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The problem of integral sliding mode control (ISMC) with passivity is investigated for a class of uncertain neutral systems with
time-varying delay (NTSTD) and external disturbance. The system states are unavailable. An ISMC strategy is proposed based on
the state estimate. By employing a novel sliding functional, a new sufficient criterion of robust asymptotic stability and passivity for
both the error system and the sliding mode (SM) dynamic system is derived via linear matrix inequality (LMI) technique. Then,
a SM controller is synthesized to guarantee the reachability of the sliding surface predefined in the state estimate space. Finally, a
numerical example shows the feasibility and superiority of the obtained result.

1. Introduction

In the mathematical modeling of a real control system, state
feedback control is a powerful tool when the full information
of the system states is assumed to be accessible. However, in
practice, this is often not possible, and state feedback control
may fail to guarantee the stability when some of the system
states are not measurable. To circumvent this drawback, one
way is to design a direct output feedback control. Another
way, that is the observer-based controller, is also utilized to
improve the system performance and stabilize the unstable
systems. Therefore, the observer-based control for complex
systems has become an active research topic in control theory
[1–6].

SMC has been widely recognized as an effective robust
control strategy for incompletely modelled and uncertain
systems.The SMC system has various attractive features such
as fast response, good transient performance, and robustness
in face of uncertainties and external disturbances. Recently,
sliding mode observers have been used to estimate the
states of discrete or continuous systems. They have a special
function of dealing with nonlinearity and uncertainties.

Because there will be some term injected into the observer
depending on the output error estimation, which enables the
observer to reject the effect of external disturbance and make
the error dynamic system stable. Over the past decades, a rich
literature has been dedicated to the design of the slidingmode
observers [7–14].

On the other hand, since time delays are frequently
encountered in practical engineering and often result in poor
performance or even instability of system, analysis of robust
stability and stabilization of uncertain time delay system has
attracted many researchers’ attention. In the more general
case of NTSTD, where the time delaymay be available in both
position and velocity of system, the stability and stabilization
criterion based upon LMI technique have been obtained for
both the delay-independent [15] and the delay-dependent
cases in the literature ([16–23] and the references therein). As
shown in [5], the presence of a delayed argument in the state
derivatives makes the design difficult, which results from the
neutral root chain (infinite spectrum). Generally, the authors
also assume that there is no unstable neutral root chain or use
a derivative feedback to assign the unstable roots to the left-
hand side of the complex plane.
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Note that unlike simple retarded systems neutral systems
may be particularly sensitive to time delays and can be easily
destabilized. Specifically, the SMC problem for NTSTD with
uncertainties in both the state matrices and the input matrix
is considered in [24–27], which gives sufficient conditions
in terms of LMIs guaranteeing the closed-loop system to be
asymptotically stable, respectively. However, in these papers,
the key requirement is that the states of the system are
available. Moreover, the observer-based SMC problem for
a class of uncertain nonlinear NTSTD is investigated in
[28]. A sliding mode observer is designed, based on which
an observer-based controller is synthesized by using the
SMC theory combined with the reaching law technique;
the reachability of the sliding surfaces defined in both the
state estimate space and the state estimation error space
is solved, respectively. To the best of our knowledge, the
sliding mode observer design problem and the observer-
based control problem for uncertain NTSTD have not yet
been fully investigated in the literature and remain to be
important and challenging.

Motivated by the aforementioned factors, a new approach
of SMC combined with passive control is proposed for stabi-
lizing the uncertainNTSTD subjected to external disturbance
and unmeasurable states in this paper. A state observer is
designed to generate the estimate of system states, based on
which a SMC scheme is developed to stabilize the closed-
loop system. A sufficient condition of the passivity and robust
asymptotic stability is derived for the overall closed-loop
system composed of the observer SMdynamic system and the
state estimate error dynamic system via LMI. The proposed
SMC can guarantee the reachability of the sliding surface
in state estimate space in finite time. Finally, an example is
presented to show the effectiveness of the proposed method.

2. Problem Formulation

The form of the uncertain NTSTD with external disturbance
studied in this paper is

ẋ (𝑡) −Dẋ (𝑡 − 𝜏) = [A+ΔA (𝑡)] x (𝑡)

+ [A𝑑 +ΔA𝑑 (𝑡)] x (𝑡 − 𝑑 (𝑡))

+Bu (𝑡) +G𝑤w (𝑡) ,

z (𝑡) = Cx (𝑡) ,

x (𝑠) = 𝜑 (𝑠) ,

ẋ (𝑠) = 𝜓 (𝑠) ;

𝑠 ∈ [−𝑑, 0] ,

(1)

where x(𝑡) ∈ R𝑛 is the system state, u(𝑡) ∈ R𝑚 is the
control input, z(𝑡) ∈ R𝑞 is the controlled output, and 𝜑(𝑡)
and 𝜓(𝑡) are vector valued functions representing the initial
conditions. w(𝑡) is the exogenous input which belongs to
L2[0, 𝑇]. The scalar 𝜏 is a real constant neutral-term time
delay and 𝑑(𝑡) is the time-varying delay satisfying 0 ≤

𝑑(𝑡) ≤ 𝑑, ̇

𝑑(𝑡) ≤ 𝜇 < 1 for known constants 𝑑, 𝜇, and

𝑑 = max{𝜏, 𝑑}.A,A𝑑,B,C, andD are known systemmatrices
with appropriate dimensions, and B has full column rank.

