1, zm(k)) = ε.

(14)
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Again, as n(k) > m(k), we have gxm(k) � gxn(k), and gym(k) � gyn(k). So,

from 1, for all k ≥ 0, we have

d(zm(k)+1, zn(k)+1) = d(F (xm(k), ym(k)), F (xn(k), yn(k)))

≤ 1
5
(d(gxm(k), gxn(k)) + d(F (xm(k), ym(k)), gxm(k)) + d(F (xm(k), ym(k)), gxn(k))

+d(F (xn(k), yn(k)), gxm(k)) + d(F (xn(k), yn(k)), gxn(k)))

−ϕ(d(gxm(k), gxn(k)), d(F (xm(k), ym(k)), gxm(k)), d(F (xm(k), ym(k)), gxn(k))

, d(F (xn(k), yn(k)), gxm(k)), d(F (xn(k), yn(k)), gxn(k)))

= 1
5
(d(zm(k), zn(k)) + d(zm(k)+1, zm(k)) + d(zm(k)+1, zn(k))

+d(zn(k)+1, zm(k)) + d(zn(k)+1, zn(k)))

−ϕ(d(zm(k), zn(k)), d(zm(k)+1, zm(k)), d(zm(k)+1, zn(k))

, d(zn(k)+1, zm(k)), d(zn(k)+1, zn(k))).
(15)

If k → ∞, from 10 and 14 we have, ε ≤ 1
5
(3ε) − ϕ(ε, 0, ε, ε, 0), hence,

we have ε = 0, which is a contradiction and it follows that {zn} is a Cauchy

sequence in X. Analogously, it can be proved that {tn} is a Cauchy sequence

in X.

Since (X, d) is complete and {zn} is Cauchy, there exists z ∈ X such that

limn→∞ zn = limn→∞ gxn = z, and since g(X) is closed and {zn} ⊆ g(X), we

have z ∈ g(X) and hence there exists u ∈ X such that z = gu. Similarly, there

exist t, v ∈ X such that t = limn→∞ tn = limn→∞ gyn = gv.

We prove that (u, v) is a coupled coincidence point of F and g.

We know that gxn and gyn are non-decreasing and non-increasing in X,

respectively and gxn → z = gu and gyn → t = gv. From conditions of our

theorem, gxn � gu and gyn � gv. So, using 1 we obtain that

d(zn+1, F (u, v)) = d(F (xn, yn), F (u, v))

≤ 1
5
(d(gxn, gu) + d(F (xn, yn), gxn) + d(F (xn, yn), gu)

+d(F (u, v), gxn) + d(F (u, v), gu))

−ϕ(d(gxn, gu), d(F (xn, yn), gxn), d(F (xn, yn), gu)

, d(F (u, v), gxn), d(F (u, v), gu))

= 1
5
(d(zn, z) + d(zn+1, zn) + d(zn+1, z) + d(F (u, v), zn) + d(F (u, v), z))

−ϕ(d(zn, z), d(zn+1, zn), d(zn+1, z), d(F (u, v), zn), d(F (u, v), z)).
(16)

If in (16) n → ∞,

d(z, F (u, v)) ≤ 1
5
(d(z, z) + d(z, z) + d(z, z) + d(F (u, v), z) + d(F (u, v), z))

−ϕ(d(z, z), d(z, z), d(z, z), d(F (u, v), z), d(F (u, v), z)),
(17)

and hence ϕ(0, 0, 0, d(F (u, v), z), d(F (u, v), z)) ≤ −3
5
d(z, F (u, v)) ≤ 0, and

therefore, d(z, F (u, v)) = 0. So, F (u, v) = z = g(u) and in a similar way
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we can obtain that F (v, u) = t = g(v). That is, g and F have a coupled

coincidence point.

Theorem 2.6 Adding the following conditions to the hypotheses of Theo-

rem 2.4, we obtain the existence of the common coupled fixed point of F and

g.

(i) If any nondecreasing sequence zn in X converges to z, then we assume

gz � z, and also, if any nonincreasing sequence tn in X converges to t, then

we assume gt � t.

(ii) g and F be w-compatible continuous mappings.

Proof 2.7 We know that the nondecreasing sequence gxn = zn → z and by

our assumptions gzn � gz � z = gu.

Also, the noninreasing sequence gyn = tn → t and by our assumptions

gtn � gt � t = gv.

So, from (1) we have

d(F (zn, tn), F (u, v)) ≤ 1
5
(d(gzn, gu) + d(F (zn, tn), gzn) + d(F (zn, tn), gu)

+d(F (u, v), gzn) + d(F (u, v), gu))

−ϕ(d(gzn, gu), d(F (zn, tn), gzn), d(F (zn, tn), gu)

, d(F (u, v), gzn), d(F (u, v), gu)).
(18)

Since F and g are w-compatible, and F (u, v) = gu = z and F (v, u) = gv =

t we have that gz = g(gu) = g(F (u, v)) = F (gu, gv) = F (z, t).

Now, if in (18), n → ∞, we obtain

d(gz, z) ≤ 1
5
(d(gz, z) + d(gz, gz) + d(gz, z) + d(z, gz) + d(z, z))

−ϕ(d(gz, z), d(gz, gz), d(gz, z), d(z, gz), d(z, z)).
(19)

Hence, ϕ(d(gz, z), d(gz, gz), d(gz, z), d(z, gz), d(z, z)) = 0 and so, d(gz, z) =

0. Therefore gz = z and from F (z, t) = gz, we conclude that F (z, t) = gz = z.

Analogously, we can prove that F (z, t) = gt = t.

Note that if (X,�) be a partially ordered set, then we endow X ×X with the

following partial order relation:

(x, y) � (u, v) ⇐⇒ x � u , y � v.

for all (x, y), (u, v) ∈ X × X. ([7])

Theorem 2.8 Let all the conditions of theorem 2.6 be fulfilled.

F and g have a unique common coupled fixed point provided that the com-

mon coupled fixed points of F and g are comparable.
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Proof 2.9 Let (x, y) and (u, v) be two common coupled fixed points of F and

g, i.e., x = g(x) = F (x, y), y = g(y) = F (y, x), and u = g(u) = F (u, v), v =

g(v) = F (v, u).

Suppose that (x, y) and (u, v) are comparable.

Since (u, v) is comparable with (x, y), we may assume that (x, y) � (u, v).

Now, applying 1 one obtains that

d(x, u) = d(F (x, y), F (u, v))

≤ 1
5
(d(gx, gu) + d(F (x, y), gx) + d(F (x, y), gu)

+d(F (u, v), gx) + d(F (u, v), gu))

−ϕ(d(gx, gu), d(F (x, y), gx), d(F (x, y), gu)

, d(F (u, v), gx), d(F (u, v), gu))

= 1
5
(d(gx, gu) + 0 + d(gx, gu) + d(gu, gx) + 0)

−ϕ(d(gx, gu), 0, d(gx, gu), d(gu, gx), 0)

= 1
5
(d(x, u) + 0 + d(x, u) + d(u, x) + 0)

−ϕ(d(x, u), 0, d(x, u), d(u, x), 0).

(20)

Therefore, ϕ(d(x, u), 0, d(x, u), d(u, x), 0) ≤ −2
5
d(x, u) ≤ 0. Hence x = u.

In a similar way, we have y = v.
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