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Motion Parallel Manipulators

After discussing the Study point transformation operator, a unified way to formulate
kinematic problems, using “points moving on planes or spheres” constraint equations, is
introduced. Application to the direct kinematics problem solution of a number of different

parallel Schonflies motion robots is then developed. Certain not widely used but useful
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tools of algebraic geometry are explained and applied for this purpose. These constraints
and tools are also applied to some special parallel robots called “double triangular” to
show that the approach is flexible and universally pertinent to manipulator kinematics in
reducing the complexity of some previously achieved solutions. Finally a novel two-
legged Schonflies architecture is revealed to emphasize that good design is not only

essential to good performance but also to easily solve kinematic models. In this example
architecture, with double basally actuated legs so as to minimize moving mass, the
univariate polynomial solution turns out to be simplest, i.e., of degree 2.
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1 Introduction

This paper was originally intended only to revisit, with refor-
mulation using Study parameters, the direct kinematic (DK)
analysis of two special parallel mechanisms, so-called double tri-
angular manipulators (DTMs). These parameters, eight homoge-
neous coordinates of kinematic image space, are also called the
elements of a dual quaternion. Double triangular mechanisms in-
clude a planar, a spherical, and a full six degree of freedom (DOF)
spatial type, all introduced by Daniali and co-workers [1,2]. This
re-investigation of limited scope produced simplifications in solu-
tion and some insight that emboldened the authors to go farther
afield and include a number of unrelated but possibly more prac-
tical parallel manipulators under the unifying umbrella of these
analytical tools. The extended work reported herein concentrates
on so-called Schonflies 4DOF manipulators, characterized by four
distinctly different architectures and investigated by Nabat et al.
[3], Angeles et al. [4], Gauthier [5], and Zsombor-Murray [6],
respectively, that admit all three translational degrees and one ro-
tation about a fixed axis. A treatment of spherical DTM DK analy-
sis is included. Note that if one is given a 4DOF manipulator, like
those confined to Schonflies motions, then the DK is completely
specified with four constraint equations. Furthermore, in this pa-
per, these equations describe points, transformed via kinematic
mapping, to lie on planes or spheres. The main purpose is to
investigate various parallel manipulator architectures and show
how their DK is modeled with different combinations of con-
straints of this type. In every case the main result is a univariate
polynomial of degree 2, 4, or 8, and a linear back substitution
process to unambiguously evaluate all other unknown parameters.
The relation between combinations and the degree of the univari-
ate polynomial solution is explained.

The general Euclidean displacement 8 in 3-space can be de-
scribed by
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q=Mp (1)
Here M is the 4 X 4 matrix
to 0 0 0
2(xpx = xgx3)  2(x1x3 + x0x3)
B 200xm+xex)  xg-x g -xg 200x - X))

2 2 2.2
3 2(x1x3 = xpX2) Xo =X —Xp+ X3

f xixl-x -3

2(xp23 + xpx1)
2

where 1, is the nonzero condition
t0=x(2)+x%+x%+x§#0 (3)

and the rest of the first column are translational components in the
respective x-, y-, and z-direction.

1= 2(xpy1 = X1 Yo + Xoy3 = X3Y2)
1 =2(xpy, = XY + X3y | = X1Y3) 4)

t3=2(xqy3 = X3y + X1¥2 — X2)1)
The variables x;, y;, i=0...3 are elements of the Study parameter
vector, s, in dual quaternion components
-
§ = [X0,X1,%2,X3,Y0, Y 1,Y 2, 3]
that must satisfy the so-called Study condition expressed as
XoYo +X1y1 + XYy +x3y3=0 (5)

Finally p and q are homogeneous point coordinate vectors of a
point P and its image Q under f3.

Po qo

P q1
p= b q=

P2 q>

P3 q3

The rest of the paper is organized as follows: Section 2 contains
the general formulation of planar and spherical constraints in
terms of Study parameters. In Secs. 3—5 we demonstrate the ap-
plicability of the method by treating some manipulator classes
pertaining to the types mentioned above.
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2 Planar and Spherical Constraints

In general, a kinematic mapping approach to any problem in-
volves the selection of a set of point, plane, and/or line elements,
all on a chosen subassembly, called EE, because it often pertains
to and is short for “end effector,” of the mechanism in question,
and displacing these according to some parameters, x; and y;, to be
determined so that the selected elements fall on appropriate con-
straint surfaces on the remaining portion of the mechanism, called
FF to indicate base or “fixed frame.” In what follows only point
elements and planar or spherical constraint surfaces will be used.
Notwithstanding these restrictions it will be seen that a rich vari-
ety of mechanical situations can be dealt with.

2.1 Planar Constraints. Given the transformation relation,
Eq. (1), consider a planar surface constraint equation. This can be
written as

T T
e q=e Mp=eyqy+eq;+exqg,+e3q3=0 (6)
with
€o
€]
e=
€
€3

denoting the homogeneous coordinate vector of the constraint
plane ¢ in the fixed frame and

egtepy+epy+ezps e3Py — €P3
A= e3Py~ €aP3 egtepy—expr—esps
e1p3—e3p eptep;
ep—ep; e\p3tesp;
O € €y €3
—e 0 ey —e
B= 1 3 2 (10)
—€) —¢€3 0 e
—ée3 €y — e 0

2.2 Spherical Constraints. A spherical constraint on the po-
sition of an image point Q(q,q1,42,¢3) is a condition of the form

di+ 5+ 45 + €191 + 24092 + €3q093 + €0dy =0 (11)
where e;=-2m;, i=1,2,3, and e0=m%+m%+m§—r2 with m; being
the center coordinates of the sphere « under consideration and r
denoting its radius.

