
Exploiting run time distributions to compare

sequential and parallel stochastic local search

algorithms

Celso C. Ribeiro1, Isabel Rosseti1, and Reinaldo Vallejos2

1 Department of Computer Science, Universidade Federal Fluminense,
Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil.

2 Universidad Técnica Federico Santa Maŕıa, Telematics Group,
Department of Electronic Engineering, Av. España 1680, Valparáıso, Chile

{celso,rosseti}@ic.uff.br, reinaldo.vallejos@usm.cl

Abstract. Run time distributions or time-to-target plots are very use-
ful tools to characterize the running times of stochastic algorithms for
combinatorial optimization. We further explore run time distributions
and describe a new tool to compare two algorithms based on stochastic
local search. For the case where the running times of both algorithms fit
exponential distributions, we derive a closed form index that gives the
probability that one of them finds a solution at least as good as a given
target value in a smaller computation time than the other. This result is
extended to the case of general run time distributions and a numerical
iterative procedure is described for the computation of the above prob-
ability value. Numerical examples illustrate the application of this tool
in the comparison of different sequential and parallel algorithms for a
number of distinct problems.

1 Motivation

Run time distributions or time-to-target plots display on the ordinate axis the
probability that an algorithm will find a solution at least as good as a given
target value within a given running time, shown on the abscissa axis. Time-to-
target plots were first used by Feo et al. [10]. Run time distributions have been
advocated also by Hoos and Stützle [13, 14] as a way to characterize the running
times of stochastic algorithms for combinatorial optimization.

It has been observed that in many implementations of local search heuristics
for combinatorial optimization problems, such as simulated annealing, genetic
algorithms, iterated local search, tabu search, WalkSAT, and GRASP [2, 4, 7, 8,
12, 16, 23, 36, 37, 38], the random variable time to target value is exponentially
distributed or fits a shifted exponential distribution. Hoos and Stützle [15, 16]
conjecture that this is true for all methods for combinatorial optimization based
on stochastic local search.

Aiex et al. [3] describe a perl program to create time-to-target plots for mea-
sured times that are assumed to fit a shifted exponential distribution, following

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357361263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

closely [2]. Such plots are very useful in the comparison of different algorithms
or strategies for solving a given problem and have been widely used as a tool for
algorithm design and comparison.

In this work, we further explore run time distributions to evaluate stochastic
local search algorithms. We describe a new tool to compare any pair of different
stochastic local search algorithms and we use it in the investigation of differ-
ent sequential and parallel applications. Under the assumption that the running
times of the two algorithms follow exponential (or shifted exponential) distribu-
tions, we develop in Section 2 a closed form index that gives the probability that
one of the algorithms finds a target solution value in a smaller computation time
than the other. This result is illustrated by some examples. In Section 3, this
result is extended to the case of general run time distributions and a numerical
iterative process is described for the computation of the probability that one of
the algorithms will find a better solution than the other in the same computation
time. Some numerical applications are considered in Section 4, illustrating the
comparison of different sequential algorithms for two different problems. Appli-
cations in the evaluation of parallel heuristics based on stochastic local search
are described in Section 5, giving insightful indications regarding their scala-
bility with the number of processors and trade-offs between running times and
solution quality. Section 6 investigates the robustness of the proposed measure,
addressing its variation with the hardness of the target solution value. Conclud-
ing remarks are made in the last section.

2 Comparing exponential-time algorithms

We assume the existence of two stochastic local search algorithms A1 and A2 for
the approximate solution of some combinatorial optimization problem. Further-
more, we assume that their running times fit exponential (or shifted exponential)
distributions. We denote by X1 (resp. X2) the continuous random variable rep-
resenting the time needed by algorithm A1 (resp. A2) to find a solution as good
as a given target value:

X1 7→

{

0, τ < T1

λ1e
−λ1(τ−T1), τ ≥ T1

and

X2 7→

{

0, τ < T2

λ2e
−λ2(τ−T2), τ ≥ T2

where T1, λ1, T2, and λ2 are parameters (λ1 and λ2 define the shape of each
shifted exponential distribution, whereas T1 and T2 denote by how much each
of them is shifted). The cumulative probability distribution and the probability
density function of X1 are depicted in Figure 1.

Since both algorithms stop when they find a solution at least as good as the
target, we may say that algorithm A1 performs better than A2 if the former
stops before the latter. Therefore, we must evaluate the probability that the
random variable X1 takes a value smaller than or equal to X2, i.e. we compute



3

1

)(
1

11 T
e

1

)( 111
T

e

)(
1Xf

1T

1T

0

0

)(
1XF

Fig. 1. Probability density function and cumulative probability distribution of the
random variable X1.

