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ABSTRACT: A notion of hereditarity of a closure operator with respect to a class of
monomorphisms is introduced. Let C be a regular closure operator induced by a subcategory A.
It is shown that, if every object of A is a subobject of an A-object which is injective with respect
to a given class of monomorphisms, then the closure operator C is hereditary with respect to
that class of monomorphisms.
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INTRODUCTION
Let C be a closure operator on a category X with respect to a class M of X -monomorphisms.

In this paper we introduce the notion of hereditarity of C with respect to a subclass M′ of M.

We show that ifM′ andM′′ are two subclasses ofM which form a factorization pair forM (cf.

Definition 7) then, the hereditarity of C with respect to bothM′ andM′′ implies the hereditarity

of C with respect to M.

The main purpose of this paper is to show that hereditarity of a regular closure operator

is strongly related to the notion of injectivity. As a matter of fact, let C be a regular closure

operator induced by a subcategory A and let M′ ⊆ M. If A satisfies the condition that every

object of A is a subobject of an M′-injective object of A, then C is M′-hereditary. Some

examples show that in general if C is M′-hereditary, A need not satisfy the above condition.

We conclude the paper with an example which shows that neither hereditarity nor C-dense

hereditarity is preserved under the construction of idempotent hulls.

We use the terminology of [HS] throughout.
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2 The second author acknowledges support from the Italian Ministry of Public Education and from
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PRELIMINARIES
Throughout we consider a category X and a fixed classM of X -monomorphisms, which contains

all X -isomorphisms. It is assumed that:

(1) M is closed under composition

(2) Pullbacks ofM-morphisms exist and belong toM, and multiple pullbacks of (possibly large)

families ofM-morphisms with common codomain exist and belong to M.

In addition, we require X to have equalizers andM to contain all regular monomorphisms.

One of the consequences of the above assumptions is that there is a uniquely determined

class E of morphisms in X such that (E ,M) is a factorization structure on X , i.e., each morphism

f in X has a factorization f = m ◦ e with e ∈ E and m ∈ M, and if A
e
−→ B, B

h
−→ D, A

g
−→ C

and C
m
−→ D are X -morphisms with m ∈M, and e ∈ E such that m◦ g = h◦ e, then there exists

a unique diagonal, i.e., a morphism B
d
−→ C such that for each i ∈ I the both triangles of the

diagram

A
e
−→ B

g





y

ւd





y

h

C −→
m

D

commute (cf. [DG1]).

We regardM as a full subcategory of the arrow category of X , with the codomain functor

from M to X denoted by U . Since U is faithful, M is concrete over X .

DEFINITION 1

A closure operator on X (with respect toM) is a pair C = (γ, F ), where F is an endofunctor

on M that satisfies UF = U , and γ is a natural transformation from idM to F that satisfies

(idU )γ = idU .

Thus, given a closure operator C = (γ, F ), every member m of M has a canonical factor-

ization

•
]m[

C−→ •

mց




y

[m]
C

•

where [m]
C

= F (m) is called the C-closure of m, and ]m[
C

is the domain of the m-component
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of γ. The class of all M-morphisms of the form ]m[
C

([m]
C
) will be denoted by ∆(C) (∇(C)).

In particular, [ ]
C

induces an order-preserving increasing function on the M-subobject lattice

of every X -object. Also, these functions are related in the following sense: if p is the pullback

of a morphism m ∈ M along some X -morphism f , and q is the pullback of [m]
C

along f , then

[p]
C
≤ q. Conversely, every family of functions on the M-subobject lattices that has the above

properties uniquely determines a closure operator.

DEFINITION 2

Given a closure operator C, we say that m ∈M is C-closed if ]m[
C

is an isomorphism. An

X -morphism f is called C-dense if for every (E ,M)-factorization (e, m) of f we have that [m]
C

is an isomorphism. We call C idempotent provided that [ ]
C
◦ [ ]

C
≃ [ ]

C
, i.e., provided that [m]

C

is C-closed for every m ∈M. C is called weakly hereditary if ]m[
C

is C-dense for every m ∈ M.