Notice that symbols ¢;, i=0,1,2,3 are used to denote both
plane and sphere parameters to emphasize that these play the same
role in formulating the constraint equation developed in either
case.

Since condition (11) is quadratic in ¢g; and ¢; themselves are
quadratic in the Study parameters, an a priori quartic constraint on
g; is obtained. However, by applying a method due to Ref. [7],"
this is thus reduced to a quadratic equation: Four times the square
of Study condition (3) is added to implicit equation (11) to obtain
a polynomial that is the product of

lHusty [7] was first to apply this technique to formulate the DK algorithm for the
general Stuart-Gough platform manipulator where six points in EE are displaced
onto six spheres in FF.
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1
Pi
P2
P3

p:

that of the point P in the moving frame whose image Q has to lie
in e.

Only normalized homogeneous point coordinates (py=1) are
used throughout to maintain points in Euclidean space. Then py,
P2, and ps are the Cartesian coordinates of P in the moving, end
effector frame EE.

Equation (6) is a homogeneous quadratic constraint equation in
terms of Study parameters xg, X, X2, X3, Yo, Y1, Y2, and y3. It can
be compactly written as follows:

sTCs=0 (7)

Here C is an 8 X 8 matrix of the form
. [A B ] )

“IBT O

with 4 X 4 blocks A, O, and B where O is a zero block while A is
symmetric and B is skew-symmetric. They can be written as
follows:

€1P3— e3Py €1~ ep2

e+ eipr eip3t+espy ©)
€y ePy+epr—e3ps e3P+ eyps3

€3pPr+eyp3 ep—e1p1—epPrtezps

X+ E 0 +x
and a homogeneous quadratic factor f in the eight Study param-
eters
2, 2, 2 2.4
41+ 45+ 43+ €1q0q1 + €29092 + 39093 + eody + 4(xoyo + X1y
2,2, 2, 2 T
+ X0y + X3y3)° = (g + X7 + x5+ x3) - f(sT)
2,2

Sin(?e x0+xll+x§'+x§#0 and x0y0+x1y1+x2)./2+?c3y3=0 the con-
straint equation imposed by a sphere constraint is

fsT)=0
Compressing coefficients, a compact matrix form is obtained as
fisH=s"C*s=0
The resulting 8 X 8 matrix C* is abbreviated to block form as

.| A+ (i+p3+p)1 B

C
B*T 41

(12)

where A is the 4 X4 symmetric matrix (Eq. (9)), B" is the 4 X4
skew-symmetric matrix

O €1+2p1 €2+2p2 €3+2p3
—e1—2 0 e3—2 —ey+2
B* = 1 P1 3= 4P3 2t 4P2 (13)
—ey—2p;, —e3+2p; 0 e;—2p,
—e3—2p3 ey—-2p, —e;+2p 0

and I is the 4 X 4 identity matrix.
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2.3 Constraint Equation Structure. Comparing Eqgs.
(8)—(10), (12), and (13) one sees that matrices C and C*, which
contain only given parameters, are quite similar in structure.

In the case of the point-on-plane (PoP) constraint the matrix C
leads to an equation that is linear in y;.

The point-on-sphere (PoS) constraint contains a term 4E?=0yl-2
but there are no other quadratic terms in y;.

In the case of more than one sphere constraint, only one con-
straint equation needs to remain quadratic in y; because it can be
subtracted from the others to remove all yiz.

For a full 6DOF manipulator problem, six constraint equations
are required. The nonzero condition and the Study condition

3 3
Ex?vﬁo, 2x,—y,—=0
i=0 i=0
are added as additional constraints to handle eight unknown pa-
rameters.

3 Schonflies Manipulator DK With Plane and/or
Sphere Constraints

The four parameter subgroup of Schonflies displacements con-
tains the proper Euclidean transformations that confine rotation to
a fixed axial direction. Here the common direction is taken paral-
lel to the z- or x3-axis of EE and FF. Analytic description of this
group is obtained by substituting

x1=x2=0

in the general displacement matrix, Eq. (2), so as to become the
4 X 4 matrix, Eq. (14).

x+xi 0 0 0
1 x(z)—xg — 2xpX3 0

M= (14)

1 2xpx3  Xg— X3 0
13 0 0

Simplified first column (translation) elements are shown above
and are defined below.

2 2
Xo+ X3

1 =2(xpy; = X3Y,)

1 =2(xpys + X3y1) (15)

13 =2(xpy3 = X3Y0)

The Study condition and the nonzero condition are similarly re-
duced.

Xoyo+x3y3=0 (16)

X +x3#0 (17)

A Schonflies manipulator is any mechanism that admits only
Schonflies motions.

