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Abstract. This paper presents an algorithm for computing stability of
top-points in scale-space. The potential usefulness of top-points in scale-
space has already been shown for a number of applications, such as image
reconstruction and image retrieval. In order to improve results only reli-
able top-points should be used. The algorithm is based on perturbation
theory and noise propagation.

1 Introduction

Top-points have been shown to provide a sparse representation of an image
that can potentially be used for image matching and image reconstruction [1].
To get rid of unstable top-points that may deteriorate performance, we derive a
stability measure, which reflects the variance of top-point displacements induced
by additive noise perturbation of given variance.

A top-point is an isolated point in scale-space where both gradient and Hes-
sian determinant vanish. We consider only generic top-points [2]. Adding noise to
the image leads to large displacements for some top-points and hardly noticeable
displacements for others. In Sect. 2 we describe how to compute the dislocation
of a top-point for each noise realization by using a perturbation approach. In
order to obtain a realization-independent quantity, the variances of top-point
displacement as a function of noise variances and image derivatives are derived
in Sect. 3.

The variances of top-point displacement along coordinate directions are de-
pendent on the coordinate system. In Sect. 4 invariants under Euclidean coordi-
nate transformation are introduced.

We conclude the paper by experimental verification (Sect. 5). Experiments
confirm our theoretical predictions. Thus we have obtained an operational cri-
terion for distinguishing between stable and unstable top points.

2 Top-Points

Top-points of scale-space image representation u(x, y, t) are defined by the fol-
lowing system of equations:
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⎧⎨
⎩

ux = 0,
uy = 0,
uxxuyy = u2

xy.
(1)

Our scale parametrization convention is such that u satisfies the following heat
equation:

ut = uxx + uyy. (2)

One idea of the “deep structure” rationale is to use information about top-points
for different applications, for instance image matching and reconstruction. In or-
der to get reliable results, the top-points, used by the algorithm, should be stable.
Therefore the criterion of stability for top-points should be considered first.

Suppose (x0, y0, t0) is a top-point for a fiducial scale-space image u. The
stability of the top-point can be defined by measuring the distance over which
the point moves after adding noise to the image.

Note that top-points are generic entities in scale space, thus cannot vanish
or appear when the image is only slightly perturbed. Throughout we will as-
sume that the noise variance is “sufficiently small” in the sense that the induced
dislocation of the top-point can be investigated by means of a perturbation ap-
proach. For a given image u we consider its perturbations v under additive noise,
i.e. v = u + N , in which N denotes the noise function. If (x0, y0, t0) denotes a
top-point in u, then due to noise perturbation it will move to some neighboring
location (x0 +ξ, y0 +η, t0 +τ) in v. By using Taylor expansion, the displacement
(ξ, η, τ) of the top-point (x0, y0, t0) can be computed as⎡

⎣ ξ,
η
τ

⎤
⎦ = −M−1

[
g

detH

]
, (3)

where

M =
[
H w
zT c

]
, (4)

g = ∇v, H = ∇g, w = ∂tg, z = ∇detH, c = ∂tdetH. (5)

with all derivatives taken in the point (x0, y0, t0). For a derivation we refer to [3].
Explicit expressions of ξ, η and τ in terms of image derivatives can be found

in Appendix A.

3 Noise Propagation

In this section, the rules are discussed for the determination of the precision or
reliability of a compound “measurement” f in terms of the precision of each
constituent xi. This subject is known as the propagation of errors [7].

Suppose that the derived property f is related to the measured properties
x1, . . ., xn by the functional relation

f = f(x1, . . . , xn) (6)
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The function is assumed to be sufficiently regular.
Suppose that all x1, . . . , xn are random and possibly correlated between each

other. The propagation of the variance of f can be approximated as

〈(f(x1, . . . , xn) − f(x̄1, . . . , . . . x̄n))2〉 ≈
n∑

i=1

n∑
j=1

∂f

∂xi

∂f

∂xj
〈xixj〉, (7)

where all derivatives are calculated for the mean vector (x̄1, . . . , . . . x̄n).