The following assumptions and lemmas are necessary for
future discussion.

Assumption 1. (A,B) is completely controllable.

Assumption 2. [ΔA(𝑡) ΔA𝑑(𝑡)] = MF(𝑡) [N N𝑑], where M,
N, N𝑑 are known matrices of appropriate dimensions and
F(𝑡) is an unknownmatrix function which is continuous with
respect to time 𝑡 and satisfies FT(𝑡)F(𝑡) ≤ I.

Lemma 3 (see [9]). Let D, E, and F(𝑡) be real matrices of
appropriate dimensions with F(𝑡) satisfying FT(𝑡)F(𝑡) ≤ I and
a scalar 𝜀 > 0; the following inequality

DF (𝑡)E+ETFT (𝑡)DT
≤ 𝜀DDT

+ 𝜀

−1ETE (2)

is always satisfied.

3. Observer-Based Sliding Mode Control

In this section, an observer is introduced to generate the
estimate of the unmeasured state. And then a SM controller
will be synthesized based on the state estimate. Furthermore,
a sufficient condition of the passivity and robust asymptotic
stability is derived for the overall closed-loop system com-
posed of the observer SM dynamic system and the error
dynamic system via LMI.

3.1. Robust Observer Design. The following state observer is
utilized to estimate the state of the uncertain NTSTD (1):

̇x̂ (𝑡) −D ̇x̂ (𝑡 − 𝜏) = Ax̂ (𝑡) +A𝑑x̂ (𝑡 − 𝑑 (𝑡)) +Bu (𝑡)

+ L (z (𝑡) −Cx̂ (𝑡)) ,

ẑ (𝑡) = Cx̂ (𝑡) ,

(3)

where L ∈ R𝑛×𝑞 is the observer gain to be designed later.
Define the state error e(𝑡) = x(𝑡) − x̂(𝑡); then the corre-

sponding error system can be described by

ė (𝑡) −Dė (𝑡 − 𝜏) = [A− LC+ΔA (𝑡)] e (𝑡)

+ [A𝑑 +ΔA𝑑 (𝑡)] e (𝑡 − 𝑑 (𝑡))

+G𝑤w (𝑡) + ΔA (𝑡) x̂ (𝑡)

+ ΔA𝑑 (𝑡) x̂ (𝑡 − 𝑑 (𝑡)) ,

z𝑒 (𝑡) = Ce (𝑡) ,

(4)

where z𝑒(𝑡) is the output of the error system.

Remark 4. It can be seen from (4) that the error dynamic
system corresponds to an uncertainNTSTDand is dependent
on the state estimate. This means that the robust stability
analysis of the error dynamic system is not independent of
the observer system.
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In the state estimate space, a sliding functional is chosen
as follows:

s (𝑡, x̂) = 𝜎 (𝑡) +G [x̂ (𝑡) −Dx̂ (𝑡 − 𝜏)] , (5)

with 𝜎̇(𝑡) = −G(A + BK)x̂(𝑡) − GA𝑑x̂(𝑡 − 𝑑(𝑡)), where the
matrix K is to be determined later. Particularly, the matrix G
is to be chosen such that GB is nonsingular.

According to the sliding mode control theory, it follows
from ̇s(𝑡, x̂) = 0 that the equivalent control law can be
obtained as

ueq = Kx̂ (𝑡) − (GB)

−1 GL [z (𝑡) −Cx̂ (𝑡)] . (6)

Substituting (6) into the observer system (3) yields the SM
dynamic system in the state estimate space:

̇x̂ (𝑡) −D ̇x̂ (𝑡 − 𝜏) = (A+BK) x̂ (𝑡) +A𝑑x̂ (𝑡 − 𝑑 (𝑡))

+BLCe (𝑡) ,

(7)

where B = I − B(GB)

−1G.
Thus, the stability of the overall closed-loop systems with

(3) and (4) will be analyzed through the error system (4) and
SM dynamic system (7).

3.2. Analysis of Robust Stability. Here, we introduce the pas-
sive performance measure as follows.

Definition 5. Theoverall closed-loop system composed of (4)
and (7) is said to be robust asymptotically stable and passive,
if the following two requirements are satisfied:

(I) system (4) and (7) with w(𝑡) = 0 is robust asymptoti-
cally stable;

(II) under zero initial conditions, there exists a scalar 𝛾 >

0 such that

2∫

𝑡
∗

0
wT

(𝑡) z𝑒 (𝑡) d𝑡 ≥ − 𝛾∫

𝑡
∗

0
wT

(𝑡)w (𝑡) d𝑡, (8)

for all 𝑡∗ > 0.