Pr(X1 ≤ X2). Conditioning on the value ofX2 and applying the total probability
theorem, we obtain:

Pr(X1 ≤ X2) =

∫ ∞

−∞

Pr(X1 ≤ X2|X2 = τ)fX2
(τ)dτ =

=

∫ ∞

T2

Pr(X1 ≤ X2|X2 = τ)λ2e
−λ2(τ−T2)dτ =

∫ ∞

T2

Pr(X1 ≤ τ)λ2e
−λ2(τ−T2)dτ.

Let ν = τ − T2. Then, dν = dτ and

Pr(X1 ≤ X2) =

∫ ∞

0

Pr[X1 ≤ (ν + T2)]λ2e
−λ2νdν. (1)

Using the formula of cumulative probability function of the random variable X1

(see Figure 1), we obtain:

Pr[X1 ≤ (υ + T2)] = 1− e−λ1(υ+T2−T1). (2)

Replacing (2) in (1) and solving the integral, we conclude that:



4

Pr(X1 ≤ X2) = 1− e−λ1(T2−T1)
λ2

λ1 + λ2
. (3)

This result can be better interpreted by rewriting expression (3) as:

Pr(X1 ≤ X2) = (1− e−λ1(T2−T1)) + e−λ1(T2−T1)
λ1

λ1 + λ2
. (4)

The first term of the right-hand side of equation (4) is the probability that
0 ≤ X1 ≤ T2, in which case X1 is clearly less than or equal to X2. The second
term is given by the product of the factors e−λ1(T2−T1) and λ1/(λ1 + λ2), in
which the former corresponds to the probability that X1 ≥ T2 and the latter to
the probability that X1 be less than or equal to X2, given that X1 ≥ T2.

To illustrate the above result, we consider the comparison of two algorithms
described in [11, 35] for solving the server replication for reliable multicast prob-
lem. Algorithm A1 is an implementation of pure GRASP with α = 0.2, while
algorithm A2 is a pure GRASP heuristic with α = 0.9. GRASP is a multi-
start heuristic based on stochastic local search for the approximate solution of
combinatorial optimization problems, which may also be hybridized with other
metaheuristics; see e.g. [9, 20]. The runs were performed on an Intel Core2 Quad
with 2.40 GHz of clock speed and 4 GB of RAM memory. Figure 2 depicts the
run time distributions of each algorithm, obtained after 500 runs with different
seeds of an instance with m = 25 and the target value set at 2830. The plots have
been obtained with the perl tool provided in [3], which also computed the param-
eters of the two distributions: λ1 = 0.524422349, T1 = 0.36, λ2 = 0.190533895,
and T2 = 0.51. Applying expression (3), we get Pr(X1 ≤ X2) = 0.684125. This
probability is consistent with Figure 3, in which we superimposed the run time
distributions of the two pure GRASP heuristics for the same instance. The plots
in this figure show that the pure GRASP with α = 0.2 outperforms that with
α = 0.9, since the run time distribution of the former is much to the left of the
run time distribution of the latter.

Aiex et al. [2] have shown experimentally that the time taken by a GRASP
heuristic to find a solution at least as good as a given target value is a random
variable that fits an exponential distribution. In the case where the setup times
are not negligible, it fits a two-parameter shifted exponential distribution. The
probability density function of the time-to-target random variable is given by
f(t) = (1/λ) · e−t/λ in the first case or by f(t) = (1/λ) · e−(t−µ)/λ in the second,
with the parameters λ ∈ R

+ and µ ∈ R
+ being associated with the shape and

the shift of the exponential function, respectively. Figure 4 illustrates this result,
depicting the superimposed empirical and theoretical distributions observed for
one of the cases studied along the computational experiments reported in [2],
which involved 2,400 runs of GRASP procedures for each of five different prob-
lem types: maximum stable set [10, 25], quadratic assignment [19, 26], graph
planarization [28, 31], maximum weighted satisfiability [27], and maximum cov-
ering [24].



5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

(a) Pure GRASP with α = 0.2 (b) Pure GRASP with α = 0.9

Fig. 2. Run time distributions of an instance of the server replication for reliable mul-
ticast problem with m = 25 and the target value set at 2830.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0  5  10  15  20  25  30

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP (alpha = 0.2)
GRASP (alpha = 0.9)

Fig. 3. Superimposed run time distributions of pure GRASP with α = 0.2 and pure
GRASP with α = 0.9.

