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Abstract
In this paper we introduce the class of P-contraction mappings, anal-
ogous to the concept of C-contraction [2]. Also, we obtain a fixed point
result for this class of contractions in complete metric spaces.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Fixed point, Multivalued mapping, Complete metric space

1 Introduction

In recent years, extension of the Banach's contraction principle [2] has been
considered by many authors in different metric spaces. In [3|, Bhaskar and
Lakshmikantham presented coupled fixed point results for mixed monotone
operators in partially ordered metric spaces and in 2009, Lakshmikantham and
Ciric [6] proved coupled coincidence and coupled common fixed point theorems
for nonlinear contractive mappings in this spaces.

2 Main results

Definition 2.1 (/6]) Let (X, =,d) be a partially ordered set and F : X x
X = X and g : X — X be two self mappings. F has the mized g-monotone
property if F is monotone g-non-decreasing in its first argument and is mono-
tone g-non-increasing in its second argument, that is, if for all 1,29 € X;
g1 =X gxo implies F(xq,y) = F(x9,y) for any y € X and for all y1,y2 € X;
gy1 = gyo implies F(x,y1) = F(x,y2) for any x € X.
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Definition 2.2 (/1) The mappings F: X x X — X and g : X — X are
called w-compatible if g(F(x,y)) = F(gx,gy), whenever g(x) = F(z,y) and
9(y) = Fy, ).

Definition 2.3 (/6/, [1]) An element (x,y) € X X X s called:

(1) a coupled coincidence point of mappings F': XxX — X andg: X — X
if g(x) = F(z,y) and g(y) = F(y,x), and (gz, gy) is called coupled point of
coincidence, and,

(2) a common coupled fixed point of mappings F' : X x X — X and g :

X = X ifv=g(x)=F(r,y) and y = g(y) = F(y, ).

Theorem 2.4 Let (X, =,d) be a partially ordered complete metric space.
Let F: X x X — X and g : X — X be two mappings such that F' has the
mixed g-monotone property and satisfy

d(F(z,y), F(u,v)) < t(d(gz, gu) +d(F(z,y), gy) + d(F(z,y), gu)
+d(F(u,v), gx) + d(F(u,v), gu))
—p(d(gz, gu), d(F(z,y), gv), d(F(z,y), gu)
,d(F(u,v), gz), d(F(u,v), gu)),

(1)

for every two pairs (z,y), (u,v) € X x X such that gx < gu and gy = gv, where
¢ :[0,00)° — [0,00) be a continuous function such that o(x,y,z,t,u) = 0 if
and only if v =y = 2 =t =u = 0. Also suppose X has the following
properties:

1. If a non-decreasing sequence x,, — x; then x, =< x for alln > 0.

1. If a non-increasing sequence y,, — y; then y, =y for alln > 0.

Let F(X x X) C g(X) and g(X) is a complete subset of X. If there exists
(x0,%0) € X X X such that grg < F(x9,y0) and gyo = F(yo,x0), then F and
g have a coupled coincidence point in X.

Proof 2.5 Let xg,y0 € X be such that grg = F(x,yo) and gyo = F(yo, o).
Since F(X x X) C g(X), we can define x1,y; € X such that gz, = F(x¢,yo)
and gy1 = F(yo, z0), then gro X F(x0,y0) = g1 and gyo = F(yo, T0) = gy1-
Since F' has the mized g-monotone property, we have F(xo,y0) = F(x1,90) =X
F(z1,y1) and F(yo,xo0) = F(y1,20) = F(y1,z1). In this way we construct the
sequences z, and t, inductively as z, = g, = F(Tp_1,Yn—1), and t, = gy, =
F(Yn_1,Tn_1), for alln > 0.

