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A Unified Approach to Direct
Kinematics of Some Reduced
Motion Parallel Manipulators
After discussing the Study point transformation operator, a unified way to formulate
kinematic problems, using “points moving on planes or spheres” constraint equations, is
introduced. Application to the direct kinematics problem solution of a number of different
parallel Schönflies motion robots is then developed. Certain not widely used but useful
tools of algebraic geometry are explained and applied for this purpose. These constraints
and tools are also applied to some special parallel robots called “double triangular” to
show that the approach is flexible and universally pertinent to manipulator kinematics in
reducing the complexity of some previously achieved solutions. Finally a novel two-
legged Schönflies architecture is revealed to emphasize that good design is not only
essential to good performance but also to easily solve kinematic models. In this example
architecture, with double basally actuated legs so as to minimize moving mass, the
univariate polynomial solution turns out to be simplest, i.e., of degree 2.
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Introduction

This paper was originally intended only to revisit, with refor-
ulation using Study parameters, the direct kinematic �DK�

nalysis of two special parallel mechanisms, so-called double tri-
ngular manipulators �DTMs�. These parameters, eight homoge-
eous coordinates of kinematic image space, are also called the
lements of a dual quaternion. Double triangular mechanisms in-
lude a planar, a spherical, and a full six degree of freedom �DOF�
patial type, all introduced by Daniali and co-workers �1,2�. This
e-investigation of limited scope produced simplifications in solu-
ion and some insight that emboldened the authors to go farther
field and include a number of unrelated but possibly more prac-
ical parallel manipulators under the unifying umbrella of these
nalytical tools. The extended work reported herein concentrates
n so-called Schönflies 4DOF manipulators, characterized by four
istinctly different architectures and investigated by Nabat et al.
3�, Angeles et al. �4�, Gauthier �5�, and Zsombor-Murray �6�,
espectively, that admit all three translational degrees and one ro-
ation about a fixed axis. A treatment of spherical DTM DK analy-
is is included. Note that if one is given a 4DOF manipulator, like
hose confined to Schönflies motions, then the DK is completely
pecified with four constraint equations. Furthermore, in this pa-
er, these equations describe points, transformed via kinematic
apping, to lie on planes or spheres. The main purpose is to

nvestigate various parallel manipulator architectures and show
ow their DK is modeled with different combinations of con-
traints of this type. In every case the main result is a univariate
olynomial of degree 2, 4, or 8, and a linear back substitution
rocess to unambiguously evaluate all other unknown parameters.
he relation between combinations and the degree of the univari-
te polynomial solution is explained.

The general Euclidean displacement � in 3-space can be de-
cribed by

Contributed by the Mechanisms and Robotics Committee of ASME for publica-
ion in the JOURNAL OF MECHANISMS AND ROBOTICS. Manuscript received March 29,
009; final manuscript received November 19, 2009; published online April 19,

010. Assoc. Editor: Sundar Krishnamurty.

ournal of Mechanisms and Robotics Copyright © 20

 https://mechanismsrobotics.asmedigitalcollection.asme.org on 07/02/2019 Terms
q = Mp �1�

Here M is the 4�4 matrix

M = �
t0 0 0 0

t1 x0
2 + x1

2 − x2
2 − x3

2 2�x1x2 − x0x3� 2�x1x3 + x0x2�
t2 2�x1x2 + x0x3� x0

2 − x1
2 + x2

2 − x3
2 2�x2x3 − x0x1�

t3 2�x1x3 − x0x2� 2�x2x3 + x0x1� x0
2 − x1

2 − x2
2 + x3

2
�
�2�

where t0 is the nonzero condition

t0 = x0
2 + x1

2 + x2
2 + x3

2 � 0 �3�

and the rest of the first column are translational components in the
respective x-, y-, and z-direction.

t1 = 2�x0y1 − x1y0 + x2y3 − x3y2�

t2 = 2�x0y2 − x2y0 + x3y1 − x1y3� �4�

t3 = 2�x0y3 − x3y0 + x1y2 − x2y1�

The variables xi, yi, i=0. . .3 are elements of the Study parameter
vector, s, in dual quaternion components

s = �x0,x1,x2,x3,y0,y1,y2,y3��

that must satisfy the so-called Study condition expressed as

x0y0 + x1y1 + x2y2 + x3y3 = 0 �5�

Finally p and q are homogeneous point coordinate vectors of a
point P and its image Q under �.

p = �
p0

p1

p2

p3

�, q = �
q0

q1

q2

q3

�
The rest of the paper is organized as follows: Section 2 contains

the general formulation of planar and spherical constraints in
terms of Study parameters. In Secs. 3–5 we demonstrate the ap-
plicability of the method by treating some manipulator classes

pertaining to the types mentioned above.

MAY 2010, Vol. 2 / 021006-110 by ASME

 of Use: http://www.asme.org/about-asme/terms-of-use

https://core.ac.uk/display/357362106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

v
a
t
a
d
s
F
e
N
e

E
w

w

d
p

s

w
t
d

p
r
c

q
q
t
o
a

g
o

0

Downloaded From:
Planar and Spherical Constraints
In general, a kinematic mapping approach to any problem in-

olves the selection of a set of point, plane, and/or line elements,
ll on a chosen subassembly, called EE, because it often pertains
o and is short for “end effector,” of the mechanism in question,
nd displacing these according to some parameters, xi and yi, to be
etermined so that the selected elements fall on appropriate con-
traint surfaces on the remaining portion of the mechanism, called
F to indicate base or “fixed frame.” In what follows only point
lements and planar or spherical constraint surfaces will be used.
otwithstanding these restrictions it will be seen that a rich vari-

ty of mechanical situations can be dealt with.

2.1 Planar Constraints. Given the transformation relation,
q. �1�, consider a planar surface constraint equation. This can be
ritten as

e�q = e�Mp = e0q0 + e1q1 + e2q2 + e3q3 = 0 �6�
ith

e = �
e0

e1

e2

e3

�
enoting the homogeneous coordinate vector of the constraint
lane � in the fixed frame and
nto six spheres in FF.