In case of Schonflies displacement, a plane constraint is repre-
sented by matrix C (Eq. (8)), with second and third rows and
columns removed, that now reads as

ayxg + 2axxgxs + azxs + 2e1 (Xoy; — x372) + 2€5(xgy, + x3y1)
+2e3(xgy3 — x30) =0
or, using 7;, defined by Eq. (15), as
a\xg + 2a5xx3 + asxs + ety + ety + e313=0 (18)
where

ay=epteprteprtesps
ary=éexp1—e1pPr
az=ey—e|py—epytesps
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Similarly a simpliﬁed2 sphere constraint, in case of the Schon-
flies motion, is written as

aTx% + 2a5x %3 + a§x§ +2b1x0y 1 + 2b5x3y, + 2b3xoys + 2byxsy,
+2b3(xgy3 = x30) + 4(yg + YT+ 3 +33) =0 (19)
where
aj=eg+ep, +€2P2+e3p3+P%+P§+P§

¥
ay=expr—epP2

- 2, 2, 2
az=eyg—e\py—eprtep3+pi+p,+p;3

bi=e +2p,
by=—e +2p,
by=e,+2p,
by=ey-2p,
bs=e3+2p;

3.1 Schonflies Motion With Three PoP Constraints. To bet-
ter understand geometric techniques used later in specific ex-
amples of parallel manipulator architectures it is useful to discuss
Darboux motion, which is defined by the requirement that the
path of each point is a planar curve. It turns out (cf. Ref. [8], pp.
304-310) that aside from trivially obvious cases, where all point
paths lie in parallel planes, such a motion is one-parametric and
the rigid body can rotate only about axes in some common, fixed
direction. This means that Darboux motion is a subset of Schon-
flies motion. Moreover, it is well known that all point paths under
a nontrivial Darboux motion are ellipses.

In the following we prove that a Schonflies motion with three
PoP constraints is always a Darboux motion.? All we need to show
is that, given three PoP constraints, the translational components
11, 1, and t3 are homogeneous quadratic functions in x, or x3; i.e.,
the resulting motion is rational of order 2.

Let

anxé +2apxprs + ai3x§ +2e;1(xy1 = X3y2) + 2ep(xoy2 + X31)
+2e;3(xgy3 = X3y9) =0 (20)

be the three PoP constraints, i=1,2,3 (compare with Eq. (18)).
With some further symbolic compression, as noted afterward, the
following four expressions, Eq. (21), generated with Eq. (20) via
Cramer’s rule, are offered, by way of proof, to show that one
indeed obtains a Darboux motion.

Yo=— X5+ ¥2(X0,X3)
0 3OA- (x(z) + x%)
Xo - a(x0,X3) + X3 - Boxg,x3)
= 2, 2
2A - (xg+x3)

(1)
_ Xo * Bo(Xp,%3) = X3 - (g, X3)
2 204 (2 +x2)

¥2(%0,X3)
2A - (x3+x3)
where a,(xg,x3), Ba(xg,x3), and y,(xy,x3) are the quadratic homo-
geneous polynomials

Y3=Xo-

a,(xg,X3) = [|aleze3||aze2e3||a3e2e3|][x(2)2x0x3x§]T

*Only six of the bilinear terms X;y; occur.
3Vogler [16] recently gave an alternative proof of this fact.
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Balxo.x3) =[[eja;e;][e;ae; \enasesl][x§2w3X§]T

Ya(x0.X3) = [|ele231||ele2a2‘ \ele2a3|][x§2x0x3x§]T

and
alj elj
A=leeses|, A;=(dy |, €;=|¢€;
asj €3j

By substitution of Eq. (21) into Eq. (15) we get

(X, x3)

11 =2(xoy1 = x3y,) = —A
Ba(x0,x3)

1 =2(xoy2 +x3y1) = s AO : (22)
¥2(xp,x3)

t3=2(Xgy3 = X3yg) = A

This shows that the translational components #{, f,, and #; are
indeed homogeneous quadratic functions in xg,x3, as stated.

3.2 DK of Schonflies Manipulators With Three PoP and a
Fourth PoP or PoS Constraint. As shown in Sec. 3.1 the three
given PoP constraints determine a Darboux motion. Hence, the
path of the fourth given point undergoing this motion is an ellipse.
On the other hand this point must lie on a plane or sphere accord-
ing to the fourth given constraint. In conclusion the DK problem
at hand can be reduced to finding the intersection of an ellipse
with a plane or a sphere. The insight gained from this approach
shows that such a problem must necessarily admit two or four DK
solutions, at most.

Analytically, the solutions can be found as follows. From the
three given PoP constraints we obtain expressions (21) and (22).

(a)  If the fourth constraint surface is a plane represented by
Eq. (18) then substitution of Eq. (22) produces a qua-
dratic univariate in x;3 after dehomogenizing with xo=1.

(b)  If the fourth surface is a sphere represented by Eq. (19),
then by substitution of Eq. (21) the quadratic term
42?:0))? becomes

405+ +y3+y)) = [ (xgx3) + B3 (x0,X3)

Az(x(2J + x%)

+ 'yg(XOvXS)]

Thus, substitution of Eq. (21) in Eq. (19) clearly produces a
quartic univariate in x5 after multiplication with the denominator
x3+x§ and dehomogenizing with xy=1.

Once the values of x5 are thus obtained, the three equations in
Eq. (22) allow one to find the corresponding values of ¢, ,, and
15, thus completing the definition of the DK displacement implied
by the problem.

3.3 DK of Schonflies Manipulators With Two or More PoS
Constraints. Let at least two PoS constraints (Eq. (19)) be used to
characterize the DK of a Schonflies motion. Then the difference
between any two PoS equations removes the term 42,‘3:03’,'2 S0 as to
always yield three equations (Eq. (23)) linear in yg, y;, y,, and ys.