We know that for alln >0, z,_1 = z,, and t,_1 > t,. This can be done as
in Theorem 3.1. of [4], so we omit the proof of this part.
Step 1. We will prove that lim,, o d(2pn, 2n11) = limy,_ oo d(tn, thy1) = 0.
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Using 1 (which is possible since gr,—1 = g, and gyn—1 = gyn), we obtain
that

d(2n; 2n1) = d(F(Tn-1,Yn-1), F(Tn, Yn))
< é(d@m‘n—h gxn) + d(F(xn—lv yn—1)> gxn—l) + d(F(xn—la yn—l)u g:)?n)
+d(F(Tn, Yn), 9Tn-1) + d(F (T, Yn), 975))
—go(d(gxn_l, gxn)v d(F(In—ly yn—l)a gxn—l)v d(F(In—la yn—l)v gxn)

é(d(znfla Zn) + d(zna anl) + d(zna Zn) + d(ZnJrla anl) + d(zn+17 Zn))
_QO(d(Zn_l, Zn)) d(zm Zn—l)a d(Zn, Zn)a d(zn+17 Zn—l)) d(zn-i-la Zn))
é d<zn—17 Zn) + d(Z’ru Zn—l) + d(zna Zn) + d(Zn+1, Zn—l) + d(Zn+1, Zn))
% 3d(Zn—17 Zn) + 2d(Zn+17 Zn)))
2)
hence, d(zps1,2n) < d(zn, 2n—1)-
Again, since gyn =3 gYn—1 and g, = gTp 1,

d(tn-i-lvtn) :d(F(ynaxn) (yn 1y, Lp— 1))

< £(d(gYn> gyn—1) + d(F Yn, Tn), 9Yn) + Ad(F Yn, Tn), 9Yn-1)

+d(F(Yn-1,Tn-1), 9Yn) + d(F(Yn-1,Tn—1), gYn-1))
—p(d(9Yns 9Yn—1); A(F (Yn, ), 9Yn), A(F (Yns Tn)s GYn—1)

s A(F(Yn—1,Tn1)5 9Yn), A(F (Yn-1, Tn-1), GYn—1))

= 1(d(tn, ty—1) + d(tns1, t) + d(tngr, tao1) + d(tn, tn) + d(tn, ta1)
—o(d(tn, tn1),d(tps1, tn ),d(tn+1,tn_l),d(tn,tn),d(tn,tn_l))
%(3d(tnatn 1) +2d( n+1a ))

(3)
hence, d(tpi1,tn) < d(tn,tn_1).

It follows that the sequences d(zpy1,2,) and d(t,i1,t,) are monotone de-
creasing sequences of mon-negative real numbers and consequently there exist
r,s > 0 such that lim, o d(2p11, 2,) = 7, and lim, o d(t,11,t,) = s.

From 2 we have

d(zns1,2n) < %(d(zn,l, 2n) + d(2n, 2n—1) + d(2n, 2n) + d(2n41, 2n-1) + d(2n11, 20))
< 1(3d(zp—1, 2n) + 2d(2p41, 2n))-
()
If n — oo in 4, we have r < limnﬂoo%(iir + d(zn-1, 2n+1)) < 1, hence
limy, oo d(2n—1, Zny1) = 21
We have proved in (2)

d(zna Zn—i—l) S %(d<zn—17 Zn) + d(Z’ru Zn—l) + d(zna Zn) + d(Zn+1, Zn—l) + d(Zn+1, Zn))
_Sp(d(znfla Zn): d(zm anl)a d(Zn, Zn)a d(zn+1: anl): d(szrla Zn))
< 1(3d(zn—1, 2n) + 2d(2p41, 2n))-
()
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Now, if n — oo and since  is continuous, we can obtain
r<r—p(rr02rr)<r.
Consequently, o(r,r,0,2r,r) = 0. Hence
Jim d(zpy1,2n) =1 = 0. (6)
In a same way, we have

Jim. d(tpi1,tn) =s=0. (7)

Now, we show that {z,} and {t,} are Cauchy sequences in X.