21006-2 / Vol. 2, MAY 2010
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p = �
1

p1

p2

p3

�
that of the point P in the moving frame whose image Q has to lie
in �.

Only normalized homogeneous point coordinates �p0=1� are
used throughout to maintain points in Euclidean space. Then p1,
p2, and p3 are the Cartesian coordinates of P in the moving, end
effector frame EE.

Equation �6� is a homogeneous quadratic constraint equation in
terms of Study parameters x0, x1, x2, x3, y0, y1, y2, and y3. It can
be compactly written as follows:

s�Cs = 0 �7�

Here C is an 8�8 matrix of the form

C = �A B

B� O
� �8�

with 4�4 blocks A, O, and B where O is a zero block while A is
symmetric and B is skew-symmetric. They can be written as
follows:
A = �
e0 + e1p1 + e2p2 + e3p3 e3p2 − e2p3 e1p3 − e3p1 e2p1 − e1p2

e3p2 − e2p3 e0 + e1p1 − e2p2 − e3p3 e2p1 + e1p2 e1p3 + e3p1

e1p3 − e3p1 e2p1 + e1p2 e0 − e1p1 + e2p2 − e3p3 e3p2 + e2p3

e2p1 − e1p2 e1p3 + e3p1 e3p2 + e2p3 e0 − e1p1 − e2p2 + e3p3

� �9�
B = �
0 e1 e2 e3

− e1 0 e3 − e2

− e2 − e3 0 e1

− e3 e2 − e1 0
� �10�

2.2 Spherical Constraints. A spherical constraint on the po-
ition of an image point Q�q0 ,q1 ,q2 ,q3� is a condition of the form

q1
2 + q2

2 + q3
2 + e1q0q1 + e2q0q2 + e3q0q3 + e0q0

2 = 0 �11�

here ei=−2mi, i=1,2 ,3, and e0=m1
2+m2

2+m3
2−r2 with mi being

he center coordinates of the sphere � under consideration and r
enoting its radius.

Notice that symbols ei, i=0,1 ,2 ,3 are used to denote both
lane and sphere parameters to emphasize that these play the same
ole in formulating the constraint equation developed in either
ase.

Since condition �11� is quadratic in qi and qi themselves are
uadratic in the Study parameters, an a priori quartic constraint on
i is obtained. However, by applying a method due to Ref. �7�,1
his is thus reduced to a quadratic equation: Four times the square
f Study condition �3� is added to implicit equation �11� to obtain
polynomial that is the product of

1Husty �7� was first to apply this technique to formulate the DK algorithm for the
eneral Stuart–Gough platform manipulator where six points in EE are displaced
x0
2 + x1

2 + x2
2 + x3

2

and a homogeneous quadratic factor f in the eight Study param-
eters

q1
2 + q2

2 + q3
2 + e1q0q1 + e2q0q2 + e3q0q3 + e0q0

2 + 4�x0y0 + x1y1

+ x2y2 + x3y3�2 = �x0
2 + x1

2 + x2
2 + x3

2� · f�s��

Since x0
2+x1

2+x2
2+x3

2�0 and x0y0+x1y1+x2y2+x3y3=0 the con-
straint equation imposed by a sphere constraint is

f�s�� = 0

Compressing coefficients, a compact matrix form is obtained as

f�s�� = s�C�s = 0

The resulting 8�8 matrix C� is abbreviated to block form as

C� = �A + �p1
2 + p2

2 + p3
2�I B�

B�� 4I
� �12�

where A is the 4�4 symmetric matrix �Eq. �9��, B� is the 4�4
skew-symmetric matrix

B� = �
0 e1 + 2p1 e2 + 2p2 e3 + 2p3

− e1 − 2p1 0 e3 − 2p3 − e2 + 2p2

− e2 − 2p2 − e3 + 2p3 0 e1 − 2p1

− e3 − 2p3 e2 − 2p2 − e1 + 2p1 0
� �13�
and I is the 4�4 identity matrix.
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2.3 Constraint Equation Structure. Comparing Eqs.
8�–�10�, �12�, and �13� one sees that matrices C and C�, which
ontain only given parameters, are quite similar in structure.

In the case of the point-on-plane �PoP� constraint the matrix C
eads to an equation that is linear in yi.

The point-on-sphere �PoS� constraint contains a term 4	i=0
3 yi

2

ut there are no other quadratic terms in yi.
In the case of more than one sphere constraint, only one con-

traint equation needs to remain quadratic in yi because it can be
ubtracted from the others to remove all yi

2.
For a full 6DOF manipulator problem, six constraint equations

re required. The nonzero condition and the Study condition

	
i=0

3

xi
2 � 0, 	

i=0

3

xiyi = 0

re added as additional constraints to handle eight unknown pa-
ameters.

Schönflies Manipulator DK With Plane and/or
phere Constraints
The four parameter subgroup of Schönflies displacements con-

ains the proper Euclidean transformations that confine rotation to
fixed axial direction. Here the common direction is taken paral-

el to the z- or x3-axis of EE and FF. Analytic description of this
roup is obtained by substituting

x1 = x2 = 0

n the general displacement matrix, Eq. �2�, so as to become the
�4 matrix, Eq. �14�.

