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Abstract— This paper proposes a field application of a high-
level Reinforcement Learning (RL) control system for solving
the action selection problem of an autonomous robot in a
cable tracking task. The underwater vehicle ICTINEU

AUV

learns to perform a visual based cable tracking task in a
two step learning process. First, a policy is computed by
means of simulation where a hydrodynamic model of the
vehicle simulates the cable following task. Once the simulated
results are accurate enough, in a second step, the learned-
in-simulation policy is transferred to the vehicle where the
learning procedure continues in a real environment, improving
the initial policy. The natural actor-critic (NAC) algorithm
has been selected to solve the problem in both steps. This
algorithm aims to take advantage of policy gradient and value
function techniques for fast convergence. Actor’s policy gradient
gives convergence guarantees under function approximation
and partial observability while critic’s value function reduces
variance of the estimates update improving the convergence
process.

I. INTRODUCTION

Reinforcement Learning (RL) is a widely used methodol-

ogy in robot learning [1]. In RL, an agent tries to maximize

a scalar evaluation obtained as a result of its interaction with

the environment. The goal of a RL system is to find an

optimal policy to map the state of the environment to an

action which in turn will maximize the accumulated future

rewards.

Over the last decade, the two major classes of reinforce-

ment learning algorithms, value-based methods and policy

search methods, have offered different solutions to solve RL

problems. Value function methodologies have worked well

in many applications, achieving great success with discrete

lookup table parameterization but giving few convergence

guarantees when dealing with high dimensional domains due

to the lack of generalization among continuous variables

[1]. Rather than approximating a value function, policy

search techniques approximate a policy using an independent

function approximator with its own parameters, trying to

maximize the future expected reward [2].

Policy search applications share a common drawback,

gradient estimators used in these algorithms may have a

large variance [3], learning much more slower than RL

algorithms using a value function (see [4]) and they can

converge to local optima of the expected reward, making

them less suitable for on-line learning in real applications.

In order to decrease convergence times and avoid local

optima, newest applications combine policy gradient search
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with value function techniques, adding the best features

of both methodologies within actor-critic algorithms [3].

In actor-critic algorithms, the critic component maintains a

value function, and the actor component maintains a separate

parameterized stochastic policy from which the actions are

drawn. Actor’s policy gradient gives convergence guarantees

while critic’s value function reduces variance of the policy

update improving the convergence rate of the algorithm [3].

It is worth to mention the work done in [5] and [6], where

a biped robot is trained to walk by means of a “hybrid” RL

algorithm that combines policy search with value function

methods.

Recent work suggests that even with the aid of a critic’s

value function, policy gradients converge quite slow, in part

caused by the small gradients around plateau landscapes of

the expected return [7]. In order to avoid these situations,

studies presented in [8] pointed that the natural policy

gradient may be a good alternative to the policy gradient. A

natural gradient is the one that looks for the steepest ascent

with respect to the Fisher information matrix [8] instead of

the steepest direction in the parameter space. Being easier to

estimate than regular policy gradients, they are expected to

be more efficient and therefore accelerate the convergence

process. Natural gradient algorithms have found a variety

of applications in the last years, as in [9] with traffic-light

system optimization and in [10] with gait optimization for

robot locomotion.

All those improvements mentioned before push up gra-

dient techniques, but speeding up gradient methods in real,

continuous, high dimensional domains represents a key fac-

tor. The idea of providing initial high-level information to the

learner, like example policies or human imitation techniques

has achieved great success in several applications [11] [12]

[13]. Also, to learn an initial policy from a model simulation

for, in a second step, transfer it to the real agent can greatly

increase converge rates. Rude policies learned in simulation

represent a good startup for the real learning process, mean-

ing that the learner will face the challenge of the real world

with some initial knowledge of the environment, avoiding

initial gradient plateaus and local maxima dead ends [14].

This paper proposes a real reinforcement learning ap-

plication where the ideas mentioned before are combined

together. The underwater vehicle ICTINEUAUV learns to

perform a visual based cable tracking task in a two step

learning process. First, a policy is computed by means of

computer simulation where a hydrodynamic model of the ve-

hicle simulates the cable following task. Once the simulated

results are accurate enough, in a second step, the learned-
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in-simulation policy is transferred to the vehicle where the

learning procedure continues on-line in a real environment,

improving the initial policy. The natural actor-critic (NAC)

algorithm has been selected to solve the problem through

online interaction with the environment in both steps, the

simulation and the real learning. This paper is structured

as follows. In Section II the learning procedure and the

NAC algorithm are detailed. Section III describes the setup:

the mathematical model of ICTINEUAUV used in the

simulation and the vision system. Details and results of the

simulation process and the real test are given in Section IV

and finally, conclusions and the future work to be done are

included in Section V.