Next, the following sufficient condition for the passivity
and robust asymptotic stability for the overall closed-loop
system composed of the observer SMdynamic system (7) and
the error dynamic system (4) is derived via LMI.

Theorem 6. Given a scalar 𝛾 > 0. Unmeasured state of the
uncertain NTSTD (1) can be estimated by the observer (3). The
sliding functional in state estimate space is chosen as (5). If there
exist symmetric positive definite matrices P > 0,Q > 0, R > 0,

S > 0, matrices L,K, and scalars 𝜀𝑖 > 0 (𝑖 = 1, . . . , 4) such that
the following linear matrix inequality holds

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ξ11 Ξ12 A𝑑 Ξ14 0 0 Ξ17 J2
∗ Ξ22 0 Ξ24 0 0 Ξ27 0
∗ ∗ Ξ33 0 0 0 0 0
∗ ∗ ∗ Ξ44 Ξ45 A𝑑 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝛾I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −J1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (9)

where

Ξ11 = sym {A− LC} +P+Q+ 2𝛽I+ 𝜀1N
TN,

Ξ12 = Θ12,

Ξ22 = Θ22,

Ξ33 = Θ33,

Ξ45 = Θ45,

Ξ44 = sym {A+BK} +R+ S+ 2𝛽I+ 𝜀3N
TN,

Ξ55 = Θ55,

Ξ66 = Θ66,

Ξ14 = (BLC)

T
,

J1 = diag {𝜀1I, 𝜀2I, 𝜀3I, 𝜀4I} ,

Ξ24 = (BLCD)

T
,

J2 = [M M M M] ,

Ξ17 = −CT
+G𝑤,

Ξ27 = − (CD)

T
,

(10)

then, the overall closed-loop system with (4) and (7) is said to
be robust asymptotically stable and passive.

Proof. Define

D (𝑒𝑡) = e (𝑡) −De (𝑡 − 𝜏) ,

D (x̂𝑡) = x̂ (𝑡) −Dx̂ (𝑡 − 𝜏) .

(11)

Choose the Lyapunov functional candidate

V (𝑡) = V1 (𝑡) +V2 (𝑡) +V3 (𝑡) +V4 (𝑡) +V5 (𝑡)

+V6 (𝑡) ,
(12)
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where

V1 (𝑡) = D
T
(𝑒𝑡)D (𝑒𝑡) ,

V2 (𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

𝑒

2𝛽(𝑠−𝑡)eT (𝑠)Pe (𝑠) d𝑠,

V3 (𝑡) = ∫

𝑡

𝑡−𝜏

𝑒

2𝛽(𝑠−𝑡)eT (𝑠)Qe (𝑠) d𝑠,

V4 (𝑡) = D
T
(𝑥𝑡)D (𝑥𝑡) ,

V5 (𝑡) = ∫

𝑡

𝑡−𝑑(𝑡)

𝑒

2𝛽(𝑠−𝑡)x̂T (𝑠)Rx̂ (𝑠) d𝑠,

V6 (𝑡) = ∫

𝑡

𝑡−𝜏

𝑒

2𝛽(𝑠−𝑡)x̂T (𝑠) Sx̂ (𝑠) d𝑠.

(13)

Firstly, we consider the overall closed-loop system with
w(𝑡) = 0. It can be derived from (4) and (7) that

̇V1 (𝑡) = 2DT
(𝑒𝑡) {[A− LC+ΔA (𝑡)] e (𝑡)

+ [A𝑑 +ΔA𝑑 (𝑡)] e (𝑡 − 𝑑 (𝑡)) +ΔA (𝑡) x̂ (𝑡)

+ ΔA𝑑 (𝑡) x̂ (𝑡 − 𝑑 (𝑡))} ,

̇V2 (𝑡) = eT (𝑡)Pe (𝑡) − 𝑒

−2𝛽𝑑(𝑡)
(1−

̇

𝑑 (𝑡)) ⋅ eT (𝑡

− 𝑑 (𝑡))Pe (𝑡 − 𝑑 (𝑡)) − 2𝛽V2 (𝑡) ≤ eT (𝑡)Pe (𝑡)

− 𝑒

−2𝛽𝑑
(1−𝜇) ⋅ eT (𝑡 − 𝑑 (𝑡))Pe (𝑡 − 𝑑 (𝑡))

− 2𝛽V2 (𝑡) ,

̇V3 (𝑡) = eT (𝑡)Qe (𝑡) − 𝑒

−2𝛽𝜏
⋅ eT (𝑡 − 𝜏)Qe (𝑡 − 𝜏)

− 2𝛽V3 (𝑡) ,

̇V4 (𝑡) = 2DT
(𝑥𝑡) {(A+BK) x̂ (𝑡) +A𝑑x̂ (𝑡 − 𝑑 (𝑡))

