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Nomenclature 

(English units are used in order to facilitate comparison with 
previously published results.) 
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ft 
/o 
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bar cross-sectional area, in.2 

bar width, in. 
constraints, /= 1,6 
original objective function, $'s 
normalized parametric objective function, cu in. 
applied force, Ibf 
weld height, in. 
cost ratio of weld (material and labor) to bar 
material costs 
weld length along the bar, in. 
bar length, taken to be 14 in. 
bar height, in. 
Lagrange multipliers, (=1,6 

Introduction 

A well-known weldment design optimization problem was 
formulated and solved by Wilde [1] in the September, 1986 
issue of this journal under the title "A Maximal Activity Prin­
ciple for Eliminating Overconstrained Optimization Cases." 
The Wilde paper describes a rigorous methodology for solving 
the weldment design problem by means of monotonicity 
analysis, the maximal activity principle, and constraint 
dominance. This Technical Note contributes two significant 
addenda to the solution of the weldment problem. First, it in­
troduces a design methodology based entirely on automated 
symbolic computation and, in verifying the conclusions of 
Wilde, a minor algebraic mistake in the published solution has 
been detected. Second, the problem is resolved using a general 
parameter rather than a numerical value for the ratio of weld 
manufacturing costs to bar material costs, with relatively little 
additional effort. Three parametric design cases correspond-
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ing to an exhaustive range of cost ratios are generated rather 
than a single numerical solution to a particular numerical 
formulation. 

The original problem was posed as follows: Minimize the 
cost of a weldment, with design variables: bar cross-sectional 
area a, bar height /, weld height h and weld length /. The bar 
area is defined as a = bt. Because the weldment represents one 
step in a mass production process, a small reduction in the cost 
of one component will have a significant impact on the total 
production costs, thus providing the motivation for a 
thorough analysis. 

Using the numerical values in the original Ragsdell and 
Phillips formulation [2], the length L is 14 in. and the cost of 
manufacturing (weld material and labor) and the cost of the 
bar stock are $1.1047/cuin. and $0.04811/cu in., respectively, 
giving the cost function per weldment to be minimized over h, 
I, a, and / as 

/ 0 = 1.1047/!2/+0.6735a + 0.04811a/ 

The constraints governing this design problem are as follows: 

/ i 
h 
h 
h 

h 

A/-1.5211 >0 
a ?-16.8>0 
a~ht>0 

= at2 - 9 . 0 8 > 0 
= 1-0.02776?-
= / i -0 .125>0 

-0.09428?2/a3>0 

(weld shear) 
(bar stress) 
(weld width) 
(deflection) 
(buckling) 
(weld height) 

SYMON and SYMFUNE: Optimization Programs Using 
Symbolic Computation 

The rules of monotonicity analysis used by Wilde have been 
automated by Choy and Agogino [3] in the SYMON (SYm-
bolic MONotonicity analyzer) program, and extended by 
Agogino and Almgren [4, 5] in the SYMFUNE (SYMbolic 
FUNctional Evaluator, pronounced "symphony") program. 
SYMON and SYMFUNE are written in Vaxima/MACSYMA 
[6, 7], a symbolic math language written in FranzLISP [8]. 
They run on DEC Vax minicomputers under the Unix™ 4.3 
BSD operating system. SYMON verified the constraint activi­
ty identification performed by Wilde, and SYMFUNE, in veri­
fying the selection of the correct case for the numerically 
specific design, detected an algebraic mistake in the solution 
published by Wilde. This error did not invalidate Wilde's ma­
jor conclusions, but led to incorrect values for some of the 
Lagrange multipliers in the optimal solution. 

One major advantage in using symbolic computation, 
rather than numerical optimization, is that solutions can be 
obtained in parametric form. To illustrate its strength, con­
sider a generalization of the weldment design problem, where 
the ratio of the cost of manufacturing (weld material and 
labor) to the cost of bar stock material is left as an unknown 
parameter in the objective function. Instead of a single op­
timal design, three potentially feasible and optimal design 
cases are found, the best design depending on the value of the 
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Fig. 1 Welded beam assembly 