M = �
x0

2 + x3
2 0 0 0

t1 x0
2 − x3

2 − 2x0x3 0

t2 2x0x3 x0
2 − x3

2 0

t3 0 0 x0
2 + x3

2
� �14�

implified first column �translation� elements are shown above
nd are defined below.

t1 = 2�x0y1 − x3y2�

t2 = 2�x0y2 + x3y1� �15�

t3 = 2�x0y3 − x3y0�
he Study condition and the nonzero condition are similarly re-
uced.

x0y0 + x3y3 = 0 �16�

x0
2 + x3

2 � 0 �17�
A Schönflies manipulator is any mechanism that admits only

chönflies motions.
In case of Schönflies displacement, a plane constraint is repre-

ented by matrix C �Eq. �8��, with second and third rows and
olumns removed, that now reads as

a1x0
2 + 2a2x0x3 + a3x3

2 + 2e1�x0y1 − x3y2� + 2e2�x0y2 + x3y1�

+ 2e3�x0y3 − x3y0� = 0

r, using ti, defined by Eq. �15�, as

a1x0
2 + 2a2x0x3 + a3x3

2 + e1t1 + e2t2 + e3t3 = 0 �18�
here

a1 = e0 + e1p1 + e2p2 + e3p3

a2 = e2p1 − e1p2
a3 = e0 − e1p1 − e2p2 + e3p3

ournal of Mechanisms and Robotics
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Similarly a simplified2 sphere constraint, in case of the Schön-
flies motion, is written as

a1
�x0

2 + 2a2
�x0x3 + a3

�x3
2 + 2b1

�x0y1 + 2b2
�x3y2 + 2b3

�x0y2 + 2b4
�x3y1

+ 2b5
��x0y3 − x3y0� + 4�y0

2 + y1
2 + y2

2 + y3
2� = 0 �19�

where

a1
� = e0 + e1p1 + e2p2 + e3p3 + p1

2 + p2
2 + p3

2

a2
� = e2p1 − e1p2

a3
� = e0 − e1p1 − e2p2 + e3p3 + p1

2 + p2
2 + p3

2

b1
� = e1 + 2p1

b2
� = − e1 + 2p1

b3
� = e2 + 2p2

b4
� = e2 − 2p2

b5
� = e3 + 2p3

3.1 Schönflies Motion With Three PoP Constraints. To bet-
ter understand geometric techniques used later in specific ex-
amples of parallel manipulator architectures it is useful to discuss
Darboux motion, which is defined by the requirement that the
path of each point is a planar curve. It turns out �cf. Ref. �8�, pp.
304–310� that aside from trivially obvious cases, where all point
paths lie in parallel planes, such a motion is one-parametric and
the rigid body can rotate only about axes in some common, fixed
direction. This means that Darboux motion is a subset of Schön-
flies motion. Moreover, it is well known that all point paths under
a nontrivial Darboux motion are ellipses.

In the following we prove that a Schönflies motion with three
PoP constraints is always a Darboux motion.3 All we need to show
is that, given three PoP constraints, the translational components
t1, t2, and t3 are homogeneous quadratic functions in x0 or x3; i.e.,
the resulting motion is rational of order 2.

Let

ai1x0
2 + 2ai2x0x3 + ai3x3

2 + 2ei1�x0y1 − x3y2� + 2ei2�x0y2 + x3y1�

+ 2ei3�x0y3 − x3y0� = 0 �20�

be the three PoP constraints, i=1,2 ,3 �compare with Eq. �18��.
With some further symbolic compression, as noted afterward, the
following four expressions, Eq. �21�, generated with Eq. �20� via
Cramer’s rule, are offered, by way of proof, to show that one
indeed obtains a Darboux motion.

y0 = − x3 ·
�2�x0,x3�

2� · �x0
2 + x3

2�

y1 =
x0 · �2�x0,x3� + x3 · �2�x0,x3�

2� · �x0
2 + x3

2�
�21�

y2 =
x0 · �2�x0,x3� − x3 · �2�x0,x3�

2� · �x0
2 + x3

2�

y3 = x0 ·
�2�x0,x3�

2� · �x0
2 + x3

2�

where �2�x0 ,x3�, �2�x0 ,x3�, and �2�x0 ,x3� are the quadratic homo-
geneous polynomials

�2�x0,x3� = �
a1e2e3

a2e2e3

a3e2e3
��x0
22x0x3x3

2��

2Only six of the bilinear terms xiyj occur.
3
Vogler �16� recently gave an alternative proof of this fact.
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�2�x0,x3� = �
e1a1e3

e1a2e3

e1a3e3
��x0
22x0x3x3

2��

�2�x0,x3� = �
e1e2a1

e1e2a2

e1e2a3
��x0
22x0x3x3

2��

nd

� = 
e1e2e3
, a j = �a1j

a2j

a3j
�, e j = �e1j

e2j

e3j
�

y substitution of Eq. �21� into Eq. �15� we get

t1 = 2�x0y1 − x3y2� =
�2�x0,x3�

�

t2 = 2�x0y2 + x3y1� =
�2�x0,x3�

�
�22�

t3 = 2�x0y3 − x3y0� =
�2�x0,x3�

�

his shows that the translational components t1, t2, and t3 are
ndeed homogeneous quadratic functions in x0 ,x3, as stated.

3.2 DK of Schönflies Manipulators With Three PoP and a
ourth PoP or PoS Constraint. As shown in Sec. 3.1 the three
iven PoP constraints determine a Darboux motion. Hence, the
ath of the fourth given point undergoing this motion is an ellipse.
n the other hand this point must lie on a plane or sphere accord-

ng to the fourth given constraint. In conclusion the DK problem
t hand can be reduced to finding the intersection of an ellipse
ith a plane or a sphere. The insight gained from this approach

hows that such a problem must necessarily admit two or four DK
olutions, at most.

Analytically, the solutions can be found as follows. From the
hree given PoP constraints we obtain expressions �21� and �22�.

�a� If the fourth constraint surface is a plane represented by
Eq. �18� then substitution of Eq. �22� produces a qua-
dratic univariate in x3 after dehomogenizing with x0=1.

�b� If the fourth surface is a sphere represented by Eq. �19�,
then by substitution of Eq. �21� the quadratic term
4	i=0

3 yi
2 becomes

4�y0
2 + y1

2 + y2
2 + y3

2� =
1

�2�x0
2 + x3

2�
��2

2�x0,x3� + �2
2�x0,x3�

+ �2
2�x0,x3��

Thus, substitution of Eq. �21� in Eq. �19� clearly produces a
uartic univariate in x3 after multiplication with the denominator

0
2+x3

2 and dehomogenizing with x0=1.
Once the values of x3 are thus obtained, the three equations in

q. �22� allow one to find the corresponding values of t1, t2, and
3, thus completing the definition of the DK displacement implied
y the problem.