2 2
M X4+ MipXoXs + M35 = M3y + (MsXg + miex3)yy + (mx

+mgx3)ys + Migxoy; =0 (23)
Each represents either a PoP constraint or the difference between
two PoS constraints. The coefficients mg, i=1,2,3,j=1,...,8 are

formulated from appropriate combinations of given point, plane,
or sphere parameters, py, €.

021006-4 / Vol. 2, MAY 2010

A fourth constraint contains the term 42?:0)11-2. It has the form of
Eq. (19).

A 4 X5 matrix, whose rows are coefficients of 1, yg, v, y», and
v3, as these appear in Study condition (16) and the three equations
in Eq. (23), is set up. Taking determinants of all 4 X 4 minors with
alternating = sign and dividing all the rest by the first, i.e., Cram-
er’s rule, yield y;=y;(xg,x3).

2, 2 2 2
A = (xg + x3) [ tas7x + (tass + Mas7)XoX3 + Mags3]

= (xg +x3) &5(x0,x3)
_X 4 3
Yo= A [i157x0 + (i155 + 167 + Mas7)XoX3 + (W16 + Mass + Hogr

2.2 3 4q_ %3
+ Mas7)x¥3 + (Mos + Mass + Mae7)XoX3 + Mags¥3] = Xa4(xo,x3)

2 2
Xo+ X3

= T[M|47x(3) + (s + ,u,247)x(2}x3 + (oas + ,u,347)x0x§
(24)

2
31_ %ot X3
+ Mgz = A B5(x0.x3)

xt+x3

A

3 2 2
Ya=- [1145x0 + (f146 + Moa5)Xi%3 + (Moae + Maas)XoX3

2
; Xg+ X5
+ #3462‘;] =———y(xp.x3)

A

X0 X0
yy=——yo=—~ - aylxp,x3)
X3 A
where ,u,ijk=|mimjmk\, mj=[m]j,m2j,m3j]T.

Note that homogeneous polynomials &(xg,x3), as(xg,x3),
B3(xg,x3), and y3(xg,x3) in xg,x3 are of degrees 2, 4, 3, and 3,
respectively.

At this point, things do not look encouraging. The numerators
in the expressions for y; are of fifth order and the common de-
nominator A is quartic. Improvement in prospects appears after
substitution of these expressions into the quadratic term E?zoyiz of
the fourth constraint (Eq. (19))

3

2 ai(xo,x_;) + (X(2) + x%) : (B%(x(),xs) + )’%(xo’x.z))
s (x(% +x§) : 5%()‘0#3)

Hence, substitution of Eq. (24) into the fourth equation yields,
after multiplication with the denominator (x%+x§)5§(x0,x3), the
following homogeneous octic equation in xg,X3:

(g + XD 8> (x0,33) (@5 + 2d5x0x3 + a5x3) 85 (X, x3) + 2(B}xo
+byx3) - Ba(xg,x3) = 2(b3xg + bxs) v3(xg,x3) = 2b5a4(x0,x3))

+ 4(55()607)‘3) + y%(x(),x3))] + 4“2(35073‘3) =0 (25)

This establishes the upper bound of eight on the number of
possible solutions for any Schonflies DK problem that is defined
by PoP and PoS constraints and contains at least two of the latter.
With solutions for x3, and having set x,=1, corresponding values
of y; are obtained explicitly with Eq. (24); so are elements of the
transformation, Eq. (14). This essentially solves this DK problem.
In Sec. 3.4 it will be shown that eight real DK solutions for such
Schonflies architectures can occur.

3.4 Examples of Schonflies Manipulators

3.4.1 Fully Parallel Schonflies Manipulators. Figure 1 shows
the I1 or parallelogram joint, a feature common to many Schon-
flies manipulators because it provides a 1DOF circular translation
to the distal link, with respect to the link at the opposite side of the
parallelogram. Figure 1(a) shows two leg designs, with II- and
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Fig. 1

R-joints, that may be used to build four-legged robots wherein EE
executes Schonflies motion. Actuating a basal R-joint as shown on
the left causes the remaining free joints to bind the EE attachment
point, shown at the center of the terminal R-joint, to motion in the
plane of the two Il-joints. Actuating a basal II-joint as shown at
the right causes that point to move, alas, on a torus. A four, similar
legged manipulator of the first type is therefore seen to have four
PoP constraints and a DK solution admitting two assembly modes
as demonstrated in Sec. 3.2. In the case on the right, circular
sections of the torus are shown. DK analysis of such models
awaits a future treatment of toroidal constraint that promises to be
more complicated. A glance at the manipulator of Zhou et al. [9],
with PRIIR legs, shown in Fig. 1(b), fares—if one seeks solution
simplicity—somewhat better. The EE attachment points cause the
terminal R-joint centers to move on spheres and the DK problem
solution admits an octic univariate polynomial. Referring to Ref.
[10] the interested reader might try all leg architectures depicted
therein to see which fit the “point-on-plane or -sphere” formula-
tion paradigm. Certainly those that do not will afford fruitful av-
enue of future research.

3.4.2 Two-Legged Schonflies Manipulators. Shown in Fig.
2(a) is a novel design prototype revealed by Angeles et al. [4].
The idea was to achieve superior workspace and dexterity, which
one might expect when the number of legs of a parallel robot is
reduced from four to two, while retaining some advantages inher-
ent in parallel architecture. Furthermore maintaining basal actua-
tion is seen as an additional advantage of the design. This avoids
placement of motors on moving links, as is done in many serial
designs. Two joint actuation is achieved by means of an—also

Fig. 2 Two-legged Schonflies manipulator

Journal of Mechanisms and Robotics

(b)

Various leg architectures in a variety of Schonflies parallel manipulator contexts

basally mounted—planetary gearbox that delivers torque to both
the proximal R- and Il-joints. Only one would be actuated, in
typical four-legged designs, like those depicted in Fig. 1.