For more background on closure operators see, e.g., [DG1], [DG2], [C], [K] and [DGT].

A special case of an idempotent closure operator arises in the following way. Given any class

A of X -objects and M
m
−→ X in M, define [m]

A
to be the intersection of all equalizers of pairs

of X -morphisms r, s from X to some A-object A that satisfy r ◦m = s ◦m, and let ]m[
A
∈ M be

the unique X -morphism by which m factors through [m]
A
. It is easy to see that (] [

A
, [ ]

A
) forms

an idempotent closure operator. This generalizes the Salbany construction of closure operators

induced by classes of topological spaces, cf. [S]. Such a closure operator was called regular in

[DG2]. To simplify the notation, instead of “[ ]
A
-dense” we usually write “A-dense”.

We denote the collection of all closure operators onM by CL(X ,M) pre-ordered as follows:

C ⊑ D if [m]
C
≤ [m]

D
for all m ∈ M (where ≤ is the usual order on subobjects).

DEFINITION 3

An X -object I is said to be injective with respect to the class of X -morphisms U (in short U-

injective) if for each X
m
−→ Y in U and X

f
−→ I, there exists Y

g
−→ I such that g ◦m = f . Then

g is called an extension of f along m. Inj(U) will denote the class of all U-injective X -objects.

Let C be a closure operator on X and let M′ ⊆ M. If M′ is the class of all C-dense M-

morphisms (C-closedM-morphisms), then the class of allM′-injective X -objects will be denoted

by Injd(C) (Injc(C)).

MAIN RESULTS
In what follows Ĉ (Č) will denote the idempotent hull (weakly hereditary core) of the closure

operator C (cf. [DG2]).
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PROPOSITION 4

(a) Injc(C) = Injc(Ĉ)

(b) If X isM-well powered and C is weakly hereditary then Injd(C) = Injd(Ĉ).

(c) Injd(C) = Injd(Č)

Proof:

(a). It follows from the fact that anM-subobject is C-closed iff it is Ĉ-closed.

(b). Since C-dense always implies Ĉ-dense, we have that Injd(Ĉ) ⊆ Injd(C). Now, let

Z ∈ Injd(C) and let M
m
−→ X be a Ĉ-denseM-subobject. Since C is weakly hereditary, ]m[

X

C
is

C-dense. Consequently, for any X -morphism M
f
−→ Z there exists an X -morphism [m]

X

C

g
−→ Z

such that g◦]m[
X

C
= f . Since X is M-well powered, using transfinite induction we obtain that

there exists an X -morphism [m]
X

Ĉ

h
−→ Z such that h◦]m[

X

Ĉ
= f . Since m is Ĉ-dense, [m]

X

Ĉ
is an

isomorphism and k = h ◦ ([m]
X

Ĉ
)−1 is an extension of f along m. Therefore Z ∈ Injd(Ĉ) (cf.

[DG2] with Ĉ = C
∞

).

(c). It follows from the fact that an M-subobject is C-dense iff it is Č-dense.

The question of whether item (b) of the above proposition might hold without C being

weakly hereditary and without X being M-well powered, remains open.

Since C-closed always implies Č-closed, Injc(Č) ⊆ Injc(C).

DEFINITION 5

Let M′ ⊆ M and let C be a closure operator on X with respect to M. C is called

M′-hereditary if given two M-subobjects of X , (M,m) and (N,n), with (M, m) ≤ (N, n) and

(N, n) ∈M′, we have that [M ]
X

C
∩N ≃ [M ]

N

C
.

Three particularly important cases are (C-dense)-hereditary, (C-closed)-hereditary and

hereditary that occur exactly when M′ equals the class of C-dense M-subobjects, the class

of C-closedM-subobjects and all ofM, respectively.

Notice that [M ]
X

C
∩N is isomorphic to the pullback of ([M ]

X

C
, [m]

X

C
) along n.