+BLCe (𝑡)} ,

̇V5 (𝑡) = x̂T (𝑡)Rx̂ (𝑡) − (1−

̇

𝑑 (𝑡)) 𝑒

−2𝛽𝑑(𝑡)
⋅ x̂T (𝑡

− 𝑑 (𝑡))Rx̂ (𝑡 − 𝑑 (𝑡)) − 2𝛽V5 (𝑡) ≤ x̂T (𝑡)Rx̂ (𝑡)

− 𝑒

−2𝛽𝑑
(1−𝜇) ⋅ x̂T (𝑡 − 𝑑 (𝑡))Rx̂ (𝑡 − 𝑑 (𝑡))

− 2𝛽V5 (𝑡) ,

̇V6 (𝑡) = x̂T (𝑡) Sx̂ (𝑡) − 𝑒

−2𝛽𝜏
⋅ x̂T (𝑡 − 𝜏) Sx̂ (𝑡 − 𝜏)

− 2𝛽V6 (𝑡) .

(14)

So, we have
̇V (𝑡) ≤ D

T
(e𝑡) [sym {(A− LC)} +P+Q]D (e𝑡)

+ 2DT
(𝑒𝑡) (A− LC)De (𝑡 − 𝜏) + 2DT

(e𝑡)

⋅A𝑑e (𝑡 − 𝑑 (𝑡)) + 2DT
(e𝑡) (P+Q)D

⋅ e (𝑡 − 𝜏) + eT (𝑡 − 𝜏)DT
(P+Q)De (𝑡 − 𝜏)

− 𝑒

−2𝛽𝜏eT (𝑡 − 𝜏)Qe (𝑡 − 𝜏) − (1−𝜇) 𝑒

−2𝛽𝑑

⋅ eT (𝑡 − 𝑑 (𝑡))Pe (𝑡 − 𝑑 (𝑡)) +D
T
(x̂𝑡)

⋅ [sym {(A+BK)} +R+ S]D (x̂𝑡)

+ 2DT
(x̂𝑡)A𝑑x̂ (𝑡 − 𝑑 (𝑡)) + 2DT

(x̂𝑡)

⋅ (A+BK)Dx̂ (𝑡 − 𝜏) + 2DT
(x̂𝑡)

⋅ (R+ S)Dx̂ (𝑡 − 𝜏) + x̂T (𝑡 − 𝜏)DT

⋅ (R+ S)Dx̂ (𝑡 − 𝜏) − (1−𝜇) 𝑒

−2𝛽𝑑

⋅ x̂T (𝑡 − 𝑑 (𝑡))Rx̂ (𝑡 − 𝑑 (𝑡)) − 𝑒

−2𝛽𝜏

⋅ x̂T (𝑡 − 𝜏) Sx̂ (𝑡 − 𝜏) + 2DT
(x̂𝑡) ⋅BLCe (𝑡)

+ 2DT
(e𝑡) ΔA (𝑡) e (𝑡)

+ 2DT
(e𝑡) ΔA𝑑 (𝑡) e (𝑡 − 𝑑 (𝑡))

+ 2DT
(e𝑡) ΔA (𝑡) x̂ (𝑡)

+ 2DT
(e𝑡) ΔA𝑑 (𝑡) x̂ (𝑡 − 𝑑 (𝑡))

− 2𝛽 [V2 (𝑡) +V3 (𝑡) +V5 (𝑡) +V6 (𝑡)] .

(15)

Note that G = BTP, and the Assumption 2 as well as
Lemma 3, for 𝜀𝑖 > 0 (𝑖 = 1, . . . , 4); the following inequalities
hold:

2DT
(e𝑡) ΔA (𝑡) e (𝑡)

= 2DT
(e𝑡)M ⋅ F (𝑡)N [D (e𝑡) +De (𝑡 − 𝜏)]

≤ 𝜀

−1
1 D

T
(e𝑡)MMT

D (e𝑡)

+ 𝜀1 [D (e𝑡) +De (𝑡 − 𝜏)]

T

⋅NTN [D (e𝑡) +De (𝑡 − 𝜏)] ,

2DT
(e𝑡) ΔA𝑑 (𝑡) e (𝑡 − 𝑑 (𝑡))

≤ 𝜀

−1
2 D

T
(e𝑡)MMT

D (e𝑡)

+ 𝜀2e
T
(𝑡 − 𝑑 (𝑡))NT

𝑑
N𝑑e (𝑡 − 𝑑 (𝑡)) ,

2DT
(e𝑡) ΔA (𝑡) x̂ (𝑡)

≤ 𝜀

−1
3 D

T
(e𝑡)MMT

D (e𝑡) + 𝜀3x̂
T
(𝑡)NTNx̂ (𝑡) ,

2DT
(e𝑡) ΔA𝑑 (𝑡) x̂ (𝑡 − 𝑑 (𝑡))

≤ 𝜀

−1
4 D (e𝑡)MMT

D (e𝑡)

+ 𝜀4x̂
T
(𝑡 − 𝑑 (𝑡))NT

𝑑
N𝑑x̂ (𝑡 − 𝑑 (𝑡)) .