The DK of the two-legged Schonflies manipulator of Angeles et
al. [4] is immediately seen to be modeled as the placement of each
of the two EE attachment points P; on a circle k; represented by
two surfaces: a sphere k; and a vertical plane g;, i=1,2. The
solution paradigm is typical of all parallel Schonflies manipulators
with PoP and more than one PoS constraint. Therefore the setup
for the octic univariate, derived in Sec. 3.3, will be carried out
here in some detail.

By appropriate choice of the coordinate system in EE one can
assume that the two EE attachment points P; and P, are given by
the vectors

S O =
S =

P =
0 0

which means that P; is on the origin and P, on the x-axis of the
EE coordinate system. The circles k; and k, are represented by the
plane-sphere pairs (g, ;) and (&,, k) as follows:

€10 €20

€11 €3]
g1 e = . K rey=

€12 €2

| 0 i _(323

€3 €40

€3] €4
£y rey= . Kytrey=

€3 €4

| 0 | _643

From the constraints P, € &;,«; and P, € &,,k, we get the four
equations

e10(xg+x3) + 2e1,(xqy; — X3v2) + 2e15(xgy, + 2x3,) =0 (26)

ezo(x3 + x%) +2e51(x0y1 = X3¥2) + 2e55(xpy2 + X3y1) + 2€53(x0y3

- x3y0) + 4005+ Y1 +¥5 +¥3) =0 (27)
(e30+ 631d)x(2) + 2e3pdxgxs + (30— e3ld)x§ +2e31(xXgy; = x3y2)

+2e35(xgy, + x3y1) =0 (28)

(640 + e41d + dz)xg + 2@42dX0}C3 + (840 - 841d + dz)xg + 2(641
+2d)xpy; = 2(eq1 = 2d)x3y, + 2e45(xoy2 + X3y 1) + 2eu3(x0y3
—x30) + 407 + 1+ 3 +¥3) =0 (29)
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To obtain Eq. (23), the system of three equations linear in y;, Egs.
(26) and (28) are selected along with the difference between Egs.
(29) and (27). The resulting coefficients m;; are

myy=myz=ey, Mmp=my=0

mis=—mpg=2ey, Mmg=mp;=2e,

my = ey teyd, My =2end, my=ez—ezd

My =0, mys=—mp=2e3, Mys=ny;=2e3

2
my =ey—ex+eqgd+d, my=2end

_ 2 _
My =eg9— ey —end+d°, my=2(es5- er)

mss=2(eq — ey +2d),  mye=mz;=2(eq—ex)

msg = 2(— ey tey + 2d)

With the coefficients m;; one defines the determinants wu;j and
hence the polynomials ay(xy,x3), Bs(xg,x3), Y3(xg,x3), and
8(xg,x3) according to Eq. (24). Finally, one of the two given PoS
constraints, say, Eq. (27), is used to produce univariate octic equa-

tion (25). In this case the resulting constants aj, ..., b5 are

aj=ay=ey, a,=0
bi==by=ey,
Figure 2(b) shows an example with eight real solutions. The
eight poses of EE are represented by eight horizontal—they do not
appear so in the perspective image—bars whose end points P; and
P, lie on the two given circles k; and k, representing EE anchor
point free motion in FF. This example was solved using the fol-
lowing data:

by=by=ey, bs=ey

0 -9

1 0

d=5, e-= ol e, = 0
0 0
-0.98 —23.87

-0.1 -04

e;= ] , €= _
0 -0.6

As a final example of two-legged Schonflies manipulators, the
two view drawing in Fig. 3 shows for the first time how, after
considerable further development of the basic design idea, to ap-

Front View

Half top-view

Active P-joints

EE

Passive ////2?>46

R-joint

Passive
P-joint

Fig. 3 Two screw actuators for double basal actuation

ply a very simple PPPR leg architecture to achieve a DK model
where two points S and 7 move on two lines S and 7, respec-
tively. Each line is the intersection of a vertical plane and one
normal to it. The two basal P-joints on each leg are actuated,
possibly in the manner shown. With only PoP constraints, the DK
admits two solutions, at most.

4 DK of the Spherical Double Triangular Manipulator

Figure 4(a) shows the mechanical layout of a regular spherical
double triangular manipulator (spherical DTM). Keep in mind that
the three short legs, each made up of curved sliders and interme-
diate R-joints, separating the curved rods of FF and EE, make this
architecture kinematically equivalent to a classical three-legged
RRR spherical parallel manipulator. Notwithstanding apparent
similarity to the spatial DTM (see Sec. 5) this one, in contrast, is
fully parallel; i.e., has one as opposed to more actuated joints per
leg.

Under spherical displacement there are no terms containing y;
in point transformation (2) as follows:

xé + x% + x% + x% 0 0 0
M= 0 x(z) +xi-x3- x§ 2(x x5 = xpx3)  2(xx3 + x0X3) (30)
0 2000 +XgX3)  Xp—XTH+x5—x3  2(xpx3 — XgX)
0 20xx3 - Xg%2) 2063+ Xpx)) X=X — X5+ X3

The DK of the spherical DTM can be reformulated as the fol-
lowing task:

Given a spherical triangle P,P,P5 on the unit sphere and three
planes &;,&,,e3 on the origin (center of the unit sphere) find a
congruent spherical triangle Q;0,05 with Q; € €;.