cost ratio parameter. SYMON uses symbolic computation to 
apply the principles of monotonicity analysis and the maximal 
activity principle in the same manner as Wilde and generates a 
list of cases, each identified by the combination of inactive 
constraints, which may yield potential solutions. These cases 
are then transferred to SYMFUNE, where they are evaluated 
for well-boundedness, feasibility and optimality. Constraint-
bound cases are considered well-bounded, and cases with 
positive degrees of freedom (d.o.f.) are evaluated by 
substituting the solution into the objective function, finding 
the minimum value of the objective function with respect to 
the remaining d.o.f., and checking whether the minimum oc­
curs at finite nonzero values of the design variables. Cases 
with detectable hidden monotonicities are eliminated at this 
point. The feasibility conditions require that the solution 
satisfies the remaining inactive inequalities, and the optimality 
conditions require that the Lagrange multipliers, computed in 
each case with known active constraints considered as 
equalities, be nonnegative. The set of inequalities comprised 
of the feasibility and optimality conditions is referred to as the 
domain of optimality. In the generalization of the welded 
beam optimization problem, we introduce the cost ratio 
parameter "K." The objective function normalized by the bar 
material cost then becomes 

F0(=/0/0.0481)=A7!2/+ Ua + al 

where 14 in. is the value of the bar length used in the original 
Ragsdell and Phillips [2] formulation. The constraints remain 
unchanged. Since the monotonicities of the objective function 
are unchanged by the substitution of the parameter for the 
numerical value, the results of SYMON are identical to those 
obtained from a purely numerical formulation. SYMON 
generates 12 cases: four 1 d.o.f. cases ([2,3,6], [3,4,6], [4,5,6] 
and [2,5,6]) and eight zero d.o.f, cases ([5,6], [4,6], [4,5], 
[3,6], [3,4], [2,6], [2,5] and [2,3]). (Note the cases are iden­
tified by the subscript index of the inactive constraints.) The 
SYMON summary table for this problem is provided in Ap­
pendix A. Note that the weld shear constraint is active for all 
feasible cases generated by SYMON, indicating that constraint 
/j is unconditionally active for this problem. In the purely 
numerical problem (as presented by Wilde) SYMFUNE finds 
all cases to be bounded, but rejects cases [2,6], [2,5], [5,6], 
[3,4], and [2,3] as not optimal, and cases [4,5], [2,3,6], [3,4,6], 
[4,5,6], and [2,5,6] as potentially optimal but not feasible. 
Case [3,6] has an overconstrained subset of equations and is 
therefore not considered. The best design for the given value 
of the cost ratio, case [4,6], is the constraint-bound design 
with constraints/4 and/6 inactive and all other constraints set 
to strict equality. This case is determined by SYMFUNE to be 
the only one which is both feasible and optimal. 

When the cost ratio is expressed by the single parameter K in 
the objective function, SYMFUNE rejects case [5,6] as not op­
timal, and cases [4,5], [2,6], [2,5], and [2,3] as potentially op­
timal but not feasible. SYMFUNE finds that case [4,6], which 
before was the sole solution, is now feasible for all values of 
K, but optimal if and only if K<34. Case [3,4], previously re­
jected as not optimal for the numerical example, is feasible for 
all values of K but now optimal if and only if K> 130. Case 
[3,4,6] is again optimal, and now feasible if and only if 

CASE [4,6] 
Bar Width Constrained 

t 
a 
h 
1 
Fn 

Ho 

^3 
^5 

= 8.271 
= 2.031 
= 0.245 
= 6.21 
= 0.3728 K + 41.05 
= 0.0557- 0.00014K 
= 0.299 - 0.009K 
= 0.009K + 0.186 

CASE [3,4] 
Weld Height Constrained 

t 
a 
h 
I 
Fo 
Ho 

^5 
^6 

= 8.271 
= 2.031 
= 0.125 
= 12.169 
= 0.1901K +53.15 
= 0.066 
= 0.627 
= 0.0732K-9.512 

CASE [3,4,6] 
(One Degree of Freedom) 

t 
a 
h 

Fo 

^5 

8.271 
2.031 
1.425/ 
1.0673 
4.335 
0.0027 
0.0256 

K 
_K 
K + 28.434 
I T + 0.0353 
K +0.3354 

Fig. 2 Parametric design chart; all cases are constrained by weld 
shear, bar stress and buckling 

34<K< 130. SYMFUNE was not run on the remaining cases, 
because VAXIMA was unable to perform the calculations re­
quired to find the feasibility and optimality conditions (due to 
an overdetermined set of equations in case [3,6] and the com­
plexity of the calculations involved in the others). However, 
since feasible optimal designs had been found for which the 
domains of optimality span all possible values of the 
parameter, and domains of optimality, by the manner in 
which they are constructed, must be mutually exclusive for 
convex problems, the remaining cases cannot generate 
solutions. 