LEMMA 6 ([DG2])

An idempotent closure operator C is weakly hereditary iff it is C-closed-hereditary.

DEFINITION 7

LetM′ andM′′ be two subclasses ofM. We say thatM factors through the pair (M′,M′′)

iff every m ∈ M can be written as m = m′′ ◦m′ with m′ ∈ M′ and m′′ ∈M′′. (M′,M′′) will be

called a factorization pair forM.
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PROPOSITION 8

Let C be a closure operator on X and let (M′,M′′) be a factorization pair forM. Then, C

is hereditary iff C isM′-hereditary and M′′-hereditary.

Proof:

(⇒). It is obvious.

(⇐). Let us consider the following commutative diagram

M
m
−→ X

t





y

րn

x





n′′

N −→
n′

N ′

with n′ ∈M′ and n′′ ∈M′′. From the commutative diagram

M
n′

◦t
−→ N ′

t





y

րn′

N

and the fact that C isM′-hereditary, we obtain that [M ]
N

C
≃ N ∩ [M ]

N′

C
. From the commutative

diagram

M
m
−→ X

n′
◦t





y

րn′′

N ′

and the fact that C is M′′-hereditary, we obtain that [M ]
N′

C
≃ N ′ ∩ [M ]

X

C
. Therefore, [M ]

N

C
≃

N ∩ [M ]
N′

C
≃ N ∩N ′ ∩ [M ]

X

C
≃ N ∩ [M ]

X

C
. Therefore C is hereditary.

COROLLARY 9

(a) Let C be a closure operator on X . C is hereditary iff it is ∆(C)-hereditary and ∇(C)-

hereditary

(b) Let C be an idempotent closure operator on X . C is hereditary iff it is (C-dense)-hereditary

and (C-closed)-hereditary.

Proof:

(a). Clearly because (∆(C),∇(C)) always forms a factorization pair for M.
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(b). It follows immediately from the fact that if C is idempotent and (C-closed)-hereditary,

then (C-dense M-morphisms,C-closed M-morphisms) forms a factorization pair for M (cf.

Lemma 6 and [DG2]).

PROPOSITION 10

Let (M′,M′′) be a factorization pair forM. Then we have: Inj(M′)∩Inj(M′′) = Inj(M).

Proof:

We need to prove only one inclusion. Let X
m
−→ Y be a morphism inM and let X

f
−→ I be

an X -morphism with I ∈ Inj(M′) ∩ Inj(M′′). By hypothesis, m = m′′ ◦m′ with m′ ∈M′ and

m′′ ∈ M′′. So, there exists an X -morphism g such that g ◦m′ = f as well as an X -morphism h

such that h ◦m′′ = g. Therefore h ◦m = h ◦m′′ ◦m′ = g ◦m′ = f . Thus, I ∈ Inj(M).

COROLLARY 11

(a) Let C be a closure operator on X . Then Inj(∆(C)) ∩ Inj(∇(C)) = Inj(M)

(b) Let C be a weakly hereditary and idempotent closure operator on X . Then Injd(C) ∩

Injc(C) = Inj(M).

Proof:

(a). Just notice that (∆(C)),∇(C)) always forms a factorization pair forM.

(b). If C is weakly hereditary and idempotent, then (C-dense M-morphisms,C-closed M-

morphisms) forms a factorization pair forM (cf. [DG2]).

For the next few results we assume the additional condition that X is a regular well-powered

category with products.

The following result is well known.

LEMMA 12

LetM′ ⊆M. Inj(M′) is closed under products.

THEOREM 13

Let A be a class of X -objects and letM′ ⊆M. Suppose that for each A ∈ A, there is an X -

monomorphism A
k
−→ A′ with A′ ∈ A beingM′-injective. Then the A-closure isM′-hereditary.

Proof:

Let Π(Inj(M′)∩A) denote the family of all possible products of the objects of Inj(M′)∩A.