II. TWO STEPS NATURAL ACTOR CRITIC

LEARNING

Two steps learning takes advantage of learning by simula-

tion as an initial startup for the real learner. Next subsections

give details about the natural actor-critic algorithm used and

the procedures regarding the two steps learning proposal.

A. The Natural Actor-Critic algorithm

In natural actor-critic (NAC) [13], stochastic natural policy

gradients allow actor updates while the critic computes si-

multaneously the natural gradient and the value function pa-

rameters by linear regression. As stated in previous section,

the NAC algorithm aims to take advantage of policy gradient

and value function techniques for fast convergence. Actor’s

policy gradient gives convergence guarantees under function

approximation and partial observability while critic’s value

function reduces variance of the estimates update improv-

ing the convergence process. Also, natural gradients add

curvature statistics into the gradient ascent. The algorithm’s

procedure is summarized in Algorithm 1.

As initial inputs we have a parameterized, derivable policy

π(u|x) = p(u|x, θ) for actor’s representation together with

a basis function φ(x) for the critic’s value function. At

every iteration, action ut is drawn from current policy πt

generating a new state xt+1 and a reward rt. After updating

the basis function and the statistics by means of LSTD(λ)

we obtain the value function parameters v and the natural

gradient w. Actor’s policy parameters are updated only if

the angle between two consecutive natural gradients is small

enough compared to an ε term. The learning rate of the

update is controlled by the α parameter. Next, the critic has

to forget part of its accumulated statistics using a forgetting

factor β ∈ [0, 1]. Current policy is directly modified by the

new parameters becoming a new policy to be followed next

iteration, getting closer to a final policy that represents a

correct solution of the problem.

B. Two steps learning

The proposal here presented aims to reduce the time spent

in ICTINEUAUV ’s real learning iterations when dealing

with a visual cable tracking task. Previous work done in [15]

demonstrated slow convergence of policy gradient techniques

when applied to real large state spaces as the one we are

Algorithm 1: Natural Actor-Critic algorithm with LSTD-

Q(λ)

Initialize:
Parameterized policy πs = π(u|x) with initial parameters θ = θ0, its
derivative ∇θ log πs = π(u|x) and basis function φ(x) for the value
function parameterization V π(x).
Initialize z = A = b = 0.
Draw initial state x0.
for t = 0 to n do:

Generate control action ut according to current policy πt. Observe
new state xt+1 and the reward obtained rt.
Critic Evaluation (LSTD-Q)

Update basis functions

φ̃t = [φ(xt+1)T , 0T ]
φ̂t = [φ(xt)T ,∇θ log π(ut|xt)T ]T

Update sufficient statistics:

zt+1 = λzt + φ̂t

At+1 = At + zt+1(φ̂t − γφ̃t)T

bt+1 = bt + zt+1rt

Update critic parameters:

[vT
t+1

, wT
t+1

] = A−1

t+1
bt+1

Actor Update

If � (wt+1, wt−τ ) ≤ ε, then update policy parameters:
θt+1 = θt + αwt+1

Forget sufficient statistics:
zt+1 = βzt+1

At+1 = βAt+1

bt+1 = βbt+1

end

focusing. In [15], gradient techniques allowed the vehicle

to learn a fairly good policy in simulation but, once it

was transferred to the real vehicle, almost any policy im-

provement was appreciated along the different tests. Results

published by scientific community about successful practical

applications of the NAC algorithm pushed us to implement

it. As can be seen in Fig. 1, the two step learning procedure

has a initial phase of learning in simulation, Fig. 1(a), where

the NAC algorithm stated in Algorithm 1 is trained in our

MATLAB simulator. The model of our underwater vehicle

has been identified as shown in Section III-A, and allows us

to emulate a robot with three degrees of freedom (DOF): X

movement (surge), Y movement (sway) and rotation respect

Z axis (yaw). Z movement (heave) has not been modeled

because the attitude of the vehicle with respect to the bottom

of the pool will remain constant during the tests, although

it can be modified as an input parameter. Dimensions of

the pool and cable thickness can be modified to match the

real ones. Also the model of the camera used has been

introduced in the simulator to offer the same field of view

than the real camera. The sampling time of the simulator is

0.2secs, equal to the one offered by our vehicle. Actions,

forces, accelerations and velocities are ranged to match the

maximum ones ICTINEUAUV is able to achieve for each

DOF. The simulated experiments begin by setting parameter-

ized policy πs = π(u|x) with initial parameters θ = θ0 and

basis functions φ(x) for the value function parameterization

V π(x). Also, learning parameters such as learning rate(α),

forgetting factor(β), discounted reward factor(γ), eligibility

rate(λ) and the actor update condition(ε) are set and stored

in order to be transferred to the vehicle in step two. Details

concerning function designs and parameter values will be

2268



Simulated 
Environment

Real
Environment

rtst t

Learning
Algorithm

st

Learning
Algorithm

Real
Environment

Simulated 
Environment

Fig. 1. Learning phases.

detailed in Section III-C.

Once it is considered that the algorithm has acquired

enough knowledge from the simulation to build a “secure”

policy, step two begins, Fig. 1(b). Actor and critic param-

eters, together with learnt values are transferred to the real

vehicle to continue the learning process. In this phase, the

algorithm is executed in the software architecture of the

robot, a distributed object oriented architecture. The algo-

rithm has been programmed in C++. As the computed model

and the simulated environment are not accurate enough, the

algorithm will have to adapt to this new situation in order

to improve expected rewards. Once the algorithm converges

in the real environment, the learning system will continue

working forever, being able to adapt to any future change.

III. THE CABLE TRACKING TASK

This section is going to describe the different elements

that take place into our problem: first, a brief description

of the underwater robot ICTINEUAUV ’s model used in

simulation is given. The section will also present the problem

of underwater cable tracking and, finally, a description of the

NAC configuration for the particular cable tracking task.

A. AUV mathematical model

As described in [16], the non-linear hydrodynamic equa-

tion of motion of an underwater vehicle can be conveniently

expressed in the body fixed frame {B} as:

τB+G(η)−D(υB)υB+τp =(MB
RB + MA)υ̇B + ...

... + (CB
RB(υB) + CA(υB))υB (1)

where υB and υ̇B are the velocity and acceleration vectors,

η is the position and attitude vector, τB is the resultant

force-torque vector exerted by thrusters, G(η) is the gravity-

buoyancy force-torque vector, D(υB) corresponds to the

linear and quadratic damping, MB
RB and MB

A correspond

to the mass-inertia and added mass mass-inertia matrixes

respectively, CB
RB and CB

A represent the Coriolis and cen-

tripetal matrixes for the rigid body and the added mass effect

and τB
p is a unmodelled perturbation. Eq. 1 represents a

complex non-linear model with couplings among the dif-

ferent degrees of freedom being dependent to a large set

of physical parameters (robot mass and inertia, the linear

and nonlinear friction coefficients, thrust coefficients, etc...).

Nevertheless, after some simplifications it is possible to carry

TABLE I

PARAMETER IDENTIFICATION RESULTS.

Parameters

DOF α β γ δ

Surge (X movement) 0.1347 0 0.4458 0.0040
Sway (Y movement) 0.1508 0 0.2586 -0.0004
Yaw (Z rotation) 0.2878 0 3.4628 -0.0026

out identification experiments to identify the most relevant

coefficients to obtain an approximate model. Parameters

corresponding to real AUVs have been reported for instance

in [16]. In our work, we have identified the ICTINEUAUV

[17] parameters using a method previously developed in our

lab [18] which has been satisfactorily applied in the past to

other vehicles. Table I reports the robot parameters used in

the context of this work.

B. The Cable Tracking Vision System

The vision-based algorithm used to locate the cable was

formerly proposed in [19]. It uses a downward-looking B/W

camera to first locate and then track the cable. The algorithm

computes the polar coordinates (ρ, Θ) of the straight line

corresponding to the detected cable in the image plane (see

Figure 2). Being (ρ, Θ) the parameters of the cable line, the

cartesian coordinates (x,y) of any point along the line must

satisfy Equation (2).