Let {z,} is not a Cauchy sequence, then there exists € > 0 for which we can
find subsequences {zmu} and {2y} of {zn} such that n(k) > m(k) > k and
d(Zm(k)> Zn(k)) = €, where n(k) is the smallest index with this property, i.e.,

d(Zm(r)s Zn(r)-1) < € (8)
From triangle inequality

e < d(zm(k)a Zn(k)) < d(zm(k)a Zn(k)—l) + d(zn(k)—la Zn(k)) (9)
<e+ d(zn(k)—la Zn(k))

If k — oo, Since lim, o d(2n, 2n11) = 0, from 9 we can conclude that

khjgo d(Zm(k), Zn(k)) = E£. (10)
Moreover, we have
(20, 2mty+1) — A(2nr)s Zmm)| < A(Zmimy+15 Zmer)), (11)
and
|d(zn(k)+15 Zmk)) — A(Zngr), 2mi))| < 2oy 1s Znk)), (12)
and
|d(2m(k)+17 Zn(k)—l—l) - d(zm(k)+17 Zn(k))| < d(zn(k)—l—ly Zn(k))‘ (13>

Since lim,, o d(2y,, 2ns1) = 0, and 11, 12 and 13 are hold, we get

i d(zmk) 11, Zar) = 00 d(zZmmy11s Zneyr1) = B0 d(2nm) 115 2mw) =

k—oo

1
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Again, as n(k) > m(k), we have gTm) = 9Tnk), and 9Ymk) = GYn(k)- S0,
from 1, for all k > 0, we have

="

k), gxm(k)) + d(F(Zmk)s Ym(k))s 9Tn(k))

(Zm(t)+15 Znky+1) = AF (@), Ymer))s F

< %(d(gl’m( 0 9%n()) + AF (T (), Yo

+d(F (T (k) Yn(k))> 9Tm(h )+d(F( (k)s Yn(k)): 9Tn(k)))

90( (gatm  9Zn(k))s AE (), Ym())s 9Tm))s AE (Timr)s Ym(r) ) 9Tn(x))
ACE Ty, Yn())s 9Tm())s ACE (Tnr)s Yn(r))> 9Tn(k)))

)
5(d(zmry 2a(r)) + A(Zmey+15 Zmry) + A(Zmr)+15 Zn(r))
+d(z Zn(k)+15 Zm(k ) + d(zn (k)+15 #n k)))
—(d(Zm(k)s Zntk)) A Zmk)+15 Zmk))» A Zmk)+15 Zn(k))
(Zn(k +1, Zm )) d(zn(k)Jrl: Zn(k)))'
(15)

If k — oo, from 10 and 14 we have, ¢ < %(35) — ¢(g,0,¢,¢,0), hence,
we have € = 0, which is a contradiction and it follows that {z,} is a Cauchy
sequence in X. Analogously, it can be proved that {t,} is a Cauchy sequence
mn X.

Since (X, d) is complete and {z,} is Cauchy, there exists z € X such that
limy, o0 2, = limy, oo g2, = 2, and since g(X) is closed and {z,} C g(X), we
have z € g(X) and hence there exists u € X such that z = gu. Similarly, there
exist t,v € X such that t = lim,, o t, = lim,_ . gy, = gv.

We prove that (u,v) is a coupled coincidence point of F' and g.

We know that gz, and gy, are non-decreasing and non-increasing in X,
respectively and gx, — z = gu and gy, — t = gv. From conditions of our
theorem, gx, = gu and gy, = gv. So, using 1 we obtain that

d(F (2, yn), F(u,v))
%(d(gmn, gu) + d(F(zn, Yn), 9Tn) + d(F (20, Yn), gu)
d(F(u,v), gx,) + d(F(u,v), gu))
—o(d(gzn, gu), d(F (T, Yn)s g0), d(F (T, Yn), gu)
d(F (u,v), gza), d(F(u, v), gu))
$(d(zn, 2) + d(zps1, 20) + d(2041, 2) + d(F(u,0), 20) + d(F(u,v), 2))
—o(d(2n, 2), d(2p41, 20), d(2p41, 2), d(F(u,0), 2,), d(F(u, (1)6)/2)).

d(zp41, F(u,v))