However, if path-relinking is applied as an intensification step at the end of
each GRASP iteration [5, 29, 33], then the iterations are no longer independent
and the memoryless characteristic of GRASP is destroyed. This also happens in
the case of cooperative parallel implementations of GRASP. Consequently, the
time-to-target random variable may not fit an exponential distribution in such
situations.



6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time to target solution value (seconds)

empirical
exponential

Fig. 4. Superimposed empirical run time distribution and best exponential fit.

This claim is illustrated by two implementations of GRASP with bidirec-
tional path-relinking. The first is an application to the 2-path network design
problem [33]. The run time distribution and the corresponding quantile-quantile
plot for an instance with 80 nodes and 800 origin-destination pairs are depicted
in Figure 5. The second is an application to the three-index assignment prob-
lem [1]. Run time distributions and the corresponding quantile-quantile plots
for Balas and Saltzman problems 22.1 (target value set to 8) and 24.1 (target
value set to 7) are shown in Figures 6 and 7, respectively. For all these cases,
we observe that points steadily deviate by more than one standard deviation
from the estimate for the upper quantiles in the quantile-quantile plots (i.e.,
many points associated with large computation times fall outside the plus or
minus one standard deviation bounds). Therefore, we may say that these run
time distributions are not exponential.

If the running times do not fit exponential (or two-parameter shifted ex-
ponential) distributions, then the result established by expression (3) does not
hold. Algorithms in this situation cannot be compared by this approach. The
next section extends this approach to general run time distributions.



7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  1  2  3  4  5  6

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 5. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking of an instance of the 2-path network design problem with 80 nodes and
800 origin-destination pairs, with target set to 588.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000  70000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 6. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on Balas and Saltzman problem 22.1, with the target value set to 8.

3 General run time distributions

Let X1 and X2 be two continuous random variables, with cumulative probability
distributions FX1

(τ) and FX2
(τ) and probability density functions fX1

(τ) and
fX2

(τ), respectively. Then,

Pr(X1 ≤ X2) =

∫ ∞

−∞

Pr(X1 ≤ τ)fX2
(τ)dτ =

∫ ∞

0

Pr(X1 ≤ τ)fX2
(τ)dτ,

since fX1
(τ) = fX2

(τ) = 0 for any τ < 0. For an arbitrary small real number ε,
the above expression can be rewritten as

Pr(X1 ≤ X2) =

∞
∑

i=0

∫ (i+1)ε

iε

Pr(X1 ≤ τ)fX2
(τ)dτ. (5)



8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10000  20000  30000  40000  50000  60000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 7. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on Balas and Saltzman problem 24.1, with the target value set to 7.

Since Pr(X1 ≤ iε) ≤ Pr(X1 ≤ τ) ≤ Pr(X1 ≤ (i + 1)ε) for iε ≤ τ ≤ (i + 1)ε,
replacing Pr(X1 ≤ τ) by Pr(X1 ≤ iε) and by Pr(X1 ≤ (i+ 1)ε) in (5) leads to

∞
∑

i=0

FX1
(iε)

∫ (i+1)ε

iε

fX2
(τ)dτ ≤ Pr(X1 ≤ X2) ≤

∞
∑

i=0

FX1
((i+1)ε)

∫ (i+1)ε

iε

fX2
(τ)dτ.

Let L(ε) and R(ε) be the value of the left and right hand sides of the above
expression, respectively, with ∆(ε) = R(ε) − L(ε) being the difference between
the upper and lower bounds of Pr(X1 ≤ X2). Then,

∆(ε) =

∞
∑

i=0

[FX1
((i+ 1)ε)− FX1

(iε)]

∫ (i+1)ε

iε

fX2
(τ)dτ. (6)

Let δ = maxτ≥0{fX1
(τ)}. Since |FX1

((i+1)ε)−FX1
(iε)| ≤ δε for i ≥ 0, expres-

sion (6) turns out to be

∆(ε) ≤
∞
∑

i=0

δε

∫ (i+1)ε

iε

fX2
(τ)dτ = δε

∫ ∞

0

fX2
(τ)dτ = δε.

Consequently,
∆(ε) ≤ δε, (7)

i.e., the difference ∆(ε) between the upper and lower bounds of Pr(X1 ≤ X2) (or
the absolute error in the integration) is smaller than or equal to δε. Therefore,
this difference can be made as small as desired by choosing a sufficiently small
value for ε.