ρ = xcos(Θ) + ysin(Θ) (2)

As shown in Figure 2b, Equation (2) allows us to obtain

the coordinates of the cable intersections with the image

boundaries (Xu,Yu) and (XL,YL), thus the mid point of

the straight line (xg ,yg) can be easily computed (xg, yg =
XL+Xu

2
,Yu+YL

2
). The computed parameters (ρ, Θ, xg, yg)

together with its derivatives are sent to the control module

in order to be used by the different behaviors.

C. The NAC algorithm for underwater cable tracking

As stated in previous section, the observed state is a 4

dimensional state vector x = (xg, Θ,
δxg

δt
, δΘ

δt
) where xg ∈

[0, 1] is the normalized x coordinate of the cable centroid

in the image plane, Θ ∈ [−π
2

, π
2
] is the cable angle, being

X

Y

xg

field of view

camera 
coordinate 
frame

yg

a) b)

Fig. 2. (a) ICTINEUAUV in the test pool. Small bottom-right
image: Detected cable. (b) Coordinates of the target cable with respect
ICTINEUAUV .

a) b)

a

ta

Θ

Θ

ρ
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δxg

δt
∈ [−0.5, 0.5] and δΘ

δt
∈ [−1, 1]rad/s the respective

derivative . Based on these observations, the robot decides a

normalized continuous action vector u = (usway, uY aw) ∈
[−1, 1] to guide the robot in the Sway and Yaw DOFs. The

Surge motion is not learnt. Instead, a simple controller is

used to move forward the robot at a constant Surge speed of

uSurge = 0.3 m/s when the cable is centered in the image

plane, being zero otherwise.

It is worth nothing that usway actions are mainly affected

by the position and velocity of xg along the X axis of the

image plane. In the same way, uY aw actions are strongly

dependent on the variations of Θ. Therefore, the state vector

has been split into two subspaces, xsway = (xg,
δxg

δt
) and

xY aw = (Θ, δΘ
δt

), feeding two independent policies, being

the NAC algorithm used for each policy the one detailed in

Algorithm 1.

Actor policies for Yaw and sway are described as normal

gaussian distributions of the form π(u|x) = N(u|Kx, σ2)
where the standard deviation has been fixed to σ = 0.1.

Basis function for Sway and Yaw value functions param-

eterization are chosen as φ(x) = [x2
1, x1x2, x

2
2, 1]. Re-

wards are given by r(xt, ut) = xT
t Qxt + uT

t Rut with

Qsway = diag(1.1, 0.2) and Rsway = 0.01 for sway DOF

and QY aw = diag(2, 0.25) and RY aw = 0.01 for Y aw
DOF. Learning rate, forgetting factor, discounted reward

factor, eligibility rate and the actor update condition of both

algorithms has been fixed respectively to α = 0.01, β = 0.9,

γ = 0.95, λ = 0.8 and ε = π/180.

IV. RESULTS

Identical trajectories have been carried out with the sim-

ulator and the real vehicle in order to test the simulator’s

performance. Both, the simulated vehicle the real one have

been situated in the same coordinates of the pool with the

cable lying in the middle. Vehicles receive the same input to

their motors and as the robots reach the center of the pool,

the cable appears within the image plane. Fig. 3 and Fig. 4

show a comparison between the simulated and real values

of the state variables ρ and θ. These results demonstrate a

similar state transition for the simulator and the real vehicle

for a given test.
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Fig. 3. For the same input, comparison between the real and the simulated
rho evolution of the cable in the vehicle’s image plane.
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Fig. 4. For the same input, comparison between the real and the simulated
theta evolution of the cable in the vehicle’s image plane.

A. Step one results: Simulated Learning

The model of the underwater robot ICTINEUAUV nav-

igates a two dimensional world at 1 meter height above the

seafloor. The simulated cable is placed at the bottom in a

fixed position. The learner has been trained in an episodic

task. An episode ends either every 20 seconds (200 iterations)

or when the robot misses the cable in the image plane,

whatever comes first. When the episode ends, the robot

position is reset to a random position and orientation around

the cable’s location, assuring any location of the cable within

the image plane at the beginning of each episode. According

to the values of the state parameters θ and xg and actions

taken usway and uyaw, a scalar immediate reward is given at

each iteration step. The number of episodes in simulation has

been set to 100. For every episode, the total amount of reward

perceived is calculated. Fig. 5 represents a comparison of the

learning curves for Yaw policy between Baxter and Bartlett’s

algorithm used in [15] with the new results obtained with

the natural actor-critic algorithm. The experiment has been

repeated in 100 independent runs. The results here presented

are the mean over these runs. In Fig. 6 and Fig. 7 we can

observe a state/action mapping of a trained-in-simulation

policy in both, yaw and sway degrees of freedom. As can

be appreciated in both figures, the horizontal alignment of

simulated policies mean that the trained algorithms give

much more importance to the states θ and xg rather than

its derivatives
δxg

δt
) and δΘ

δt
). The reason for that lies in the

low speed assumption done in order to identify the model

of our vehicle together with the elimination of the quadratic

damping term.