3.1 Noise Propagation for Top-Point Displacement

In our case the random variables (x1, . . . , xn) are the noise derivatives
(Nx, Ny, Nxx, . . . , Nyyyy). The computed “measurement” f is a vector of dis-
placements [ξ(Nx, . . . , Nyyyy), η(Nx, . . . , Nyyyy), τ(Nx, . . . , Nyyyy)]T in scale-space.

The mean vector (N̄1, . . . , N̄n) is zero, therefore the mean displacement is
zero as well ⎡

⎣ ξ̄
η̄
τ̄

⎤
⎦ =

⎡
⎣ ξ(N̄1, . . . , N̄n)

η(N̄1, . . . , N̄n)
τ(N̄1, . . . , N̄n)

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ . (8)

Therefore the variance of the displacement vector equals the second order mo-
mentum of the displacement, [〈ξ2〉, 〈η2〉, 〈τ2〉]T .

For simplicity, consider the variance in x direction 〈ξ2〉 only. Similar equations
hold for 〈η2〉 and 〈τ2〉.

Since the actual image v is obtained by adding noise N to the fiducial image
u, i.e. v = u + N , for every i we have

∂ξ

∂Ni
=

∂ξ

∂vi
, (9)

therefore (7) can be rewritten as

〈ξ2〉 =
n∑

i=1

n∑
j=1

∂ξ

∂vi

∂ξ

∂vj
〈NiNj〉. (10)

Ni (vi) is short notation for a partial derivative of the noise (image) function.
More specifically the numerator of the expression for the displacement ξ (recall
Appendix A) is a polynomial of vx, . . . , vyyyy, which can be represented as

vxF (vx, . . . , vyyyy) + vyG(vx, . . . , vyyyy) + (v2
xy − vxxvyy)H(vx, . . . , vyyyy). (11)

From this representation it is easy to see that derivatives of (11) with respect to
to third and higher order image derivatives taken in the mean point vanish since

vx = ux = 0, vy = uy = 0, v2
xy − vxxvyy = u2

xy − uxxuyy = 0, (12)

in the respective top-point of u and v, recall (1).
Therefore, the sum (10) contains terms with derivatives with respect to

vx, vy, vxx, vxy, vyy only. Hence in order to get the final expression for the variance
we only need to compute the mutual correlations of noise derivatives
Nx, Ny, Nxx, Nxy, Nyy. Higher order noise derivatives play no role.
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Table 1. Some values of Qn (Qn=0 if n is odd)

n 0 2 4 6
Qn 1 1 3 15

3.2 Noise Which Is Uncorrelated Between Neighboring Pixels

The momentum M2
mx,my,nx,ny

=< Nmx,myNnx,ny > of Gaussian derivatives of
correlated noise in case the spatial noise correlation distance τ is much smaller
than scale t is given by [10]

M2
mx,my,nx,ny

�< N2 >
( τ

2t

) (−1
4t

) 1
2 (mx+my+nx+ny)

Qmx+nxQmy+ny (13)

Let us take the correlation kernel with one pixel width, therefore τ = 1/2. In
this case Gaussian derivatives of the first and the second order have the following
correlation matrix:

C = (〈NiNj〉)ij =

⎛
⎜⎜⎜⎜⎝

4t0 0 0 0 0
0 4t0 0 0 0
0 0 3 0 1
0 0 0 1 0
0 0 1 0 3

⎞
⎟⎟⎟⎟⎠

〈N2〉
(4t0)3

, (14)

where (N1, . . . , N5) = (Nx, Ny, Nxx, Nxy, Nyy).

4 Invariants

The variances 〈ξ2〉 and 〈η2〉 are not rotationally invariant, as they depend on the
choice of Cartesian coordinate axes. By rotation we get variances as functions
of angle ϕ, 〈ξ2〉(ϕ) and 〈η2〉(ϕ).