3.3 DK of Schönflies Manipulators With Two or More PoS
onstraints. Let at least two PoS constraints �Eq. �19�� be used to

haracterize the DK of a Schönflies motion. Then the difference
etween any two PoS equations removes the term 4	i=0

3 yi
2 so as to

lways yield three equations �Eq. �23�� linear in y0, y1, y2, and y3.

mi1x0
2 + mi2x0x3 + mi3x3

2 − mi4x3y0 + �mi5x0 + mi6x3�y1 + �mi7x0

+ mi8x3�y2 + mi4x0y3 = 0 �23�
ach represents either a PoP constraint or the difference between

wo PoS constraints. The coefficients mij, i=1,2 ,3, j=1, . . . ,8 are
ormulated from appropriate combinations of given point, plane,

r sphere parameters, pkl, ekl.

21006-4 / Vol. 2, MAY 2010
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A fourth constraint contains the term 4	i=0
3 yi

2. It has the form of
Eq. �19�.

A 4�5 matrix, whose rows are coefficients of 1, y0, y1, y2, and
y3, as these appear in Study condition �16� and the three equations
in Eq. �23�, is set up. Taking determinants of all 4�4 minors with
alternating�sign and dividing all the rest by the first, i.e., Cram-
er’s rule, yield yi=yi�x0 ,x3�.

� = �x0
2 + x3

2��	457x0
2 + �	458 + 	467�x0x3 + 	468x3

2�

= �x0
2 + x3

2�
2�x0,x3�

y0 =
x3

�
�	157x0

4 + �	158 + 	167 + 	257�x0
3x3 + �	168 + 	258 + 	267

+ 	357�x0
2x3

2 + �	268 + 	358 + 	367�x0x3
3 + 	368x3

4� =
x3

�
�4�x0,x3�

y1 =
x0

2 + x3
2

�
�	147x0

3 + �	148 + 	247�x0
2x3 + �	248 + 	347�x0x3

2

+ 	348x3
3� =

x0
2 + x3

2

�
· �3�x0,x3� �24�

y2 = −
x0

2 + x3
2

�
�	145x0

3 + �	146 + 	245�x0
2x3 + �	246 + 	345�x0x3

2

+ 	346x3
3� = −

x0
2 + x3

2

�
�3�x0,x3�

y3 = −
x0

x3
y0 = −

x0

�
· �4�x0,x3�

where 	ijk= 
mim jmk
, m j = �m1j ,m2j ,m3j��.
Note that homogeneous polynomials 
2�x0 ,x3�, �4�x0 ,x3�,

�3�x0 ,x3�, and �3�x0 ,x3� in x0 ,x3 are of degrees 2, 4, 3, and 3,
respectively.

At this point, things do not look encouraging. The numerators
in the expressions for yi are of fifth order and the common de-
nominator � is quartic. Improvement in prospects appears after
substitution of these expressions into the quadratic term 	i=0

3 yi
2 of

the fourth constraint �Eq. �19��

	
i=0

3

yi
2 =

�4
2�x0,x3� + �x0

2 + x3
2� · ��3

2�x0,x3� + �3
2�x0,x3��

�x0
2 + x3

2� · 
2
2�x0,x3�

Hence, substitution of Eq. �24� into the fourth equation yields,
after multiplication with the denominator �x0

2+x3
2�
2

2�x0 ,x3�, the
following homogeneous octic equation in x0 ,x3:

�x0
2 + x3

2��
2�x0,x3���a1
�x0

2 + 2a2
�x0x3 + a3

�x3
2�
2�x0,x3� + 2�b1

�x0

+ b4
�x3� · �3�x0,x3� − 2�b3

�x0 + b2
�x3��3�x0,x3� − 2b5

��4�x0,x3��

+ 4��3
2�x0,x3� + �3

2�x0,x3��� + 4�4
2�x0,x3� = 0 �25�

This establishes the upper bound of eight on the number of
possible solutions for any Schönflies DK problem that is defined
by PoP and PoS constraints and contains at least two of the latter.
With solutions for x3, and having set x0=1, corresponding values
of yi are obtained explicitly with Eq. �24�; so are elements of the
transformation, Eq. �14�. This essentially solves this DK problem.
In Sec. 3.4 it will be shown that eight real DK solutions for such
Schönflies architectures can occur.

3.4 Examples of Schönflies Manipulators

3.4.1 Fully Parallel Schönflies Manipulators. Figure 1 shows
the � or parallelogram joint, a feature common to many Schön-
flies manipulators because it provides a 1DOF circular translation
to the distal link, with respect to the link at the opposite side of the

parallelogram. Figure 1�a� shows two leg designs, with �- and
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-joints, that may be used to build four-legged robots wherein EE
xecutes Schönflies motion. Actuating a basal R-joint as shown on
he left causes the remaining free joints to bind the EE attachment
oint, shown at the center of the terminal R-joint, to motion in the
lane of the two �-joints. Actuating a basal �-joint as shown at
he right causes that point to move, alas, on a torus. A four, similar
egged manipulator of the first type is therefore seen to have four
oP constraints and a DK solution admitting two assembly modes
s demonstrated in Sec. 3.2. In the case on the right, circular
ections of the torus are shown. DK analysis of such models
waits a future treatment of toroidal constraint that promises to be
ore complicated. A glance at the manipulator of Zhou et al. �9�,
ith P� R�R legs, shown in Fig. 1�b�, fares—if one seeks solution

implicity—somewhat better. The EE attachment points cause the
erminal R-joint centers to move on spheres and the DK problem
olution admits an octic univariate polynomial. Referring to Ref.
10� the interested reader might try all leg architectures depicted
herein to see which fit the “point-on-plane or -sphere” formula-
ion paradigm. Certainly those that do not will afford fruitful av-
nue of future research.