Let M
m
−→ X be an M-subobject of X and let X −→−→

f

g
A be two X -morphisms with A ∈ A and

f ◦m = g ◦m. If A
k
−→ A′ is an X -monomorphism with A′ ∈ Inj(M′) ∩ A, then it is easy to
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see that equ(f, g) ≃ equ(k ◦ f, k ◦ g). Therefore, the A-closure agrees with the regular closure

operator induced by the family Inj(M′)∩A as well as with the one induced by Π(Inj(M′)∩A)

(cf. [C, Proposition 1.4] and [G]).

Let us consider the commutative diagram

M
m
−→ X

p





y

ցt

x





n

[M ]
N

A
−→
[t]

N

A

N

with m ∈ M and n ∈ M′. Consider two morphisms r and s with domain N and codomain

in Π(Inj(M′) ∩ A), such that [t]
N

A
= equ(r, s) (cf. [C, Proposition 1.6]). Since every Y ∈

Π(Inj(M′) ∩ A) is M′-injective (cf. Lemma 12), we get that there exist two morphisms h and

k such that h ◦ n = r and k ◦ n = s. Now, r ◦ t = s ◦ t implies that h ◦m = h ◦ n ◦ t = r ◦ t =

s ◦ t = k ◦ n ◦ t = k ◦m. Therefore h ◦ [m]
X

A
= k ◦ [m]

X

A
.

Let us consider the diagram

[M ]
X

A
∩N

β
−−−−−−−−−−−−−−−−−→ [M ]

X

A

α |
|
|

|
↓

ցα µր

N ←−
[t]

N

A [M ]
N

A

ւid m◦[t]
N

A
ց

|
|
|

|
↓

[m]
X

A

N −−−−−−−−−−−−−−−−−→
n

X

h ◦ [m]
X

A
= k ◦ [m]

X

A
implies that h ◦ [m]

X

A
◦ β = k ◦ [m]

X

A
◦ β. From [m]

X

A
◦ β = n ◦ α, we get

that r ◦ α = h ◦ n ◦ α = h ◦ [m]
X

A ◦ β = k ◦ [m]
X

A ◦ β = k ◦ n ◦ α = s ◦ α. Since [t]
N

A = equ(r, s),

there exists a morphism [M ]
X

A
∩N

γ
−→ [M ]

N

A
such that [t]

N

A
◦ γ = α. [M]

N

A
is anM-subobject of

N and by functoriality of [ ]
A
, it is also an M-subobject of [M ]

X

A
. So, there exists a morphism

[M ]
N

A

c
−→ [M ]

X

A
∩N such that α ◦ c = [t]

N

A
. Now α ◦ c ◦ γ = α implies that c ◦ γ = id, since α is

a monomorphism. Thus, c is an isomorphism, since it is a monomorphism and a retraction.

COROLLARY 14

(a) If A has enough M′-injectives, (i.e., for every A ∈ A, there is a monomorphism A
k
−→ A′

with k ∈M′ and with A′ ∈ A being M′-injective), then the A-closure is M′-hereditary.

(b) If A is epireflective in X and admits a system of M′-injective cogenerators, then the A-

closure isM′-hereditary.
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Proof:

(a). We just observe thatM′ ⊆M ⊆ X -monomorphisms.

(b). It just follows from the fact that every A ∈ A is an extremal subobject of a product of

M′-injective objects of A.

Notice that Lemma 6, Corollary 9 and the above corollary yield the following interesting

special cases.

(a) Hereditarity of the A-closure is implied by A having enoughM-injectives.

(b) Weakly hereditarity of the A-closure (=(A-closed)-hereditarity) is implied by A having

enough (A-closed)-injectives.

(c) (A-dense)-hereditarity of the A-closure is implied by A having enough (A-dense)-injectives.

(d) The A-closure is hereditary iff A has enough (A-closed)-injectives and enough (A-dense)-

injectives.

Example 17 and 18 below show that the implications in items (a)–(c) cannot be reversed in

general. Example 19 provides a case in which item (a) becomes a characterization.