In order to numerically evaluate a good approximation to Pr(X1 ≤ X2),
we select the appropriate value of ε such that the resulting approximation er-
ror ∆(ε) is sufficiently small. Next, we compute L(ε) and R(ε) to obtain the
approximation

Pr(X1 ≤ X2) ≈
L(ε) +R(ε)

2
. (8)



9

In practice, the probability distributions are unknown. Instead of them, all
information available is a sufficiently large number N1 (resp. N2) of observations
of the random variable X1 (resp. X2). Since the value of δ = maxτ≥0{fX1

(τ)} is
also unknown beforehand, the appropriate value of ε cannot be estimated. Then,
we proceed iteratively as follows.

Let t1(j) (resp. t2(j)) be the value of the j-th smallest observation of the
random variable X1 (resp. X2), for j = 1, . . . , N1 (resp. N2). We set the bounds
a = min{t1(1), t2(1)} and b = max{t1(N1), t2(N2)} and choose an arbitrary
number h of integration intervals to compute an initial value ε = (b − a)/h for
each integration interval. For sufficiently small values of the integration interval
ε, the probability density function fX1

(τ) in the interval [iε, (i + 1)ε] can be

approximated by f̂X1
(τ) = (F̂X1

((i+ 1)ε)− F̂X1
(iε))/ε, where

F̂X1
(iε) = |{t1(j), j = 1, . . . , N1 : t1(j) ≤ iε}|. (9)

The same approximations hold for random variable X2.
Finally, the value of Pr(X1 ≤ X2) can be computed as in expression (8),

using the estimates f̂X1
(τ) and f̂X2

(τ) in the computation of L(ε) and R(ε).
If the approximation error ∆(ε) = R(ε) − L(ε) is sufficiently small, then the
procedure stops. Otherwise, the value of ε is halved and the above steps are
repeated until convergence.

4 Numerical applications to sequential algorithms

We illustrate the application of the tool described in the previous section in
the comparison of pairs of stochastic local search algorithms (running on the
same instance) for three different test problems: server replication for reliable
multicast, routing and wavelength assignment, and 2-path network design.

4.1 DM-D5 and GRASP algorithms for server replication

Multicast communication consists of simultaneously delivering the same infor-
mation to many receivers, from single or multiple sources. Network services spe-
cially designed to multicast are needed. The scheme used in current multicast
services create a delivery tree, whose root represents the sender, leaves represent
the receivers, and internal nodes represent network routers or relaying servers.
Transmission is performed by creating copies of the data at split points of the
tree. An important issue regarding multicast communication is how to provide a
reliable service, ensuring the delivery of all packets from the sender to receivers.
A successful technique to provide a reliable multicast service is the server repli-
cation approach, in which data is replicated at some of the multicast-capable
relaying hosts (also called replicated or repair servers) and each of them is re-
sponsible for the retransmission of packets to receivers in its group. The problem
consists of selecting the best subset of the multicast-capable relaying hosts to
act as replicated servers in a multicast scenario. It is a particular case of the
p-medians problem, which has been proven to be NP-hard [18].



10

DM-GRASP is a hybrid version of the GRASP metaheuristic that incor-
porates a data-mining process [35]. Its basic principle consists of mining for
patterns found in good-quality solutions to guide the construction of new solu-
tions, leading to a more effective exploration of the solution space. We compare
two different stochastic local search heuristics for the server replication problem:
algorithm A1 is an implementation of the DM-D5 version [11] of DM-GRASP, in
which the mining algorithm is periodically applied, while A2 is a pure GRASP
heuristic. We present illustrative results for two instances using the same network
scenario, with m = 25 and m = 50 replication servers.

Each algorithm was run 200 times with different seeds. The target was set
at 2,818.925 (the best known solution value is 2,805.89) for the instance with
m = 25 and at 2,299.07 (the best known solution value is 2,279.84) for that with
m = 50. Figures 8 and 9 depict run time distributions and quantile-quantile plots
for DM-D5, for the instances with m = 25 and m = 50, respectively. Running
times of DM-D5 did not fit exponential distributions for any of the instances.
GRASP running times were exponential for both.

The empirical run time distributions of DM-D5 and GRASP are superim-
posed in Figure 10. Algorithm DM-D5 outperformed GRASP, since the run-time
distribution of the first is slightly to the left of that of the second for the instance
with m = 25, and much more clearly for m = 50. Consistently, the computations
show that Pr(X1 ≤ X2) = 0.619763 (with L(ε) = 0.619450, R(ε) = 0.620075,
∆(ε) = 0.000620, and ε = 0.009552) and Pr(X1 ≤ X2) = 0.854113 (with
L(ε) = 0.853800, R(ε) = 0.854425, ∆(ε) = 0.000625, and ε = 0.427722) for the
instances with m = 25 and m = 50, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 20

 40

 60

 80

 100

 120

 140

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 8. Run time distribution and quantile-quantile plot for DM-D5 algorithm on the
instance with m = 25 and the target value set at 2,818.925.