3.4.2 Two-Legged Schönflies Manipulators. Shown in Fig.
�a� is a novel design prototype revealed by Angeles et al. �4�.
he idea was to achieve superior workspace and dexterity, which
ne might expect when the number of legs of a parallel robot is
educed from four to two, while retaining some advantages inher-
nt in parallel architecture. Furthermore maintaining basal actua-
ion is seen as an additional advantage of the design. This avoids
lacement of motors on moving links, as is done in many serial
esigns. Two joint actuation is achieved by means of an—also

free R dyad

free

free R-joint

R-joint actuator

two free -joints

FF FF

EE

free
R-joints

-
joint

toroidal surface of

-joint actuator

d

(a)

Fig. 1 Various leg architectures in a varie

P1

P2

k1 k2

(b)(a)
Fig. 2 Two-legged Schönflies manipulator
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basally mounted—planetary gearbox that delivers torque to both
the proximal R- and �-joints. Only one would be actuated, in
typical four-legged designs, like those depicted in Fig. 1.

The DK of the two-legged Schönflies manipulator of Angeles et
al. �4� is immediately seen to be modeled as the placement of each
of the two EE attachment points Pi on a circle ki represented by
two surfaces: a sphere �i and a vertical plane �i, i=1,2. The
solution paradigm is typical of all parallel Schönflies manipulators
with PoP and more than one PoS constraint. Therefore the setup
for the octic univariate, derived in Sec. 3.3, will be carried out
here in some detail.

By appropriate choice of the coordinate system in EE one can
assume that the two EE attachment points P1 and P2 are given by
the vectors

p1 = �
1

0

0

0
�, p2 = �

1

d

0

0
�

which means that P1 is on the origin and P2 on the x-axis of the
EE coordinate system. The circles k1 and k2 are represented by the
plane-sphere pairs ��1 ,�1� and ��2 ,�2� as follows:

�1 ¯ e1 = �
e10

e11

e12

0
�, �1 ¯ e2 = �

e20

e21

e22

e23

�
�2 ¯ e3 = �

e30

e31

e32

0
�, �2 ¯ e4 = �

e40

e41

e42

e43

�
From the constraints P1��1 ,�1 and P2��2 ,�2 we get the four
equations

e10�x0
2 + x3

2� + 2e11�x0y1 − x3y2� + 2e12�x0y2 + 2x3y1� = 0 �26�

e20�x0
2 + x3

2� + 2e21�x0y1 − x3y2� + 2e22�x0y2 + x3y1� + 2e23�x0y3

− x3y0� + 4�y0
2 + y1

2 + y2
2 + y3

2� = 0 �27�

�e30 + e31d�x0
2 + 2e32dx0x3 + �e30 − e31d�x3

2 + 2e31�x0y1 − x3y2�

+ 2e32�x0y2 + x3y1� = 0 �28�

�e40 + e41d + d2�x0
2 + 2e42dx0x3 + �e40 − e41d + d2�x3

2 + 2�e41

+ 2d�x0y1 − 2�e41 − 2d�x3y2 + 2e42�x0y2 + x3y1� + 2e43�x0y3

− x y � + 4�y2 + y2 + y2 + y2� = 0 �29�

(b)

f Schönflies parallel manipulator contexts
ty o
3 0 0 1 2 3
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o obtain Eq. �23�, the system of three equations linear in yi, Eqs.
26� and �28� are selected along with the difference between Eqs.
29� and �27�. The resulting coefficients mij are

m11 = m13 = e10, m12 = m14 = 0

m15 = − m18 = 2e11, m16 = m17 = 2e12

m21 = e30 + e31d, m22 = 2e32d, m23 = e30 − e31d

m24 = 0, m25 = − m28 = 2e31, m26 = m27 = 2e32

m31 = e40 − e20 + e41d + d2, m32 = 2e42d

m33 = e40 − e20 − e41d + d2, m34 = 2�e43 − e23�

m35 = 2�e41 − e21 + 2d�, m36 = m37 = 2�e42 − e22�

m38 = 2�− e41 + e21 + 2d�

ith the coefficients mij one defines the determinants 	ijk and
ence the polynomials �4�x0 ,x3�, �3�x0 ,x3�, �3�x0 ,x3�, and

2�x0 ,x3� according to Eq. �24�. Finally, one of the two given PoS
onstraints, say, Eq. �27�, is used to produce univariate octic equa-
ion �25�. In this case the resulting constants a1

� , . . . ,b5
� are

a1
� = a3

� = e20, a2
� = 0

b1
� = − b2

� = e21, b3
� = b4

� = e22, b5
� = e23

Figure 2�b� shows an example with eight real solutions. The
ight poses of EE are represented by eight horizontal—they do not
ppear so in the perspective image—bars whose end points P1 and
2 lie on the two given circles k1 and k2 representing EE anchor
oint free motion in FF. This example was solved using the fol-
owing data:

d = 5, e1 = �
0

1

0

0
�, e2 = �

− 9

0

0

0
�

e3 = �
− 0.98

− 0.1

1

0
�, e4 = �

− 23.87

− 0.4

− 2

− 0.6
�

As a final example of two-legged Schönflies manipulators, the
wo view drawing in Fig. 3 shows for the first time how, after
onsiderable further development of the basic design idea, to ap-
1 2 3 i i
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ply a very simple PP� PR leg architecture to achieve a DK model
where two points S and T move on two lines S and T, respec-
tively. Each line is the intersection of a vertical plane and one
normal to it. The two basal P-joints on each leg are actuated,
possibly in the manner shown. With only PoP constraints, the DK
admits two solutions, at most.

4 DK of the Spherical Double Triangular Manipulator
Figure 4�a� shows the mechanical layout of a regular spherical

double triangular manipulator �spherical DTM�. Keep in mind that
the three short legs, each made up of curved sliders and interme-
diate R-joints, separating the curved rods of FF and EE, make this
architecture kinematically equivalent to a classical three-legged
RRR spherical parallel manipulator. Notwithstanding apparent
similarity to the spatial DTM �see Sec. 5� this one, in contrast, is
fully parallel; i.e., has one as opposed to more actuated joints per
leg.