+ IA I

If in (16) n — oo,

d(z, F(u,v)) < £(d(z,2) +d(z,2) + d(z,2) + d(F(u,v), z) + d(F(u,v), 2))
—p(d(z,2),d(z,2),d(z, 2),d(F(u,v), z

~
2
o
—~
£
S
\'N
~—
~

(17)
and hence ¢(0,0,0,d(F(u,v),z),d(F(u,v),z)) < —gd(z,F(u,v)) < 0, and
therefore, d(z, F(u,v)) = 0. So, F(u,v) = z =

g(u) and in a similar way
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we can obtain that F(v,u) = t = g(v). That is, g and F have a coupled
coincidence point.

Theorem 2.6 Adding the following conditions to the hypotheses of Theo-
rem 2.4, we obtain the existence of the common coupled fized point of F' and
qg.

(i) If any nondecreasing sequence z, in X converges to z, then we assume
gz = z, and also, if any nonincreasing sequence t, in X converges to t, then
we assume gt > t.

(i1) g and F be w-compatible continuous mappings.

Proof 2.7 We know that the nondecreasing sequence gx, = z, — z and by
our assumptions gz, = gz X z = gu.

Also, the moninreasing sequence gy, = t, — t and by our assumptions
gt, = gt =t = gv.

So, from (1) we have

d(F(zn, ty), F(u,v)) < %(d(gzn,gu) + d(F (20, tn), 92n) + d(F (20, ), gu)
+d(F(u,v), gz,) + d(F(u,v), gu
—(d(92n, gu), d(F(zn, ), g2

)
yd(F (u,v), gzn), d(F(u, v), gu)

),
)-
(18)
Since F' and g are w-compatible, and F(u,v) = gu = z and F(v,u) = gv =
t we have that gz = g(gu) = g(F(u,v)) = F(gu, gv) = F(z,t).
Now, if in (18), n — oo, we obtain

d(gz,z) < 2(d(gz,2) +d(gz,92) + d(gz, z) + d(z, 92) + d(z, 2))
—p(d(gz, 2),d(gz, 92),d(gz, 2), d(z, gz),d(z, 2)).

Hence, w(d<gza 2)7 d(gZ, gZ), d(gZ, Z)v d(Zv gZ), d(Zv 2)) =0 and 50, d(gZ, Z) =
0. Therefore gz = z and from F(z,t) = gz, we conclude that F(z,t) = gz = .
Analogously, we can prove that F(z,t) = gt = t.

(19)

Note that if (X, <) be a partially ordered set, then we endow X x X with the
following partial order relation:

(z,y) 2 (u,v) <=z =u, yrv.
for all (z,y), (u,v) € X x X. ([7])

Theorem 2.8 Let all the conditions of theorem 2.6 be fulfilled.
F and g have a unique common coupled fixed point provided that the com-
mon coupled fized points of F' and g are comparable.
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Proof 2.9 Let (x,y) and (u,v) be two common coupled fized points of F' and
g, ie, v =g(x) = F(z,y), y=9g(y) = F(y,2), and u = g(u) = F(u,v), v=
g(v) = F(v,u).

Suppose that (z,y) and (u,v) are comparable.

Since (u,v) is comparable with (x,y), we may assume that (z,y) < (u,v).

Now, applying 1 one obtains that

d(z,u) =d(F(z,y), F(u,v))
+d(F (u, v) )+d(F( )7914))

gx
—¢(d(gz, gu), d(F(z,y), gz), d(F(z,y), gu)

d(F(u,v), gz),d(F(u, v), gu)) (20)
£(d(g9z, gu) + 0 + d(gz, gu) + d(gu, gz) + 0)

si(d(gx ,gu), 0,d(gz, gu), d(gu, gz), 0)
—

(d(x,u) + 0+ d(x,u) + d(u,x) + 0)
(d(z,u),0,d(z,u),d(u, x),0).

Therefore, p(d(x,u),0,d(z,u),d(u,z),0) < —2d(z,u) < 0. Hence x = u.
In a similar way, we have y = v.
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