11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 9. Run time distribution and quantile-quantile plot for DM-D5 algorithm on the
instance with m = 50 and the target value set at 2,299.07.

We have also investigated the convergence of the proposed measure with the
sample size (i.e., with the number of independent runs of each algorithm). Con-
vergence with the sample size is illustrated next for the same m = 25 instance
of the server replication problem, with the same target 2,818.925 already used
in the previous experiment. Once again, algorithm A1 is the DM-D5 version of
DM-GRASP and algorithm A2 is the pure GRASP heuristic. The estimation of
Pr(X1 ≤ X2) is computed forN = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000,
2000, 3000, 4000, and 5000 independent runs of each algorithm. Table 1 shows
the results obtained, which are also displayed in Figure 11. We notice that the
estimation of Pr(X1 ≤ X2) stabilizes as the sample size N increases. Estimates
obtained with 2,000 independent runs are already very reasonable.

4.2 Multistart and tabu search algorithms for routing and

wavelength assignment

A point-to-point connection between two endnodes of an optical network is called
a lightpath. Two lightpaths may use the same wavelength, provided they do not
share any common link. The routing and wavelength assignment problem is that
of routing a set of lightpaths and assigning a wavelength to each of them, mini-
mizing the number of wavelengths needed. Noronha and Ribeiro [22] proposed a
decomposition heuristic for solving this problem. First, a set of possible routes
is precomputed for each lightpath. Next, one of the precomputed routes and a
wavelength are assigned to each lightpath by a tabu search heuristic solving an
instance of the partition coloring problem.

We compare this decomposition strategy based on the tabu search heuristic
with the multistart greedy heuristic of Manohar et al. [21]. Two networks are
used for benchmarking. The first has 27 nodes representing the capital cities in
Brazil, with 70 links connecting them. There are 702 lightpaths to be routed.
Instance [17] Finland is formed by 31 nodes and 51 links, with 930 lightpaths to
be routed.



12

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1  1  10  100  1000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

DM-D5
GRASP

(a) m = 25 with target 2,818.925

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1  10  100  1000  10000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

DM-D5
GRASP

(b) m = 50 with target 2,299.07

Fig. 10. Superimposed run time distributions of DM-D5 and GRASP: (a) Pr(X1 ≤
X2) = 0.619763, and (b) Pr(X1 ≤ X2) = 0.854113.



13

Table 1. Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the
m = 25 instance of the server replication problem.

N L(ε) Pr(X1 ≤ X2) R(ε) ∆(ε) ε

100 0.655900 0.656200 0.656500 0.000600 0.032379
200 0.622950 0.623350 0.623750 0.000800 0.038558
300 0.613344 0.613783 0.614222 0.000878 0.038558
400 0.606919 0.607347 0.607775 0.000856 0.038558
500 0.602144 0.602548 0.602952 0.000808 0.038558
600 0.596964 0.597368 0.597772 0.000808 0.038558
700 0.591041 0.591440 0.591839 0.000798 0.038558
800 0.593197 0.593603 0.594009 0.000812 0.042070
900 0.593326 0.593719 0.594113 0.000788 0.042070
1000 0.594849 0.595242 0.595634 0.000785 0.042070
2000 0.588913 0.589317 0.589720 0.000807 0.047694
3000 0.583720 0.584158 0.584596 0.000875 0.047694
4000 0.582479 0.582912 0.583345 0.000866 0.047694
5000 0.584070 0.584511 0.584953 0.000882 0.050604

Each algorithm was run 200 times with different seeds. The target was set at
24 (the best known solution value is 24) for instance Brazil and at 50 (the best
known solution value is 47) for instance Finland. Algorithm A1 is the multistart
heuristic, while A2 is the tabu search decomposition scheme. The multistart
running times fit exponential distributions for both instances. Figures 12 and

0.500000

0.520000

0.540000

0.560000

0.580000

0.600000

0.620000

0.640000

0.660000

0.680000

0.700000

 0  1000  2000  3000  4000  5000

pr
ob

ab
ili

ty

N

Fig. 11. Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the
m = 25 instance of the server replication problem.



14

13 display run time distributions and quantile-quantile plots for instances Brazil
and Finland, respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 12. Run time distribution and quantile-quantile plot for tabu search on Brazil
instance with the target value set at 24.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 13. Run time distribution and quantile-quantile plot for tabu search on Finland
instance with the target value set at 50.