Under spherical displacement there are no terms containing yi
in point transformation �2� as follows:

Front View

Passive
R-joint

Passive
P-joint

Active P-joints

Half top-view

Q

EE

T

S

P

d

Fig. 3 Two screw actuators for double basal actuation
M = �
x0

2 + x1
2 + x2

2 + x3
2 0 0 0

0 x0
2 + x1

2 − x2
2 − x3

2 2�x1x2 − x0x3� 2�x1x3 + x0x2�
0 2�x1x2 + x0x3� x0

2 − x1
2 + x2

2 − x3
2 2�x2x3 − x0x1�

0 2�x1x3 − x0x2� 2�x2x3 + x0x1� x0
2 − x1

2 − x2
2 + x3

2
� �30�
The DK of the spherical DTM can be reformulated as the fol-
owing task:

Given a spherical triangle P1P2P3 on the unit sphere and three
lanes �1 ,�2 ,�3 on the origin �center of the unit sphere� find a
ongruent spherical triangle Q Q Q with Q �� .
In other words one has to find all spherical displacements that
satisfy the three PoP conditions Pi ,�i, i=1,2 ,3.

To solve this task one may simplify coefficients by choosing,
without loss in generality, the three points Pi and the three planes
� as follows:
i
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p1 = �
1

1

0

0
�, p2 = �

1

p2,1

p2,2

0
�, p3 = �

1

p3,1

p3,2

p3,3

�
nd

e1 = �
0

1

0

0
�, e2 = �

0

e2,1

e2,2

0
�, e3 = �

0

e3,1

e3,2

e3,3

�
hen the three planar constraints

ei
�Mpi = 0, i = 1,2,3

ave the form

x0
2 + x1

2 − x2
2 − x3

2 = 0

a00x0
2 + a11x1

2 + a22x2
2 + a33x3

2 + 2a03x0x3 + 2a12x1x2 = 0 �31�

b00x0
2 + b11x1

2 + b22x2
2 + b33x3

2 + 2b01x0x1 + 2b02x0x2 + 2b03x0x3

+ 2b12x1x2 + 2b13x1x3 + 2b23x2x3 = 0

here M is matrix equation �30� and

a00 = e21p21 + e22p22, a11 = e21p21 − e22p22

a22 = − e21p21 + e22p22, a33 = − e21p21 − e22p22

a03 = e22p21 − e21p22, a21 = e21p22 + e22p21

b00 = e32p32 + e31p31 + e33p33

b11 = − e33p33 + e31p31 − e32p32

b22 = e32p32 − e31p31 − e33p33

b33 = − e31p31 − e32p32 + e33p33

b01 = e33p32 − e32p33, b02 = e31p33 − e33p31

b03 = e32p31 − e31p32, b12 = e31p32 + e32p31

b13 = e31p33 + e33p31, b23 = e32p33 + e33p32

Remark. It is well known that each of the equations in Eq. �31�
epresents a Clifford-quadric in a homogeneous three dimensional
ector space of Euler parameters x0, x1, x2, and x3. This is a

Fig. 4 Spherical doub
ayley–Klein space with an elliptic metric based on the absolute
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null-quadric M :x0
2+x1

2+x2
2+x3

2=0. A Clifford-quadric is charac-
terized by the property that its intersection with M is a skew
quadrilateral consisting of two pairs of conjugate complex straight
lines. See, for instance, Ref. �11�.

In the following we will outline how the number of variables
can be reduced from four to three, if dehomogenization is
counted, to two by introducing a bilinear parametrization of the
Clifford-quadric represented by the first of the three equations in
Eq. �31�; i.e.,

x0
2 + x1

2 − x2
2 − x3

2 = 0 �32�

By means of the regular projective �coordinate� transformation

x0 = y0 + y3

x1 = y1 + y2

�33�
x2 = y0 − y3

x3 = y1 − y2

the Clifford-quadric, Eq. �32�, becomes the bilinear equation

4�y0y3 + y1y2� = 0

Now a parametrization can be easily tailored so as to null the
expression above, viz.,

�
y0

y1

y2

y3

� = �
− 1

u

v

uv
� �34�

After application of the inverse projective transform �Eq. �33�� we
obtain the mentioned bilinear parametrization of the original
Clifford-quadric �Eq. �32��

�
x0

x1

x2

x3

� = �
− 1 + uv

u + v

− 1 − uv

u − v
� �35�

Hence, substitution of this parametrization nulls the left hand side
of the first of the equations in Eq. �31�. The other two, after a little
rearrangement, assume the form of

�2�u�v2 + �1�u�v + �0�u� = 0
�36�

�2�u�v2 + �1�u�v + �0�u� = 0

riangular manipulator
le t
where the coefficients are the following quadratics in u:
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�2�u� = 2e22�p22u
2 − 2p21u − p22�

�1�u� = − 4e21p22�u2 + 1�

�0�u� = − 2e22�p22u
2 + 2p21u − p22�

�2�u� = − 2�e31p33 − e32p32 − e33p31�u2 − 4�e32p31 − e33p32�u

− 2�e31p33 + e32p32 + e33p31�

�1�u� = − 4�e31p32 + e32p33�u2 − 8e33p33u − 4�e31p32 − e32p33�

�0�u� = 2�e31p33 − e32p32 + e33p31�u2 − 4�e32p31 + e33p32�u

+ 2�e31p33 + e32p32 − e33p31�

n octic in u emerges when v is eliminated between equations in
q. �36�. A neat dialytic method to do this is given in

�
�2�u� �1�u� �0�u� 0

0 �2�u� �1�u� �0�u�
�2�u� �1�u� �0�u� 0

0 �2�u� �1�u� �0�u�
� = 0 �37�

o obtain values of v that correspond to the eight values of u
btained with Eq. �37� consider that a given u=u0 numerically
efines all coefficients in Eq. �36� so these two equations become
edundant. Multiplying these, respectively, by �2�u0� and �2�u0�
nd equating their difference to zero define v=v0 as

v = v0 =
�0�u0��2�u0� − �2�u0��0�u0�
�2�u0��1�u0� − �1�u0��2�u0�

�38�

sing known pairs of u=u0, v=v0 in Eq. �35� yields all four xi for
p to eight poses of EE moved to FF via a spherical displacement
onstrained by three PoP equations.