(16)
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Substituting (16) into (15) yields

̇V (𝑡) + 2𝛽V (𝑡) ≤ D
T
(e𝑡)

⋅ [sym {(A− LC)} +P+Q+ 2𝛽I] ⋅D (e𝑡)

+ 2DT
(e𝑡) (A− LC)De (𝑡 − 𝜏) + 2DT

(e𝑡)

⋅A𝑑e (𝑡 − 𝑑 (𝑡)) + 2DT
(e𝑡) (P+Q) ⋅De (𝑡 − 𝜏)

+ eT (𝑡 − 𝜏)DT
(P+Q)De (𝑡 − 𝜏) − 𝑒

−2𝛽𝜏eT (𝑡 − 𝜏)

⋅Qe (𝑡 − 𝜏) − (1−𝜇) 𝑒

−2𝛽𝑑
⋅ eT (𝑡 − 𝑑 (𝑡))

⋅Pe (𝑡 − 𝑑 (𝑡)) +D
T
(x̂𝑡)

⋅ [sym {(A+BK)} +R+ S+ 2𝛽I]D (x̂𝑡)

+ 2DT
(x̂𝑡)A𝑑x̂ (𝑡 − 𝑑 (𝑡)) + 2DT

(x̂𝑡) (A+BK)

⋅Dx̂ (𝑡 − 𝜏) + 2DT
(x̂𝑡) ⋅ (R+ S)Dx̂ (𝑡 − 𝜏)

+ x̂T (𝑡 − 𝜏)DT
(R+ S) ⋅Dx̂ (𝑡 − 𝜏) − (1−𝜇)

⋅ 𝑒

−2𝛽𝑑x̂T (𝑡 − 𝑑 (𝑡))R ⋅ x̂ (𝑡 − 𝑑 (𝑡))

− 𝑒

−2𝛽𝜏x̂T (𝑡 − 𝜏) Sx̂ (𝑡 − 𝜏) + 2DT
(x̂𝑡)

⋅BLC [D (e𝑡) +De (𝑡 − 𝜏)]

+ (𝜀

−1
1 + 𝜀

−1
2 + 𝜀

−1
3 + 𝜀

−1
4 )D

T
(e𝑡)MMT

D (e𝑡)

+ 𝜀1 [D (e𝑡) +De (𝑡 − 𝜏)]

T

⋅NTN [D (e𝑡) +De (𝑡 − 𝜏)] + 𝜀2e
T
(𝑡 − 𝑑 (𝑡))

⋅NT
𝑑
N𝑑e (𝑡 − 𝑑 (𝑡)) + 𝜀3x̂

T
(𝑡)NTNx̂ (𝑡)

+ 𝜀4x̂
T
(𝑡 − 𝑑 (𝑡))NT

𝑑
⋅N𝑑x̂ (𝑡 − 𝑑 (𝑡)) ≤ 𝜉

T
(𝑡)

⋅Θ𝜉 (𝑡) ,

(17)

where

𝜉
T
(𝑡) = [D (e𝑡) , e (𝑡 − 𝜏) , e (𝑡 − 𝑑 (𝑡)) ,D (x̂𝑡) ,

󳨀→←󳨀 x̂ (𝑡 − 𝜏) , x̂ (𝑡 − 𝑑 (𝑡))] ,

Θ =

[

[

[

[

[

[

[

[

[

[

[

[

[

Θ11 Θ12 A𝑑 (BLC)

T
0 0

∗ Θ22 0 (BLCD)

T
0 0

∗ ∗ Θ33 0 0 0
∗ ∗ ∗ Θ44 Θ45 A𝑑
∗ ∗ ∗ ∗ Θ55 0
∗ ∗ ∗ ∗ ∗ Θ66

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(18)

with

Θ11 = sym {A− LC} +P+Q+ 2𝛽I

+ (𝜀

−1
1 + 𝜀

−1
2 + 𝜀

−1
3 + 𝜀

−1
4 )MMT

+ 𝜀1N
TN,

Θ12 = (A− LC)D+ (P+Q)D+ 𝜀1N
TND,

Θ22 = DT
(P+Q)D− 𝑒

−2𝛽𝜏Q+ 𝜀1 (ND)

T ND,

Θ33 = − (1−𝜇) 𝑒

−2𝛽𝑑P+ 𝜀2N
T
𝑑
N𝑑,

Θ44 = sym {A+BK} +R+ S+ 2𝛽I+ 𝜀3N
TN,

Θ45 = (A+BK)D+ (R+ S)D+ 𝜀3N
TND,

Θ55 = − 𝑒

−2𝛽𝜏S+DT
(R+ S)D+ 𝜀3 (ND)

T ND,

Θ66 = − (1−𝜇) 𝑒

−2𝛽𝑑R+ 𝜀4N
T
𝑑
N𝑑.