The empirical run time distributions of the decomposition and multistart
strategies are superimposed in Figure 14. The direct comparison of the two ap-
proaches shows that decomposition clearly outperformed the multistart strategy



15

for instance Brazil, since Pr(X1 ≤ X2) = 0.13 in this case (with L(ε) = 0.129650,
R(ε) = 0.130350, ∆(ε) = 0.000700, and ε = 0.008163). However, the situation
changes for instance Finland. Although both algorithms have similar perfor-
mances, multistart is slightly better with respect to the measure proposed in this
work, since Pr(X1 ≤ X2) = 0.536787 (with L(ε) = 0.536525, R(ε) = 0.537050,
∆(ε) = 0.000525, and ε = 0.008804).

As done for the server replication problem in Section 4.1, we have also in-
vestigated the convergence of the proposed measure with the sample size (i.e.,
with the number of independent runs of each algorithm). Convergence with the
sample size is illustrated next for the Finland instance of the routing and wave-
length assignment problem, with the target set at 49. Once again, algorithm A1

is the multistart heuristic and algorithm A2 is the tabu search decomposition
scheme. The estimation of Pr(X1 ≤ X2) is computed for N = 100, 200, 300,
400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, and 5000 independent runs
of each algorithm. Table 2 shows the results obtained, which are also displayed
in Figure 15. We notice that the estimation of Pr(X1 ≤ X2) stabilizes as the
sample size N increases. Estimates obtained with 1,000 independent runs are
already very reasonable.

Table 2. Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the
Finland instance of the routing and wavelength assignment problem.

N L(ε) Pr(X1 ≤ X2) R(ε) ∆(ε) ε

100 0.000001 0.000200 0.000400 0.000400 1.964844
200 0.000100 0.004875 0.009650 0.009550 0.000480
300 0.006556 0.012961 0.019367 0.012811 0.000959
400 0.007363 0.013390 0.019425 0.012063 0.000959
500 0.007928 0.014694 0.021460 0.013532 0.000610
600 0.006622 0.013069 0.019517 0.012894 0.000610
700 0.005722 0.011261 0.016800 0.011078 0.000610
800 0.005033 0.011667 0.018302 0.013269 0.000610
900 0.004556 0.010461 0.016367 0.011811 0.000610
1000 0.004100 0.009425 0.014750 0.010650 0.000610
2000 0.006049 0.011580 0.017112 0.011063 0.000610
3000 0.007802 0.014395 0.020987 0.013185 0.000610
4000 0.007408 0.013698 0.019988 0.012580 0.000610
5000 0.006791 0.013090 0.019389 0.012598 0.000623

4.3 GRASP algorithms for 2-path network design

Given a connected undirected graph with non-negative weights associated with
its edges, together with a set of origin-destination nodes, the 2-path network
design problem consists of finding a minimum weighted subset of edges contain-
ing a path formed by at most two edges between every origin-destination pair.



16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1  1  10  100

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

Multistart
Tabu search

(a) Brazil instance with target 24

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.1  1  10  100

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

Multistart
Tabu search

(b) Finland instance with target 50

Fig. 14. Superimposed run time distributions of multistart and tabu search: (a)
Pr(X1 ≤ X2) = 0.13, and (b) Pr(X1 ≤ X2) = 0.536787.



17

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

 0  1000  2000  3000  4000  5000

pr
ob

ab
ili

ty

N

Fig. 15. Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the
Finland instance of the routing and wavelength assignment problem.

Applications can be found in the design of communication networks, in which
paths with few edges are sought to enforce high reliability and small delays. Its
decision version was proved to be NP-complete by Dahl and Johannessen [6].

Instance with 90 nodes. We first compare four heuristics [32, 33] for approx-
imately solving this problem. The first is a pure GRASP algorithm (algorithm
A1). The others integrate different path-relinking strategies for search intensifi-
cation at the end of each GRASP iteration: forward (algorithm A2), bidirectional
(algorithm A3), and backward (algorithm A4) [30, 29].

Each algorithm was run 500 independent times on a benchmark instance
with 90 nodes and 900 origin-destination pairs, with the target value set at
673 (the best known solution value is 639). The run time distributions and
quantile-quantile plots for the different versions of GRASP with path-relinking
are illustrated in Figures 16 to 18.