The diagram in Fig. 4�b� displays an architecture with imposed
oint parameters that generates a DK solution with eight assembly

odes. So once again an octic univariate is minimal. This ex-
mple uses three planes, x=0, y=0, and z=0, upon which three
bsolute EE points, initially with respective direction numbers
1,0,0�, �0.5,0.48,0�, and �0.27,0.71,1.64�, are to be placed. The
E triangle is scalene. It was thus chosen to visually contrast, by

ts asymmetry, its double placement in each of the four octants of
he sphere and, of course, to show a case with eight real assembly

odes. The division of the FF sphere into eight congruent spheri-
al triangles brings to ones attention that inscribing the EE tri-
ngle into any of the other �blank� octants would involve parity
eversal of the EE triangle. I.e., exchanging concave and convex
urface orientation, like flipping heads and tails in the planar case,
s forbidden. Such “solutions” would thus not be valid ones.

Spatial Three-Legged Manipulator DK With Three
ine Constraints
This is a full mobility, i.e., 6DOF manipulator. It fits into the

ategory of reduced mobility—or rather reduced complexity—
ecause it is not fully parallel. Its three legs require two actuators
ach and thus its DK is much easier to solve than, say, Husty’s
eneral six-points-on-six-spheres problem �7�. Equation �1� and
ix PoP constraints may be used in this case if each given point
ust satisfy a pair of these; i.e., each pair of planes intersects on

ne of the given lines. The spatial DTM can be modeled in this
ay. The following three points Pi, i=1,2 ,3 and six planes �i, i
1, . . . ,6, the latter to be taken in successive pairs to represent

ines, li, are without loss in generality chosen to simplify equation
oefficients and, more important, to obtain a system that admits a
eparametrization approach to solution quite similar to that used,

n Sec. 4, for the DK of three-legged spherical robots.
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p1 = �
1

0

0

0
�, p2 = �

1

p21

0

0
�, p3 = �

1

p31

p32

0
�

l1 ¯ e1 = �
0

0

1

0
�, e2 = �

0

0

0

1
�

l2 ¯ e3 = �
1

0

0

e33

�, e4 = �
0

e41

e42

0
�

l3 ¯ e5 = �
1

e51

e52

0
�, e6 = �

1

0

e62

e63

�
This means that the first line l1 is the x-axis of the coordinate
frame in FF, that the z-axis of that coordinate system is the com-
mon perpendicular of l1 , l2, and that one of the two planes fixing
the third line l3 is parallel to z and the other one is parallel to x.

Now the three terms, which contain yi, i=0,1 ,2 ,3 in the first
column of the matrix in Eq. �2�, are replaced with the translational
components ti, i=1,2 ,3, according to Eq. �5� and, after carrying
out the six transformations with Eq. �1� to get qi, the products
e1,2

� q1, e3,4
� q2, and e5,6

� q3 provide six constraint equations. Notice
that the original eight homogeneous Study parameters have been
reduced to seven by the replacement of all terms containing y0, y1,
y2, and y3 with t1, t2, and t3 so these six equations are sufficient
when the new system is dehomogenized by setting x0=1. The first
two, which express P1� l1, yield t2=0 and t3=0. Substituting this
result into the rest leaves only t1, in two of the remaining four
equations

x0
2 + x1

2 + x2
2 + x3

2 − 2e33p21�x0x2 − x1x3� = 0 �39�

p21�e41�x0
2 + x1

2 − x2
2 − x3

2� + 2e42�x0x3 + x1x2�� + e41t1 = 0 �40�

�1 + e51p31 + e52p32�x0
2 + �1 + e51p31 − e52p32�x1

2 + �1 − e51p31

+ e52p32�x2
2 + �1 − e51p31 − e52p32�x3

2 − 2�e51p32 − e52p31�x0x3

+ 2�e51p32 + e52p31�x1x2 + e51t1 = 0 �41�

�1 + e62p32�x0
2 + �1 − e62p32�x1

2 + �1 + e62p32�x2
2 + �1 − e62p32�x3

2

+ 2e63p32�x0x1 + x2x3� − 2e63p31�x0x2 − x1x3� + 2e62p31�x0x3

+ x1x2� = 0 �42�

Next, t1 is eliminated from Eqs. �40� and �41� as follows:

e41�1 − e51�p21 − p31� + e52p32�x0
2 + e41�1 − e51�p21 − p31�

− e52p32�x1
2 + e41�1 + e51�p21 − p31� + e52p32�x2

2

+ e41�1 + e51�p21 − p31� − e52p32�x3
2 − 2�e41e51p32 − e41e52p31

+ e42e51p21�x0x3 + 2�e41e51p32 + e41e52p31 − e42e51p21�x1x2 = 0

�43�

With Eqs. �39�, �43�, and �42� we have obtained a system of three
homogeneous quadratic equations in x0, x1, x2, and x3. The coef-
ficients of this system are shown compressed in the following

equation to make the final steps easier to follow:
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x0
2 + x1