021006-6 / Vol. 2, MAY 2010

In other words one has to find all spherical displacements that
satisfy the three PoP conditions P;,¢;, i=1,2,3.

To solve this task one may simplify coefficients by choosing,
without loss in generality, the three points P; and the three planes
g; as follows:
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Movable

(b)

Fig. 4 Spherical double triangular manipulator

1 1 1

1 P21 P31
P1= > P2= > P3=

0 P22 P3n

0 | 0 | P33

and

0 0 0

1 €21 €3]
€= » €= » €=

0 €22 €32

0 L O i 63‘3

Then the three planar constraints
e/Mp,=0, i=1,2,3
have the form
N+ -x5-x3=0
aooxg A X+ gy + a33x§ + 2ap3x0%3 + 2a1,61x, =0 (31)

boox(z) + b“x% + bzzxg + b33x§ + 2boxox | + 2Doyxos + 2b3x0X3
+ 2b12X1X2 + 2b13X1X3 + 2b23X2.X3 = 0
where M is matrix equation (30) and

Qgo=€1P21 + €Dy, a1 =€31P021 — €nPx»

ayp=—ey Pyt enpPr, dzz3=—¢€31P2 ~ €nPn
Aoz = €xPr1 — €21P22, 21 = €21P22 + €20P2)
boo = e3Pz + e3Pz + e33p3s
by =—ezp3z+e3ps —enpn
by = e3p3 — e31p31 — €33P33
byz=—e31p31 — e3P+ e33p3s
by = e33p3n—e3p3z, by =e31p33— €33p3)
by =e31p3n +e3ps

byz = exp31 — €31P30,

biz=e3p33+espa, bz =enpiz+ezpy
Remark. Tt is well known that each of the equations in Eq. (31)
represents a Clifford-quadric in a homogeneous three dimensional
vector space of Euler parameters x,, xj, X,, and x3. This is a
Cayley—Klein space with an elliptic metric based on the absolute

Journal of Mechanisms and Robotics

null-quadric M :x%+x%+x§+x§=0. A Clifford-quadric is charac-

terized by the property that its intersection with M is a skew
quadrilateral consisting of two pairs of conjugate complex straight
lines. See, for instance, Ref. [11].

In the following we will outline how the number of variables
can be reduced from four to three, if dehomogenization is
counted, to two by introducing a bilinear parametrization of the
Clifford-quadric represented by the first of the three equations in
Eq. (31); i.e.,

(32)

By means of the regular projective (coordinate) transformation

x(2]+x%—x§—x§=0

Xo=Yot+y3

Xp=y1+ys
(33)
X2=Yo— Y3

X3=Y17 )2
the Clifford-quadric, Eq. (32), becomes the bilinear equation

4(yoys +y1y2) =0

Now a parametrization can be easily tailored so as to null the
expression above, viz.,

Yo -1
u
i e (34)
2
V3 uv

After application of the inverse projective transform (Eq. (33)) we
obtain the mentioned bilinear parametrization of the original
Clifford-quadric (Eq. (32))

Xo -1+uv
X u+v
= (35)
Xy -1l-uv
X3 u-—v

Hence, substitution of this parametrization nulls the left hand side
of the first of the equations in Eq. (31). The other two, after a little
rearrangement, assume the form of
ay()v? + a;(u)v + ap(u) =0
(36)
Bo(w)v® + By (w)v + By(u) =0

where the coefficients are the following quadratics in u:
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ay(u) = 2622(1’22'42 = 2py1u=pan)

a(u) =— 46211’22(“2 +1)
ag(u) =- 2e5(pastt® + 2pyyut = pan)

Bo(u) = = 2(e31p33 — €30p30 — e33p31)u” = 4exops; — e33p3)u

= 2(e31paz + e3P + e33p31)
Bi(u) == 4(e31p3; + exyp33)u” — Bespazu — 4(e31p3 — €3p33)

Bolu) = 2(e31p33 — e3P + €33p3)U° — 4(exp3; + eapsp)u

+2(e31p33 + €3P3 — €33P31)

An octic in # emerges when v is eliminated between equations in
Eq. (36). A neat dialytic method to do this is given in

() a(u) ay(u) 0
0 a(u) ay(u) ag(u)
Bo(u) By(u) Boluw) 0
0 Bo(u)  Bi(u) Bolu)

To obtain values of v that correspond to the eight values of u
obtained with Eq. (37) consider that a given u=u, numerically
defines all coefficients in Eq. (36) so these two equations become
redundant. Multiplying these, respectively, by a,(ug) and B,(ug)
and equating their difference to zero define v=v as

_ ag(uo) Br(ug) — ar(up) Boluo)
aZ(MO)IBI (up) — (Uo)ﬁz(uo)

Using known pairs of u=ug, v=v in Eq. (35) yields all four x; for
up to eight poses of EE moved to FF via a spherical displacement
constrained by three PoP equations.