B. Step two results: Real Learning

Once the learning process is considered to be finished,

resultant policies with its correspondent parameters are trans-

ferred to ICTINEUAUV . In Fig. 8 and Fig. 9 the behaviors

of the learned-in-simulation policies are initially evaluated in

the real vehicle. As can be seen, the results are quite good,

and, although having some oscillations, the vehicle is able

to follow the cable.

As stated before, once both policies are transferred to the

robot, the real learning starts. Fig. 10 and Fig. 11 show

the variation of the state variables θ and xg along different

learning episodes. The first trial represents the behavior of
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Fig. 5. Learning curves for Yaw policy comparing the natural actor-critic to
Baxter and Bartlett’s policy gradient algorithm. Performance estimates were
generated by simulating 100 episodes. Process repeated in 100 independent
runs. The results are a mean of these runs.

the vehicle after 90secs. As the learning process advances,

the robot behavior improves significantly. After 20 trials

(around 1800secs) we can assure that the learned policy has

overcome the learned-in-simulation one.

Final policies can be seen in Fig. 12 and Fig. 13. If both

policies are compared with the ones we initially obtained

with the simulator (Fig. 6 and Fig. 7), two significant details

can be observed. Vertical alignment of both policies show

us the importance of the state derivatives. It means that the

final learned policy has adapted to the lack of knowledge

and limitations of our identified model in order to achieve

satisfactory results with the real vehicle. Also, final policies

are hard demandant on thruster requirements, as can be

appreciated by the large areas in the state/action mapping

where both policy outputs are -1 or 1, differing from initial

simulated policies, where the response is softly distributed

over all state space.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The underwater vehicle ICTINEUAUV has learnt to

perform a real visual based cable tracking task in a two

step learning process. First, a policy has been computed

by means of simulation where a hydrodynamic model of

the vehicle simulates the cable following task. Once the

simulated results were good enough, in a second step,

the learned-in-simulation policy has been transferred to the

vehicle where the learning procedure continued on-line in a

real environment. The natural actor-critic (NAC) algorithm

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
 

Trained policy in simulation for Sway DOF

DeltaCentroide (u/s)

 

C
en

tr
oi

d 
X

 (
im

ag
e 

pl
an

e 
sc

al
e 

fr
om

 −
0.

5 
to

 0
.5

)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 6. Representation of sway policy after simulation learning is complete.

Fig. 7. Representation of yaw policy after simulation learning is complete.
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Fig. 8. Performance of the simulated policies on the real vehicle. Evolution
of theta angle during several attempts to center the cable.

was selected to solve the problem through online interaction

with the environment in both steps, the simulation and

the real learning. Results show a good performance of the

algorithm, specially compared with the slow gradient tech-

niques used in previous work. Learning with and underwater

vehicle is a challenging task. High nonlinear models, external

perturbations and technical issues related to noisy sensors,

navigation and delays make it difficult to achieve good

results. Speed and performance demonstrated by the NAC

algorithm encourages us to learn other tasks using this kind

of algorithms.

B. Future Works

Our work is currently focused on testing the performance

of the NAC algorithm with the cable tracking task. Future

experiments point towards the variation of external elements,

once the final policy has been learned, such as accidental
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Fig. 9. Performance of the simulated policies on the real vehicle. Evolution
of centroid x position during several attempts to center the cable.
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Fig. 11. Policy improvement through different trials of real learning.
Evolution of centroid x position during several episodes.
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Fig. 12. Final trained policy for sway DOF.

Fig. 13. Final trained policy for yaw DOF.

camera displacements or rotations, motor failures and the

introduction of constant water currents. As pointed in previ-

ous section, second step of learning will never finish, so it

will remain active on the vehicle, readapting it if necessary

without any need of external aid.
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