2 + x2
2 + x3

2 − 2k�x0x2 − x1x3� = 0

a0x0
2 + a1x1

2 + a2x2
2 + a3x3

2 − 2a4x0x3 + 2a5x1x2 = 0 �44�

b0�x0
2 + x2

2� + b1�x1
2 + x3

2� + 2b2�x0x1 + x2x3� − 2b3�x0x2 − x1x3�

+ 2b4�x0x3 + x1x2� = 0

n the following we adapt the parametrization technique, intro-
uced in Sec. 4, to the case at hand. The left hand side of the first
f the equations in Eq. �44� can be written as a sum of two prod-
cts whose factors are linear in x0, x1, x2, and x3 as follows:

x0
2 + x1

2 + x2
2 + x3

2 − 2k�x0x2 − x1x3� = �x0 − �k + l�x2��x0 − �k − l�x2�

+ �x1 + �k + l�x3��x1 + �k − l�x3�

here4

l = �k2 − 1

ence, if we apply the regular projective �coordinate� transforma-
ion

y0 = x0 − �k + l�x2

y1 = x1 + �k + l�x3

�45�
y2 = x1 + �k − l�x3

y3 = x0 − �k − l�x2

he quadric represented by the first of the equations in Eq. �44�
ecomes a simple bilinear expression

y0y3 + y1y2 = 0

hose left hand side is again nulled by parametrization equation
34�. Substitution of this parametrization into the inverse trans-
orm

x0 =
1

2l
�− �k − l�y0 + �k + l�y3�

x1 =
1

2l
�− �k − l�y1 + �k + l�y2�

x2 =
1

2l
�− y0 + y3�

x3 =
1

2l
�y1 − y2�

f �Eq. �45�� yields

�
x0

x1

x2

x3

� = �
k − l + �k + l�uv

�l − k�u + �l + k�v
1 + uv

u − v
� �46�

.e., a parametrization of the original quadric.5

Equations �37� and �38� are applied exactly as before, except
or the definition of the quadratic polynomials �2�u� , . . . ,�0�u�,
escribed as follows:

�2�u� = �2a0k�k + l� − a0 + a2�u2 + 2�a4 + a5��k + l�u + 2a1k�k + l�

− a1 + a3

4As one can easily check k2−1�0 is equivalent with dist�P1 , P2��dist�l1 , l2�.
learly a solution to the DK problem exists only if the latter condition holds.

5
The factor 1 /2l can be omitted since we deal with homogeneous equations.
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�1�u� = − 2�a4�k + l� + a5�k − l��u2 + 2�a0 − a1 + a2 − a3�u

+ 2�a5�k + l� + a4�k − l��

�0�u� = �2a1k�k − l� − a1 + a3�u2 − 2�a4 + a5��k − l�u + 2a0k�k − l�

− a0 + a2

�47�
�2�u� = 2�b0k − b3��k + l�u2 − 4b2�1 − k�k + l��u

+ 2�b1k − b3��k + l�

�1�u� = 4b4lu2 + 4�b0 − b1�u + 4b4l

�0�u� = 2�b1k − b3��k − l�u2 + 4b2�1 − k�k − l��u

+ 2�b0k − b3��k − l�

Again the solutions of an octic univariate in u, produced with the
determinant of Eq. �37�, are back substituted into Eq. �38� and the
corresponding v is solved linearly.

5.1 The Spatial Double Triangular Manipulator. A pos-
sible mechanical realization of the three-points-on-three-lines
paradigm is the so-called spatial double triangular manipulator
�spatial DTM� as introduced in Ref. �2�.

Figure 5�a� shows two frames, each consisting of three skew
lines. These are connected by three short C� CC legs where C is a
cylindrical joint. Both DOFs of the ones on FF are actuated. This
was the design envisaged by Daniali �2� who carried out no DK
analysis. Figure 5�b�, on the right, shows such a leg. This design,
though theoretically feasible, embodies a three-intersecting-line-
pairs paradigm, which is fraught with singularities and even
2DOF self-motion as described by Zsombor-Murray and Hyder
�12�. Adopting C� RRC legs as shown on the left of Fig. 5�b� solves
the problem. The centers of the three unactuated C-joints become
the three points in FF upon which the three pairs of planes, which
intersect on the three lines in EE, are to be placed. These six
planes can be transformed by the procedure outlined above.

The sample solution in Fig. 5�c�, revealing eight real assembly
modes, is an inversion; i.e., the three points in EE, �0,0,0�, �5,0,0�,
and � 5

2 , 5�3
2 ,0�, were placed on the respective plane pairs y

=0�z=0, x=0�z=1, and x=1�y=1. Thus the octic polynomial
�see above� is demonstrated to be minimal.

6 Conclusion
Direct kinematic problems for a wide variety of parallel ma-

nipulators have been solved in a unified fashion using point kine-
matic mapping. All cases involved the writing of constraint equa-
tions that place a number of points on corresponding surfaces, not
always in the same number. However, once one begins to look at
problems in this way, the writing of a sufficient set of such equa-
tions is made a lot easier. These equation sets were then solved by
introducing, or rather resurrecting in a more general engineering
context, some not so widely known algebraic techniques, found in
Refs. �7,8,11,13–16�, and thereby obtaining some new results.

�a� reducing the PoP constraint to a quadric in Study param-
eters and similarly reducing the PoS constraint by inter-
secting the original quartic with the Study quadric and
confining the transformed point P to Euclidean space6

�b� reduction in a partial set of constraints to a one parameter
motion trajectory of the last point that is then intersected
with the remaining surface

�c� reparametrization to reduce the number of variables and
constraint equations

6Strictly speaking, Husty �7� introduced the technique in his notable DK solution
of the general Stewart–Gough platform. Here we have reintroduced the technique in

the context of parallel Schönflies robots.
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�d� neatly extracting an octic univariate from a pair of simul-
taneous bivariate quartics, like system �36� wherein there
are no cubic or quartic variable terms, as a simple 4�4
determinant, Eq. �37�, and exposing a linear back substi-
tution, Eq. �38�, to obtain corresponding values of the
other variable

�e� revealing for the first time an octic univariate polynomial
and eight real DK solutions for the spherical DTM

�f� revealing for the first time an octic univariate polynomial
and eight real DK solutions for the spatial DTM

Almost all cases examined pertained to manipulators of less
han 6DOF though there was one fully mobile example, the spatial

Fig. 5 Spatial double triangular manipulator
21006-10 / Vol. 2, MAY 2010
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DTM, albeit a simplified problem because it was not fully parallel,
i.e., had more than one actuated joint per leg.
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