We now have, instead of a single design for a specific value 
of the cost ratio, a flow chart (Fig. 2) for any value of the cost 
ratio. If A:< 34 then the best design is case [4,6]; if 34<K< 130 
then the best design is case [3,4,6]; and if K> 130 then the best 
design is case [3,4]. All three cases are limited by buckling, bar 
stress and weld shear. Thus constraints/, , /2 , and/5 are active 
for all values of K, directly defining the optimal values of t 
and a. Note that in Wilde's formulation K is approximately 
23, which from this chart would imply case [4,6], as Wilde 
found. A sample session of the SYMFUNE run is included in 
Appendix B. (Note: VAXIMA designates free variables with a 
"<7o" sign, e.g., %rl in the first equation of Appendix B.) 

Conclusion 
In summary, this Technical Brief has introduced two signifi­

cant addenda to the solution of the weldment constrained op­
timization problem. First, the problem is solved entirely by 
symbolic computation and, second, the problem is generalized 
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to allow for any value of the cost ratio for use in parametric or 
multiobjective design [9]. In addition, an error in the publish­
ed solution was detected and corrected, although the major 
conclusions reported were verified. The same techniques 
described can be further used to parameterize other critical 
variables in the design, such as the stress-concentration ratio 
or minimum weld height. 
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A P P E N D I X A 

S Y M O N O u t p u t 

SYMON ANALYSIS SUMMARY: 
*********************************************** 
* Combinations of Assumed inactives which have been tried: 
* [5 ,6 ] 
* [4, 6] 
* [4 ,5 ,6 ] Result Obtained (A) 
* [4, 5] 
* [3, 6] 
* [3,5] Degenerate (B) 
* [3 ,4 ,6 ] Result Obtained (A) 
* [3 ,4 ] 
* [2, 6] 
* [2 ,5 ,6 ] Result Obtained (A) 
* [2, 5] 
* [2,4] Degenerate (B) 
* [2 ,3 ,6 ] Result Obtained (A) 
* [2, 3] 
* [6] 
* [5] 
* [4] 
* [3] 
* [2] 
* [1] Degenerate (B) 
* 
* Note(A) Combinations of constraints assumed inactive for which 
* results were obtained: 
* Note(B) Combinations of constraints assumed inactive which 
* led to unbounded or degenerate cases 
********************************************************* 

* Table of combinations of active constraints which yield results: 
* 
* case inactive constraints active constraints d.o.f 

* 1 [4 ,5 ,6 ] 
* 2 [ 3 , 4 , 6 ] 
* 3 [2, 5, 6] 
* 4 [2 ,3 ,6 ] 
********************************************************** 
* Table of other combinations of active constraints: 
* Subcases of Cases with 1 or more degrees of freedom 

[1,2,3] 
[1,2,5] 
[1,3,4] 
[1,4,5] 

1 
1 
1 
1 

* case inactive constraints active constraints d.o.f 

5 
6 
7 
9 
10 
12 
13 
16 

[5,6] 
[4,6] 
[4,5] 
[3,6] 
[3,4] 
[2,6] 
[2,5] 
[2,3] 

[1,2,3,4] 
[1,2,3,5] 
[1,2,3,6] 
[1,2,4,5] 
[1,2,5,6] 
[1,3,4,5] 
[1,3,4,6] 
[1,4,5,6] 

0 
0 
0 
0 
0 
0 
0 
0 

********************************************************** 

A P P E N D I X B 

Sample SYMFUNE Output 

CASE 8 : 
Inequality constraint(s) [3, 4, 6] are inactive. 

The equation(s) which remove the remaining degree(s) of freedom: 

0.11131428 K-0.09771141 %r l 2 

%rl" 

The solutions: 

t = 8.271 
a = 2.031 

1.42513157 
h = ^ 0 5 -

1= 1.06734005 K0-5 

This case is BOUNDED. 

DOMAIN DEFINITIONS: 

Inequality constraints [3, 4, 6] are inactive. 
The derivatives of the Lagrangian are: 

0.28284 mu5 t2 

•mu 2 t+ 0.04811 (-
1.5211 

-+14) = 0 

1.5211 a 
0.04811 (1.5211 K - ) = 0 

h2 

0.18856t 
mu5 ( r + 0.02776) - mu2 a = 0 

a3 

The Lagrange multipliers: 

0.03532397 
mu2 = (-

K< 0.5 
0.00269305) K0-5 
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0.33537873 . , 
m u 5 = ( 7TZ + 0.0255688) K 0 - 5 

where 

K' 0.5 

Setting mu2 > 0 does not constrain the domain. 