The diagram in Fig. 4(b) displays an architecture with imposed
joint parameters that generates a DK solution with eight assembly
modes. So once again an octic univariate is minimal. This ex-
ample uses three planes, x=0, y=0, and z=0, upon which three
absolute EE points, initially with respective direction numbers
(1,0,0), (0.5,0.48,0), and (0.27,0.71,1.64), are to be placed. The
EE triangle is scalene. It was thus chosen to visually contrast, by
its asymmetry, its double placement in each of the four octants of
the sphere and, of course, to show a case with eight real assembly
modes. The division of the FF sphere into eight congruent spheri-
cal triangles brings to ones attention that inscribing the EE tri-
angle into any of the other (blank) octants would involve parity
reversal of the EE triangle. L.e., exchanging concave and convex
surface orientation, like flipping heads and tails in the planar case,
is forbidden. Such “solutions” would thus not be valid ones.

=0 (37)

— Y0

(38)

5 Spatial Three-Legged Manipulator DK With Three
Line Constraints

This is a full mobility, i.e., 6DOF manipulator. It fits into the
category of reduced mobility—or rather reduced complexity—
because it is not fully parallel. Its three legs require two actuators
each and thus its DK is much easier to solve than, say, Husty’s
general six-points-on-six-spheres problem [7]. Equation (1) and
six PoP constraints may be used in this case if each given point
must satisfy a pair of these; i.e., each pair of planes intersects on
one of the given lines. The spatial DTM can be modeled in this
way. The following three points P;, i=1,2,3 and six planes ¢g;, i
=1,...,6, the latter to be taken in successive pairs to represent
lines, /;, are without loss in generality chosen to simplify equation
coefficients and, more important, to obtain a system that admits a
reparametrization approach to solution quite similar to that used,
in Sec. 4, for the DK of three-legged spherical robots.

021006-8 / Vol. 2, MAY 2010

1 1 1
0 P21 P31
Pi1= ol P2= o I P3= i
0 0 | 0
0 0
0 0
Iy e = at e,= 0
0] L1 ]
0
0 €41
I re3= o I e, = en
| €33 0
1 1
[y es= ! > €= ‘
€s2 €62
L 0 ] | €63

This means that the first line /; is the x-axis of the coordinate
frame in FF, that the z-axis of that coordinate system is the com-
mon perpendicular of /;,/,, and that one of the two planes fixing
the third line /5 is parallel to z and the other one is parallel to x.

Now the three terms, which contain y;, i=0,1,2,3 in the first
column of the matrix in Eq. (2), are replaced with the translational
components f;, i=1,2,3, according to Eq. (5) and, after carrying
out the six transformations with Eq. (1) to get q;, the products
eIZqI, e;l: 442, and e;': 643 provide six constraint equations. Notice
that the original eight homogeneous Study parameters have been
reduced to seven by the replacement of all terms containing y, v,
¥,, and y3 with 7, 75, and #3 so these six equations are sufficient
when the new system is dehomogenized by setting xo=1. The first
two, which express P; € [y, yield #,=0 and #3=0. Substituting this
result into the rest leaves only #;, in two of the remaining four
equations

xé+x?+x§+x§— 2e33p71(xpx, — x1x3) =0 (39)

pailea (g +x7 = x5 = x3) + 2e40(xox3 + x122) ] + egyt; =0 (40)

(1+ e51p31 + esap3p)xg + (1 + es51p3) — esypi)x; + (1 —e51p3
+ 6’521732))C§ +(1 - es1p3; - 352P32)x§ = 2(es1p32 = esoP31)Xpx3

+2(es51p32 + es5P31)x X + €511 = 0 (41)

(1+ 662[732))‘% +(1- 6621732))(% +(1+ 6621732))6% +(1- eszpzz)xg
+ 2e63p3(XoX 1 +X523) — 2e3p31 (Xgp — X1x3) + 2egrp31 (X3
+xX%,) =0 (42)

Next, 7, is eliminated from Egs. (40) and (41) as follows:

eq[1 = es1(py = p3) + eszl’sz]x<2)+ eq[1 = es1(pr = p31)
- 6521’32])‘% +eq[1+esi(pa—ps3) + 6521’32])6%
+eg[l +es(py = p3) - eszpzz]xg = 2(eq1e51p3 — eq1€5D03:

+ e4pe51D21)%0x3 + 2(€41€51P32 + €41€50D31 — €42€51P21) %1 X, =0

(43)

With Egs. (39), (43), and (42) we have obtained a system of three
homogeneous quadratic equations in xg, xj, X, and x3. The coef-

ficients of this system are shown compressed in the following
equation to make the final steps easier to follow:
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2, 2,2, 2
Xg+ XT + x5 4 x5 — 2k(xgx, —xpx3) =0

AGX3 + @1XT + rX5 + azxs — 2a4%0%3 + 2a5x,X, =0 (44)

bo(x(Z) + x%) +b, (X% + x%) + 2D, (xx1 + x2X3) = 2b3(xgx, — X1X3)
+ 2b4(X(}X3 + Xle) =0

In the following we adapt the parametrization technique, intro-
duced in Sec. 4, to the case at hand. The left hand side of the first
of the equations in Eq. (44) can be written as a sum of two prod-
ucts whose factors are linear in xg, x1, x5, and x5 as follows:

x(z) + x% + x% + x% = 2k(xgxy — x1x3) = [xg — (k + Dxo ][ xg — (k= D)x,]
+ [xy + (k+ Dx3][x; + (k= D)x3]
where?
I=\k*-1