After some simplifications the rotated variances can be written as

〈ξ2〉 = (A sin2 ϕ + B sin ϕ cos ϕ + C)/D,
〈η2〉 = (A cos2 ϕ − B sin ϕ cos ϕ + C)/D,

(15)

where A, B, C and D are functions of uxx, . . . , uyyyy (for sake of complete-
ness the exact expressions are given in Appendix B). The variance of the total
displacement r =

√
ξ2 + η2 can be easily computed from (15)

〈r2〉 = 〈ξ2〉 + 〈η2〉 = (A + 2C)/D. (16)

Therefore 〈r2〉 is invariant under rotation, as expected

〈ξ2〉′ + 〈η2〉′ = 0, (17)

where prime denotes derivative with respect to angle of rotation. From (17) one
can easy see, that if 〈ξ2〉′ is zero, then 〈η2〉′ is zero as well. This shows, that 〈ξ2〉
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Fig. 1. Variances of top-point displacements for all top-points projected on the xy-
plane

and 〈η2〉 have an extremum under the same rotation of the axes. The extrema
of 〈ξ2〉 (and 〈η2〉) can be reached by rotation, when

χ = tanϕ =
A

B
+

√
1 +

(
A

B

)2

(18)

The extremal variances are

X = 〈ξ2〉 = χB+2C
2D ,

Y = 〈η2〉 = −B+2χC
2χD .

(19)

X and Y are obviously invariant under rotation and translation.
By rotating the coordinate system we find directions in which the variance is

maximal, respectively minimal (these two directions are orthogonal) and we con-
struct an ellipse1 with principal directions and axes that reflect these extremal
noise variances (Fig 1).

Note, that top-points, in the neighborhood of which there is a lot of structure,
have ellipses with very small radiuses (stable), and top-points in rather flat

1 Note, that (15) does not parameterize an ellips. An elliptical “gauge figure” however
is merely used for simplicity.
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locations tend to have large ellipses (unstable) (Fig. 1). Another invariant is the
variance of τ (scale instability), the expression of which is given in Appendix B.

5 Experiments

In order to validate the theoretical results numerical experiments have been con-
ducted. Adding noise to the image results in changing top-points coordinates.
Some of them hardly move and others move quite a lot. It is practically impos-
sible by comparing two top-point clouds to tell which top-point of the fiducial
image corresponds to which top-point of the actual image, therefore it is impos-
sible to investigate the stability in a pure experimental way. Instead, we choose
a somewhat different approach, which combines theory and experiments.

For each noise realization N i, where i = 1 . . . K labels the experiments, we
use (3) as a refining algorithm in order to estimate the coordinates of the actual
top-point (x0 + ξi, y0 + ηi, t0 + τi), taking the coordinates of the original top-
point (x0, y0, t0) as an initial guess. The experiment consists of K = 500 noise
realizations. Therefore, for original top-point (x0, y0, t0) we compute an array
{(ξi, ηi, τi)}1≤i≤K of 500 displacements.

The principal directions and maximum and minimum variances for the set
of points, obtained by noise perturbation, have been calculated. In order to find
principal directions, the extremum problem should be solved for the averages

〈ξ2〉(χ) = 1
1+χ2

∑K
i=1(ξi + χηi)2/K,

〈η2〉(χ) = 1
1+χ2

∑K
i=1(−χξi + ηi)2/K,

(20)

where T is a tangent of the angle of rotation. The extreem for both variances
are reached under identical rotations, since the sum 〈ξ2〉(T ) + 〈η2〉(T ) does not
depend on χ.