(19)

It can be shown that if the LMI (9) is satisfied, Θ < 0 can
be held by using the well-known Schur complement formula.
Then, we get

̇V (𝑡) + 2𝛽V (𝑡) ≤ 𝜉
T
(𝑡)Θ𝜉 (𝑡) < 0 (for 𝜉 (𝑡) ̸= 0) , (20)

which means that the overall closed-loop system is robust
asymptotically stable, and it is followed by x̂(𝑡) → 0, e(𝑡) →

0 as 𝑡 → +∞.
Next, when w(𝑡) ̸= 0, assume zero initial conditions for

the overall system. Consider the following inequality:

̇V (𝑡) + 2𝛽V (𝑡) − 2wT
(𝑡) z𝑒 (𝑡) − 𝛾wT

(𝑡)w (𝑡)

≤ 𝜂
T
(𝑡)

̂Θ𝜂 (𝑡) ,

(21)

where

𝜂
T
(𝑡) = [𝜉

T
(𝑡) ,w (𝑡)] , (22)

̂Θ

=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Θ11 Θ12 A𝑑 (BLC)

T
0 0 −CT

+ G𝑤

∗ Θ22 0 (BLCD)

T
0 0 − (CD)

T

∗ ∗ Θ33 0 0 0 0
∗ ∗ ∗ Θ44 Θ45 A𝑑 0
∗ ∗ ∗ ∗ Θ55 0 0
∗ ∗ ∗ ∗ ∗ Θ66 0
∗ ∗ ∗ ∗ ∗ ∗ −𝛾I

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

.

(23)

Thus, by invoking the Schur complement and applying (9), it
is clear that

̇V (𝑡) − 2wT
(𝑡) z𝑒 (𝑡) − 𝛾wT

(𝑡)w (𝑡) ≤ 0. (24)

Integrating both sides of the above inequality with respect to
𝑡 over the time period [0, 𝑇], we get

V (𝑇) −V (0) − 2∫

𝑇

0
w𝑇 (𝑡) z𝑒 (𝑡) d𝑡

− 𝛾∫

𝑇

0
wT

(𝑡)w (𝑡) d𝑡 ≤ 0.

(25)
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Under the zero initial conditions, we have V(0) = 0 and
V(𝑇) ≥ 0, so the above inequality guarantees (8). Hence,
the overall closed-loop system with (4) and (7) is said to
be robust asymptotically stable and passive. The proof is
completed.

Remark 7. If matrix D ≡ 0, then the neutral-type system
under consideration becomes a retarded system. For this
retarded system, the state estimate dynamic system and error
dynamic system have the same form as (3) and (4) with
D ≡ 0, respectively. So, based upon Theorem 6, we have the
following result for the retarded system.

Corollary 8. The overall closed-loop retarded system (i.e.,
system (4) and (7) with D ≡ 0) is robust exponentially stable
and passive, if there exist symmetric positive definite matrices
P > 0, R > 0, matrices L, K, and scalars 𝜀𝑖 > 0 (𝑖 = 1, . . . , 4)
satisfying the following linear matrix inequality

[

[

[

[

[

[

[

[

[

[

[

[

Σ11 A𝑑 (BLC)

T
0 −CT

+ G𝑤 J3
∗ Σ22 0 0 0 0
∗ ∗ Σ33 A𝑑 0 0
∗ ∗ ∗ Σ44 0 0
∗ ∗ ∗ ∗ −𝛾I 0
∗ ∗ ∗ ∗ ∗ −J4

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (26)

where

Σ11 = sym {A− LC} +P+ 2𝛽I+ 𝜀1N
TN,

Σ22 = − 𝑒

−2𝛽𝑑P+ 𝜀3N
T
𝑑
N𝑑,

Σ33 = sym {A+BK} +R+ 2𝛽I+ 𝜀2N
TN,

Σ44 = − 𝑒

−2𝛽𝑑R+ 𝜀4N
T
𝑑
N𝑑,

J3 = [M M M M] ,

J4 = diag {𝜀1I, 𝜀2I, 𝜀3I, 𝜀4I} .

(27)

The desired result can be carried out by employing the same
technique used as those in Theorem 6, and the proof is omitted
here.

Remark 9. A simple stability criterion for the uncer-
tain closed-loop system is given, which is both a delay-
dependent and delay-derivative dependent condition. Thus,
it is expected to be less conservative than the result discussed
without time delay in the literature [28].

3.3. Reachability Analysis. In the following part, by means of
the state estimate in (3), a SM controller will be synthesized
to ensure the reachability of the sliding surface s(𝑡, x̂) = 0.

To this end, the following SM controller is designed

uV𝑠 (𝑡) = Kx̂ (𝑡) − 𝜌 (𝑡, x̂) sgn (s (𝑡, x̂)) , (28)

where

𝜌 (𝑡, x̂) = 𝛼 +

󵄩

󵄩

󵄩

󵄩

󵄩

(GB)

−1 GLz (𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

󵄩

(GB)

−1 GLCx̂ (𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

,

(29)

𝛼 > 0 is a small constant, and the matrix K is given in
Theorem 6.