Hence, if we apply the regular projective (coordinate) transforma-
tion

yo=xo— (k+1)x,

yi=x+(k+1)x3
(45)

ya=x1+ (k=1)x3
y3=xo— (k=1x,

the quadric represented by the first of the equations in Eq. (44)
becomes a simple bilinear expression

Yoyz+y1y2=0

whose left hand side is again nulled by parametrization equation
(34). Substitution of this parametrization into the inverse trans-
form

1

Xo = Z[— (k=Dyo+ (k+1)y;]
1

X = Z[— (k=Dy+ (k+1)y,]

|
Xy = 5[_ Yo+ 3]

1
x3=5[y1—y2]
of (Eq. (45)) yields

X k—=1+ (k+Duv
X [—k)u+(l+kv
L a-pur e o
Xo 1 +uv
X3 u—v

i.e., a parametrization of the original quadric.5

Equations (37) and (38) are applied exactly as before, except
for the definition of the quadratic polynomials a,(u), ..., By(u),
described as follows:

ay(u) = [2apk(k + 1) — ag + ar u* + 2(ay + as)(k + Du + 2a,k(k + 1)
—a;+ay
“As one can easily check k2—1=0 is equivalent with dist(P,,P,)=dist(/,,l,).

Clearly a solution to the DK problem exists only if the latter condition holds.
5The factor 1/21 can be omitted since we deal with homogeneous equations.
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ay(u) = =2l ay(k+1) + as(k = D)]u® +2(ag - a; + ay — az)u
+ z[as(k + l) + a4(k - l)]

ap(u) = [2a1k(k = 1) — ay + a3 Ju® = 2(ay + as)(k = Du + 2apk(k - 1)

—dapgtap
(47)
Bo(u) = 2(bok — b3) (k + Du? = 4by[ 1 = k(k + ) Ju

+2(bk=by)(k+1)
Bi(u) = 4b,lu? + 4(by— by)u + 4b,1

Bo(tt) = 2(byk = by) (k= D + by 1 — k(k = D)]u
+ 2(190]( - b3)(k - l)

Again the solutions of an octic univariate in u, produced with the
determinant of Eq. (37), are back substituted into Eq. (38) and the
corresponding v is solved linearly.

5.1 The Spatial Double Triangular Manipulator. A pos-
sible mechanical realization of the three-points-on-three-lines
paradigm is the so-called spatial double triangular manipulator
(spatial DTM) as introduced in Ref. [2].

Figure 5(a) shows two frames, each consisting of three skew
lines. These are connected by three short CCC legs where C is a
cylindrical joint. Both DOFs of the ones on FF are actuated. This
was the design envisaged by Daniali [2] who carried out no DK
analysis. Figure 5(b), on the right, shows such a leg. This design,
though theoretically feasible, embodies a three-intersecting-line-
pairs paradigm, which is fraught with singularities and even
2DOF self-motion as described by Zsombor-Murray and Hyder
[12]. Adopting CRRC legs as shown on the left of Fig. 5(b) solves
the problem. The centers of the three unactuated C-joints become
the three points in FF upon which the three pairs of planes, which
intersect on the three lines in EE, are to be placed. These six
planes can be transformed by the procedure outlined above.

The sample solution in Fig. 5(c), revealing eight real assembly
modes, is an inversion; i.e., the three points in EE, (0,0,0), (5,0,0),

and (%,%,0), were placed on the respective plane pairs y

=0MNz=0,x=0Nz=1, and x=1Ny=1. Thus the octic polynomial
(see above) is demonstrated to be minimal.

6 Conclusion

Direct kinematic problems for a wide variety of parallel ma-
nipulators have been solved in a unified fashion using point kine-
matic mapping. All cases involved the writing of constraint equa-
tions that place a number of points on corresponding surfaces, not
always in the same number. However, once one begins to look at
problems in this way, the writing of a sufficient set of such equa-
tions is made a lot easier. These equation sets were then solved by
introducing, or rather resurrecting in a more general engineering
context, some not so widely known algebraic techniques, found in
Refs. [7,8,11,13-16], and thereby obtaining some new results.

(a)  reducing the PoP constraint to a quadric in Study param-
eters and similarly reducing the PoS constraint by inter-
secting the original quartic with the Study quadric and
confining the transformed point P to Euclidean space6

(b)  reduction in a partial set of constraints to a one parameter
motion trajectory of the last point that is then intersected
with the remaining surface

(c)  reparametrization to reduce the number of variables and
constraint equations

6Strictly speaking, Husty [7] introduced the technique in his notable DK solution
of the general Stewart-Gough platform. Here we have reintroduced the technique in
the context of parallel Schonflies robots.
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Fig. 5 Spatial double triangular manipulator

(d) neatly extracting an octic univariate from a pair of simul-
taneous bivariate quartics, like system (36) wherein there
are no cubic or quartic variable terms, as a simple 4 X4
determinant, Eq. (37), and exposing a linear back substi-
tution, Eq. (38), to obtain corresponding values of the
other variable

(e)  revealing for the first time an octic univariate polynomial
and eight real DK solutions for the spherical DTM

(f)  revealing for the first time an octic univariate polynomial
and eight real DK solutions for the spatial DTM

Almost all cases examined pertained to manipulators of less
than 6DOF though there was one fully mobile example, the spatial

021006-10 / Vol. 2, MAY 2010

DTM, albeit a simplified problem because it was not fully parallel,
i.e., had more than one actuated joint per leg.
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