The extremum corresponds to the angle given by

χ̃ = −
∑

i(ξ
2
i − η2

i )
2

∑
i ξiηi

+

√(∑
i(ξ

2
i − η2

i )
2

∑
i ξiηi

)2

+ 1. (21)

The variance in this direction is X̃ = 〈η2〉(χ̃)

X̃ =
1

1 + χ̃2

K∑
i=1

(ξi + χ̃ηi)2/K (22)

and in the orthogonal direction

Ỹ =
1

1 + χ̃2

K∑
i=1

(−χ̃ξi + ηi)2/K (23)

The comparison of theory and the experiments is depicted in Fig. 2. Since
both the theory and the experiments take into account derivatives up to fourth
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Fig. 2. Examples of top-point movements projected on the xy-plane under noise real-
izations (crosses) and theoretical predictions (ellipses). Right column shows zooming
in the neighborhood of the top-point
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Fig. 3. Comparison of experimental and theoretical results. The value of ε denotes the
ratio between theoretical and experimental variances, a) - for spatial displacement εX

and b) - for scale-displacement εT

order, the scale of the top-point should be large enough to obtain reliable results.
The value of ε denotes the relative difference between theoretical and experimen-
tal variances in space and scale

εX =
X − X̃

X̃
(24)

εT =
T − T̃

T̃
(25)

Figure 3 reveals that the relative difference between theoretical and experi-
mental results is acceptably small for large scales and large for small scales due
to computational errors in derivatives, as expected.

6 Results

In this paper we have described an algorithm for computing stability measures
for top-points. The algorithm is based on a perturbation approach and uses
properties of noise propagation in Gaussian scale-space.

Variances of top-point displacements can be computed on the basis of noise
variance and fourth order differential structure at the top-point.

The advantage of this approach is that variances of displacements can be
predicted theoretically on the basis of the local differential structure.

The experiments have shown correspondence between the analytical predic-
tions and practice in cases where the scale of top-point is not too small for
reliably computing fourth order derivatives.

Analytically computed variances can be used for several applications, such
as stability measures and weight measures for top-point based image retrieval
algorithm [1].

Applying the algorithm to problems listed above will be the next step in our
research.
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Appendix A: Displacements Under Noise Perturbation

In this appendix we give expressions for displacements in spatial and scale di-
rections. The refining equations (3) in terms of image derivatives are given by[

ξ
η

]
=

(
(v2

xy − vxxvyy)
[

vxy(vxxy + vyyy) − vyy(vxxx + vxyy)
vxy(vxxx + vxyy) − vxx(vxxy + vyyy)

]
−

(vy(vxxx + vxyy) − vx(vxxy + vyyy))
[−2vxyvxyy + vyyvxxy + vxxvyyy

2vxyvxxy − vyyvxxx − vxxvxyy

]
+

(vyy(vxxxx + vxxyy) + vxx(vxxyy + vyyyy) − 2vxy(vxxxy + vxyyy))[
vyvxy − vxvyyvxvxy − vyvxx

])
/

detM

(26)
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The scale displacement equals

τ = (−(v2
xy − vxxvyy)2 + vy(2v2

xyvxxy + uxx(vyyvxxy + vxxvyyy)−
vxy(3vxxvxyy + vyyvxxx)) + vx(2v2

xyvxyy + vyy(vxxvxyy + vyyvxxx)−
vxy(3vyyvxxy + vxxvyyy)))/detM

(27)

In both formulas we have a denominator

detM = (vyyvxxy + vxxvyyy − 2vxyvxyy)(vxy(vxxx + vxyy) − vxx(vxxy + vyyy))
+(vyyvxxx + vxxvxyy − 2vxyvxxy)(vxy(vxxy + vyyy) − vyy(vxxx + vxyy))+
(vxxvyy − v2

xy)(vxx(vxxyy + vyyyy) + vyy(vxxxx + vxxyy)) − 2vxy(vxxxy + vxyyy))
(28)

Appendix B: Parameters for the Invariant Expressions

A = 3(uxx − uyy)(uxx + uyy)2(uxx(uxxy + uyyy)2 + (uxxx

+uxyy)((uxxx + uxyy)uyy − 2uxy(uxxy + uyyy))) + 4t0(((−2uxxyuxy

+uxxuxyy + uxxxuyy)(uxxy + uyyy) + (uxxx + uxyy)(−2uxyuxyy + uxxyuyy

+uxxuyyy) + 2uxy(2uxy(uxxxy + uxyyy) − (uxxxx + uxxyy)uyy

−uxx(uxxyy + uyyyy)))2 + 2(−2uxy(uxxxy + uxyyy)uyy + (uxxxx + uxxyy)u2
yy

−(uxxy + uyyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) + u2
xy(uxxyy + uyyyy))