In the following theorem, we will analyze the reachability
of the sliding surface s(𝑡, x̂) = 0.

Theorem 10. Consider the state observer system (3). If the
control input u(𝑡) is chosen as (28), then the trajectory of the
observer system (3) can converge to the sliding surface s(𝑡, x̂) =

0 in a finite moment.

Proof. Choose the Lyapunov function as

̂V (𝑡) = 0.5s (𝑡, x̂) (GB)

−1 s (𝑡, x̂) . (30)

Thus, if follows from (5) that

̇

̂V (𝑡) = s (𝑡, x̂) (GB)

−1
̇s (𝑡, x̂) = s (𝑡, x̂) (GB)

−1

⋅ {G [

̇x̂ (𝑡) −

̇x̂ (𝑡 − 𝜏)]

−G (A+BK) x̂ (𝑡) −GA𝑑x̂ (𝑡 − 𝑑 (𝑡))} = s (𝑡, x̂)

⋅ (GB)

−1
{GBu (𝑡) +GL [z (𝑡) −Cx̂ (𝑡)]

−GBKx̂ (𝑡)} = s (𝑡, x̂) {u (𝑡)

+ (GB)

−1 GL [z (𝑡) −Cx̂ (𝑡)] −Kx̂ (𝑡)} = s (𝑡, x̂)

⋅ {(GB)

−1 GL [z (𝑡) −Cx̂ (𝑡)]

− 𝜌 (𝑡, x̂) sgn (s (𝑡, x̂ (𝑡)))} ≤ − 𝛼 ‖s (𝑡, x̂)‖ < 0,

if s (𝑡, x̂) ̸= 0.

(31)

Meanwhile, note that

2̂V (𝑡) = sT (𝑡, x) (GB)

−1 s (𝑡, x)

≤ 𝜆max ((GB)

−1
) ⋅ ‖s (𝑡, x)‖2 .

(32)

It is clear that

̇

̂V (𝑡) ≤ − 𝛼̂ ⋅

̂V1/2
(𝑡) ,

(33)

where 𝛼̂ = 𝛼
√2𝜆max((GB)

−1
)

−1.
Therefore, the existence of an instant𝑇fin can be estimated

as 𝑇fin ≤

√
̂V(0)/𝛼̂ such that ̂V(𝑡) = 0 (equivalently, s(𝑡, x̂) =

0) when 𝑡 ≥ 𝑇fin. Thus, the state of the observer system (3)
can be driven onto the predefined sliding surface s(𝑡, x̂) = 0
in finite time, thereby completing the proof.
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Table 1: The feasibility and observer gain 𝐿 when 𝛽 = 0.0836.

Method Time delay 𝑑 Feasible solution Observer gain 𝐿

Reference [28]
Theorem 6 3.5 No

√

—
[
−1.3468 −0.5238 0.7936]

𝑇

Reference [28]
Theorem 6 6.5 No

√

—
[
−1.3684 −0.5202 0.7825]

𝑇

Table 2: Upper delay bound 𝑑 for various 𝜇.

Method Condition 𝜏 = 1.1 𝜏 = 1.2 𝜏 = 1.3 𝜏 = 1.4 𝜏 = 1.5 𝜏 = 1.6
Reference [28]
Theorem 6 𝜇 = 0.2 No results

3.5985 3.0835 2.4854 1.7759 0.9095 No
Reference [28]
Theorem 6 𝜇 = 0.5 No results

2.0318 1.5168 0.9187 0.2092 No No

4. Numerical Example

Consider an example of the system with the following
parameters:

A =

[

[

[

−5.0 2.0 0.0
1.0 −4.0 −1.0
−3.0 1.5 −5.0

]

]

]

,

A𝑑 =
[

[

[

−0.2 0.1 0.3
0.0 −0.1 −0.4
1.0 −0.2 −0.1

]

]

]

,

D =

[

[

[

−0.2 0.0 0.0
−0.2 0.2 0.4
0.0 0.2 −0.1

]

]

]

,

B =

[

[

[

−2
1.5
2

]

]

]

,

C =

[

[

[

−1.5
−2.0
1.0

]

]

]

T

,

M =

[

[

[

0.1 0.0 0.0
0.0 −0.1 0.0
−0.2 0.0 0.2

]

]

]

,

N =

[

[

[

0.1 0.0 0.0
0.0 0.0 −0.1
0.0 −0.1 0.0

]

]

]

,

N𝑑 =
[

[

[

0.1 0.0 −0.2
0.0 −0.1 0.0
0.0 0.0 −0.1

]

]

]

,

F (𝑡) =

[

[

[

sin 𝑡 0 0
0 sin 𝑡 0
0 0 sin 𝑡

]

]

]

,

G𝑤 =

[

[

[

0.2
0.4
0.5

]

]

]

.