The empirical run time distributions of the four algorithms are superimposed
in Figure 19. Algorithm A2 (as well as A3 and A4) performs much better than A1,
since Pr(X2 ≤ X1) = 0.986604 (with L(ε) = 0.986212, R(ε) = 0.986996, ∆(ε) =
0.000784, and ε = 0.029528). Algorithm A3 outperforms A2, as illustrated by
the fact that Pr(X3 ≤ X2) = 0.636000 (with L(ε) = 0.630024, R(ε) = 0.641976,
∆(ε) = 0.011952, and ε = 1.354218× 10−6). Finally, we observe that algorithms
A3 and A4 behave very similarly, although A4 performs slightly better for this
instance with respect to the measure proposed in this work, since Pr(X4 ≤
X3) = 0.536014 (with L(ε) = 0.528560, R(ε) = 0.543468, ∆(ε) = 0.014908, and
ε = 1.001358× 10−6).



18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.5

 1

 1.5

 2

 2.5

 0  1  2  3  4  5  6

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 16. Run time distribution and quantile-quantile plot for GRASP with forward
path-relinking on 90-node instance with the target value set at 673.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  1  2  3  4  5  6

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 17. Run time distribution and quantile-quantile plot for GRASP with bidirectional
path-relinking on 90-node instance with the target value set at 673.

As for the problems considered in Sections 4.1 and 4.2, we have also in-
vestigated the convergence of the proposed measure with the sample size (i.e.,
with the number of independent runs of each algorithm). Convergence with the
sample size is illustrated next for the 90-node instance of the 2-path network



19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1  1.2

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

empirical
exponential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  1  2  3  4  5  6

m
ea

su
re

d 
tim

es
 (

se
co

nd
s)

exponential quantiles

empirical
estimated

+1 std dev range
-1 std dev range

Fig. 18. Run time distribution and quantile-quantile plot for GRASP with backward
path-relinking on 90-node instance with the target value set at 673.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.001  0.01  0.1  1  10  100  1000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP
GRASP+forPR
GRASP+biPR

GRASP+backPR

Fig. 19. Superimposed run time distributions of pure GRASP and three versions of
GRASP with path-relinking.

design problem, with the same target 673 already used. We recall that algo-
rithm A1 is the GRASP with backward path-relinking heuristic, while algorithm
A2 is the GRASP with bidirectional path-relinking heuristic. The estimation of
Pr(X1 ≤ X2) is computed for N = 100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 2000, 3000, 4000, and 5000 independent runs of each algorithm. Table 3



20

Table 3. Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the
90-node instance of the 2-path network design problem.

N L(ε) Pr(X1 ≤ X2) R(ε) ∆(ε) ε

100 0.553300 0.559150 0.565000 0.011700 4.387188× 10−7

200 0.553250 0.553850 0.554450 0.001199 4.501629× 10−7

300 0.551578 0.557483 0.563389 0.011811 4.501629× 10−7

400 0.545244 0.551241 0.557238 0.011994 4.730511× 10−7

500 0.546604 0.552420 0.558236 0.011632 5.035686× 10−7

600 0.538867 0.544749 0.550631 0.011764 5.073833× 10−7

700 0.536320 0.542181 0.548041 0.011720 5.073833× 10−7

800 0.537533 0.543298 0.549064 0.011531 5.073833× 10−7

900 0.533912 0.539671 0.545430 0.011517 5.073833× 10−7

1000 0.531595 0.537388 0.543180 0.011585 5.073833× 10−7

2000 0.528224 0.533959 0.539698 0.011469 5.722427× 10−7

3000 0.530421 0.536128 0.541835 0.011414 6.027603× 10−7

4000 0.532695 0.538364 0.544033 0.011338 6.027603× 10−7

5000 0.530954 0.536566 0.542178 0.011225 6.027603× 10−7

shows the results obtained, which are also displayed in Figure 20. We notice
that the estimation of Pr(X1 ≤ X2) stabilizes as the sample size N increases.
Estimates obtained with 1,000 independent runs are already very reasonable.

Instance with 80 nodes. We now compare five different GRASP heuristics [32,
33] for the 2-path network design problem, with and without path-relinking,
for solving an instance with 80 nodes and 800 origin-destination pairs, with the
target value set at 588 (the best known solution value is 577). In this example, the
first algorithm is a pure GRASP heuristic (algorithm A1). The other heuristics
integrate different path-relinking strategies for search intensification at the end
of each GRASP iteration: forward (algorithm A2), bidirectional (algorithm A3),
backward (algorithm A4), and mixed (algorithm A5) [30, 29]. As before, each
version was run 500 independent times.