REMARK 15

For any idempotent closure operator C, its weakly hereditary core Č is hereditary iff C is

C-dense hereditary. As a matter of fact, since every closure operator C and its weakly heredi-

tary core, Č, determine the same dense morphisms (i.e., C-dense = Č-dense), if C is C-dense-

hereditary, so is Č and if C is idempotent, so is Č (cf. [DG2, Theorem 4.2(3)]). Therefore from

Corollary 9 and Lemma 6, we get that Č is hereditary iff C is C-dense-hereditary.

In all of the following examplesM will be the class of embeddings.

EXAMPLE 16

If X = TOP and A = TOP0, then the Sierpinski space S, which is a cogenerator for TOP0

is trivially injective. Thus the TOP0-closure (b-closure, [Sk]) is a hereditary operator.

EXAMPLE 17

(a) Let X = A be any epireflective non bireflective subcategory of TOP different from

TOP0 and from Sgl (spaces with at most one point). Then, A ⊆ TOP1 (cf. [G]) and the

injective objects with respect to embeddings are the spaces with exactly one point. As a matter

of fact, by assumptionA contains a discrete two-point space, so it also contains any 0-dimensional

Hausdorff space. In particular it contains the one-point compactification of the discrete space of

natural numbers, N
∞

. Now, suppose that I ∈ A has at least two points, say I = {0, 1} and let
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N
f
−→ I be the continuous map defined by f(n) = 0 for n odd and f(n) = 1 for n even. Now, if

we take the embedding N
e
−→ N

∞
, there is no extension of f along e.

(b) If A is one of the categories Haus, Tych or 0-Dim, the morphism f of item (a) is

A-dense (= dense cf. [DG1]). So, in these cases, the injective objects with respect to the dense

embeddings are the spaces with exactly one point.

EXAMPLE 18

For A = Tych, the cogenerator [0, 1] is not closed injective. In fact, if X is a Tychonoff

not normal space, we know from Tietze’s Theorem that there exist a closed subset F of X and

a continuous function F
f
−→ [0, 1] that cannot be extended to all of X . Since every cogenerator

of Tych must contain a copy of the unit interval [0, 1], it is easy to conclude that Tych does

not have a Tych-closed-injective cogenerator. This proves that the implications in Corollary 14

cannot be reversed in general. As a matter of fact if A = Tych, then the A-closure in Tych is

the ordinary closure (cf. [DG1]), which is hereditary.

EXAMPLE 19

For a fixed ring R with unity, let X be the category R-Mod of left R-modules, letM be the

class of monomorphisms in R-Mod and let (T ,F) be a torsion theory. (T ,F) is hereditary iff F

is simply cogenerated by an injective module (cf. [DG3] and [L]). Thus [ ]F is hereditary iff F is

simply cogenerated by an injective object. This shows that in the category R-Mod, item (a) of

Corollary 14 can be reversed.

Neither hereditarity nor dense-hereditarity is preserved under the construction of idempotent

hulls, as the following example shows.

EXAMPLE 20

Let us consider the sets: M = {(m, n) : m, n ∈ N}, X = M ∪ {∞
1
,∞

2
, ......} ∪ {∞} and

N = M ∪ {∞}. We consider in X the pretopological structure in which every point of the form

(m, n) is isolated, a basic nbhd of∞
i
is of the form {(i, m) : m̄ ≤ m for some m̄ ∈ N}∪{∞

i
} and

a basic nbhd of∞ is of the form {∞
j
,∞

j+1
, ...}∪{∞} for some j ∈ N . Let K̂ be the idempotent

hull of the closure operator K induced by the pretopology in PrTOP (cf. [DG4]). Clearly

K̂
X

(N) = X , i.e., N is K̂-dense. Now, K̂
X

(M) = X , so K̂
X

(M) ∩ N = N , but K̂
N

(M) = M ,

since N is discrete as a pretopological subspace. Thus K̂ is K̂-closed-hereditary but not K̂-dense-

hereditary and therefore is not hereditary, although K is.
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