(34)

In addition, the constant neutral-term delay 𝜏 = 1.2 and the
time-varying delay 𝑑(𝑡) is chosen as 𝑑(𝑡) = 0.3+0.2 sin 𝑡 such
that 𝜇 = 0.2 and 𝑑 = 0.5 can be given. Select 𝛽 = 0.15, the
performance index 𝛾 = 1.4012, and the external disturbance
w(𝑡) = 1/(1 + 𝑒

𝑡
).

Our aims here are as follows: (1) to show the superiority
of Theorem 6 when compared with the relative result in
the literature [28]; (2) to solve the gain matrix K and
L in Theorem 6 such that the overall closed-loop system
composed of (4) and (7) can be robust asymptotically stable
and passive; (3) to design a SMC law given in (28) such that
state of the observer system (3) can be driven onto the sliding
surface s(𝑡, x̂) = 0 in finite time.

Firstly, Tables 1 and 2 give a detailed comparison of
results on the feasible solution and maximum allowed delay
bound via the method in [28] and Theorem 6 in this paper,
respectively.

In terms of conservatism, the results in the tables clearly
show that the condition in this paper outperforms that in [28].

Secondly, by solving the LMI (9), we obtain the parame-
ters as follows:

P =

[

[

[

3.1523 −0.9756 1.5372
−0.9756 0.6376 −0.1278
1.5372 −0.1278 1.7957

]

]

]

,

Q =

[

[

[

4.1726 −1.1968 0.1225
−1.1968 1.2350 0.1274
0.1225 0.1274 3.5446

]

]

]

,
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Figure 1: Trajectories of state x(𝑡).

R =

[

[

[

4.8403 −2.8910 0.6796
−2.8910 2.2971 −0.2332
0.6796 −0.2332 1.6090

]

]

]

,

S =

[

[

[

4.9254 −4.0778 −1.3562
−4.0778 4.8071 2.7366
−1.3562 2.7366 6.2353

]

]

]

,

𝜀1 = 4.8543,

𝜀2 = 1.5221,

𝜀3 = 13.8840,

𝜀4 = 6.6893.
(35)

And the gain matrices are

L = [−0.9433 −0.1601 0.6282]T ,

K = [2.5941 −1.9850 −1.1917] .
(36)

Thirdly, design of the SMC law will be taken into account. Let
the adjustable parameter 𝛼 be 𝛼 = 0.60. Thus, the proposed
SMC law becomes

𝑢V𝑠 (𝑡) = [2.5941 −1.9850 −1.1917] x̂ (𝑡) − [0.60

+ ‖0.3326 ⋅ z (𝑡)‖

+

󵄩

󵄩

󵄩

󵄩

[−0.4988 −0.6651 0.3326] x̂ (𝑡)

󵄩

󵄩

󵄩

󵄩

]

⋅ sgn (𝑠 (𝑡, x̂)) .

(37)

For the sake of avoiding the chattering problem, the
unit vector term in the SMC law could be replaced by
𝑠(𝑡, x̂)[‖𝑠(𝑡, x̂)‖ + 0.05]−1. The initial conditions are chosen as
𝜑(𝑡) = [−1 4 2]T and 𝜑̂(𝑡) = [−1 3 4]T, 𝑡 ∈ [−1.2, 0].

Simulation results are provided in Figures 1–4.
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Figure 2: Trajectories of state estimate x̂(𝑡).
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Figure 3: Trajectory of sliding functional s(𝑡, x̂).

The state response of the neutral system is plotted in
Figure 1. Meanwhile, the state response of the observer is
shown in Figure 2. From Figures 1 and 2, it can be seen that
the state x(𝑡) and its estimate x̂(𝑡) have a good convergent
performance even with the external disturbance. Figure 3
indicates the curve of the sliding functional 𝑠(𝑡, x̂). From
Figure 3, it can be seen that the sliding mode is attained in
a finite moment approximated to 𝑡fin ≈ 0.6 s. After that time,
response of the state estimate is globally robust asymptotically
stable, which results in the passivity and robust asymptotic
stability of the overall closed-loop system.

The SMC law 𝑢V𝑠(𝑡) has played an important role in
driving the state x̂(𝑡) onto the sliding surface s(𝑡, x̂) = 0,
which is depicted in Figure 4.

5. Conclusion

In this paper, the problem of observer-based ISMC with
passivity has been studied for a class of uncertainty NTSTD.
The state observer has been designed to generate the estimate
of system state, based on which a SMC technique has been
developed to stabilize the resulting closed-loop system. A
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Figure 4: Control input u(𝑡).

sufficient condition of the passivity and robust asymptotic
stability has been derived for the overall closed-loop system
composed of the observer SM dynamic system and the state
error dynamic system via LMI. The proposed SMC law can
guarantee the reachability of the sliding surface in state
estimate space in finite time. Finally, a numerical example has
been given to illustrate the superiority and effectiveness of the
obtained results. We will consider the observer-based ISMC
for uncertain nonlinear NTSTD in the next paper.
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