Setting mu5 > 0 does not constrain the domain. 

The feasibility conditions are: 

11.78726324 

138.93957467 >= 9.08 

Note: the last equation does not restrict the domain. 

1.42513157 
= 0.125 

K 0 . 5 

Optimizing the Behavior of a Strain-Gaged Force 
Sensor 

M. Reuber1, C. Barratt2, and J. Kornegay1 

Introduction 
Strain-gaged elastic members are the basis for a large variety 

of inexpensive and reliable sensors used to measure static and 
dynamic forces. Many strain-gaged force sensor designs have 
been documented (eg. [1]), but little research has been con­
ducted in formalizing the rules which govern sensor design. 
Past studies of force-sensor design have focussed on related 
design issues such as cross-talk minimization [2], or the op­
timization of a specific sensor [3]. 

This brief examines the optimum design of single degree-of-
freedom force sensors for maximum stiffness and sensitivity. 
Guidelines for force sensor design are derived and illustrated 
by analyzing the design of a sensor used to measure the forces 
produced by a robotic water-jet cutter. 

General Form of Design Optimization Problem 

The equations describing the stiffness and sensitivity of an 
elastic structure undergoing loading can be conveniently ex­
pressed in the following generic form: 

fc = a,-(l/S), / = 1 , 4 (1) 
where 

k = equivalent stiffness at point of load application 
S = sensitivity of sensor (maximum strain per unit force) 

oij = parameter relating k and S for strain mode i (ten­
sion/compression, shear, bending, or torsion) 

The parameter a,- is a function of a set of TV design variables: 

a , = a , K ) 
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the set of N design variables for strain d, = [d{ . . . dN 

mode i 
To obtain maximum stiffness, k, for a given sensitivity, S, 

the value of a, must be maximized. This problem can be ex­
pressed in s tandard minimization form: 

Minimize ^ ( d , ) , where ^-(d,-) = « ;~ ' (^ / ) 
subject to 

Ej (df) = 0, j = 1,7, set of Jequality constraints for strain 
mode i 

Gk (dj) < 0, k = 1, K, set of K inequality constraints for 
strain mode i 

d,, i'(i) < di < di{U), upper and lower bounds on design 
variables for strain mode i 

The design optimization problem is simplified further by 
posing the problem so that the equality and inequality con­
straints are not needed and formulating i/-,- as follows: 

\pi = djxd2x . . . x dN 

The value of \p, is minimum and the value of a, is maximum 
when all of the design variable assume their lower bounds for 
a given strain mode i: 

minimum ^ = d i ( 1 ) x d 2 ( t l xd, JV(L) 

This solution represents an opt imum force-sensor design; a 
sensor which exhibits the maximum stiffness for a given 
sensitivity. 

Form of Optimization for Specific Strain Modes 

The equations which govern strain for each of the four 
strain modes can be cast into the general form described in 
equation (1). For example, for the bending mode (» = 3), a 
beam of length L is subjected to a moment oifxr through a 
rigid moment arm [Fig. 1(c)], yielding the following generic 
stiffness/sensitivity relation: 

k = ai(l/S) 

where 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

03 = 1 / ( ^ , ^ 3 ) 

S = d2
3di/(dlEv) 

dy=L 

d2=L/c 

d3=r/L 

The following variables are introduced to model bending: 

E= modulus of elasticity 
/ = cross-section moment of inertia 
c = distance from neutral axis to outermost fiber 
r] = 7/c4 (dirnensionless cross-sectional shape factor) 
L = length of member 
r = moment arm 

In a similar way, the strength of materials equations for ten­
sion/compression, shear, and torsion as described by Higdon 
et al. [4], are combined and reformulated in the generic form 
suitable for optimizing. Details of the derivations are given by 
Kornegay [5]. 

Optimum Force Sensor Design 

The maximum value of CY; is found by substituting the lower 
bound values of the design variables, dit into the expressions 
for at. The design variables are the length of the sensor, L 
(common to all strain modes), and several dirnensionless shape 
factors (eg., L/c and r/L for bending); lower bounds are 
determined by reasonable assumptions about geometry and 
strain levels. Optimum values for a, are 

a 1 = 1.54 cm " ' (tension/compression) 

a2 = 0.78cm"' (shear) 
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