×(−(uxxx + uxyy)(uxxuxyy + uxxxuyy) + (uxxy + uyyy)(uxxyuyy + uxxuyyy)
+2uxy(uxxxuxxy − uxyyuyyy) + (−uxx + uyy)(2uxy(uxxxy + uxyyy)
−(uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy))) + (−(uxxx + uxyy)(uxxuxyy

+uxxxuyy) + (uxxy + uyyy)(uxxyuyy + uxxuyyy) + 2uxy(uxxxuxxy − uxyyuyyy)
+(−uxx + uyy)(2uxy(uxxxy + uxyyy) − (uxxxx + uxxyy)uyy − uxx(uxxyy

+uyyyy)))2 − 2((−2uxxyuxy + uxxuxyy + uxxxuyy)(uxxy + uyyy)
+(uxxx + uxyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) + 2uxy(2uxy(uxxxy

+uxyyy) − (uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy)))((uxxx + uxyy)
×(−2uxyuxyy + uxxyuyy + uxxuyyy) − uxy(−2uxy(uxxxy + uxyyy)
+(uxxxx + uxxyy)uyy + uxx(uxxyy + uyyyy)))) (29)

B = −6uxy(uxx + uyy)2(uxx(uxxy + uyyy)2 + (uxxx + uxyy)((uxxx +
uxyy)uyy − 2uxy(uxxy + uyyy))) + 4t0(2(−2uxy(uxxxy + uxyyy)uyy +
(uxxxx + uxxyy)u2

yy − (uxxy + uyyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) +

u2
xy(uxxyy + uyyyy))((−2uxxyuxy + uxxuxyy + uxxxuyy)(uxxy + uyyy) +

(uxxx + uxyy)(−2uxyuxyy + uxxyuyy + uxxuyyy) + 2uxy(2uxy(uxxxy +
uxyyy) − (uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy))) + 2(−(uxxx+
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uxyy))(uxxuxyy + uxxxuyy) + (uxxy + uyyy)(uxxyuyy + uxxuyyy) +
2uxy(uxxxuxxy − uxyyuyyy) + (−uxx + uyy)(2uxy(uxxxy + uxyyy) −
(uxxxx + uxxyy)uyy − uxx(uxxyy + uyyyy)))((uxxx + uxyy)(−2uxyuxyy +
uxxyuyy + uxxuyyy) − uxy(−2uxy(uxxxy + uxyyy) + (uxxxx + uxxyy)uyy +
uxx(uxxyy + uyyyy))) (30)

C = 3(uxx + uyy)2(−(uxxx + uxyy)uyy + uxy(uxxy + uyyy))2 +
4t0((−2uxy(uxxxy + uxyyy)uyy + (uxxxx + uxxyy)u2

yy + (uxxy + uyyy) ×
(2uxyuxyy − uxxyuyy − uxxuyyy) + u2

xy(uxxyy + uyyyy))2 + ((uxxx + uxyy) ×
(−2uxyuxyy + uxxyuyy + uxxuyyy) − uxy(−2uxy(uxxxy + uxyyy) +
(uxxxx + uxxyy)uyy + uxx(uxxyy + uyyyy)))2) (31)

D = 8
√

t30(vyyvxxy + vxxvyyy − 2vxyvxyy)(vxy(vxxx + vxyy) − vxx(vxxy+
vyyy)) + (vyyvxxx + vxxvxyy − 2vxyvxxy)(vxy(vxxy + vyyy) − vyy(vxxx + vxyy)))

(32)
〈τ2〉 = 4t0((uxx + uyy)(uyy(3uxxuxyy + uxxxuyy)2 − 2uxy(3uxxuxyy + uxxxuyy)×
(3uxxyuyy + uxxuyyy) + uxx(3uxxyuyy + uxxuyyy)2))/D

(33)
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