The empirical run time distributions of the five algorithms are superimposed
in Figure 21. Algorithm A2 (as well as A3, A4, and A5) performs much bet-
ter than A1, since Pr(X2 ≤ X1) = 0.970652 (with L(ε) = 0.970288, R(ε) =
0.971016, ∆(ε) = 0.000728, and ε = 0.014257). Algorithm A3 outperforms A2,
as illustrated by the fact that Pr(X3 ≤ X2) = 0.617278 (with L(ε) = 0.610808,
R(ε) = 0.623748, ∆(ε) = 0.012940, and ε = 1.220703 × 10−6). Algorithm
A4 performs slightly better than A3 for this instance, since Pr(X4 ≤ X3) =
0.537578 (with L(ε) = 0.529404, R(ε) = 0.545752, ∆(ε) = 0.016348, and
∆(ε) = 1.201630 × 10−6). Algorithms A5 and A4 also behave very similarly,
but A5 is slightly better for this instance since Pr(X5 ≤ X4) = 0.556352 (with
L(ε) = 0.547912, R(ε) = 0.564792, ∆(ε) = 0.016880, and ε = 1.001358× 10−6).



21

0.500000

0.520000

0.540000

0.560000

0.580000

0.600000

0.620000

0.640000

0.660000

0.680000

0.700000

 0  1000  2000  3000  4000  5000

pr
ob

ab
ili

ty

N

Fig. 20. Convergence of the estimation of Pr(X1 ≤ X2) with the sample size for the
90-node instance of the 2-path network design problem.

5 Comparing and evaluating parallel algorithms

In this section, we describe the use of the tool proposed in this work to evaluate
and compare parallel implementations of stochastic local search algorithms. Once
again, the 2-path network design problem is used to illustrate the application.

Figures 22 and 23 superimpose the run time distributions of cooperative
and independent parallel implementations of GRASP with bidirectional path-
relinking for the same problem, respectively, on 2, 4, 8, 16, and 32 processors,
for an instance with 100 nodes and 1000 origin-destination pairs, with the target
value set at 683. Each algorithm was run 200 times. We denote by Ak

1 (resp. Ak
2)

the cooperative (resp. independent) parallel implementation running on k =
2, 4, 8, 16, 32 processors.

Table 4 displays the probability that the cooperative parallel implementation
performs better than the independent implementation on 2, 4, 8, 16, and 32 pro-
cessors. We observe that the independent implementation performs better than
the cooperative implementation on two processors. In this case, the cooperative
implementation does not benefit from the existence of two processors, since only
one of them performs iterations, while the other acts as the master. However, as
the number of processors increases from two to 32, the cooperative implementa-
tion performs progressively better than the independent implementation, since
more processors are devoted to perform GRASP iterations. The performance
measure proposed in this work is clearly consistent with the relative behavior
of the two parallel versions for any number of processors. Furthermore, it illus-



22

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 0.01  0.1  1  10  100

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

GRASP
GRASP+forPR
GRASP+biPR

GRASP+backPR
GRASP+mixPR

Fig. 21. Superimposed empirical run time distributions of pure GRASP and four ver-
sions of GRASP with path-relinking.

trates that the cooperative implementation becomes progressively better than
the independent implementation when the number of processors increase.

Table 4. Comparing cooperative (algorithm A1) and independent (algorithm A2) par-
allel implementations.

Processors (k) Pr(Xk
1 ≤ Xk

2 )

2 0.309784
4 0.597253
8 0.766806
16 0.860864
32 0.944938

Table 5 displays the probability that each of the two parallel implementations
performs better on 2j+1 than on 2j processors, for j = 1, 2, 3, 4. Both implemen-
tations scale appropriately as the number of processors grows. Once again, we
may see that the performance measure appropriately describes the relative be-
havior of the two parallel strategies and gives a good insight on how the parallel
algorithms scale with the number of processors. It provides numerical evidence to



23

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 1  10  100  1000  10000  100000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

2 procs
4 procs
8 procs

16 procs
32 procs

Fig. 22. Superimposed empirical run time distributions of cooperative parallel GRASP
with bidirectional path-relinking running on 2, 4, 8, 16, and 32 processors.

evaluate the trade-offs between computation times and the number of processors
in parallel implementations.

Table 5. Comparing the parallel implementations on 2j+1 (algorithm A1) and 2j

(algorithm A2) processors, for j = 1, 2, 3, 4.

Processors (a) Processors (b) Pr(Xa
1 ≤ Xb

1) Pr(Xa
2 ≤ Xb

2)

4 2 0.766235 0.651790
8 4 0.753904 0.685108
16 8 0.724398 0.715556
32 16 0.747531 0.669660

6 Variation with the hardness of the target value

In the last experiment, we investigate the behavior of the measure Pr(X1 ≤ X2)
as the hardness of the target value changes. Numerical results are illustrated
for the same instance of the 2-path network design problem with 80 nodes and
800 origin-destination pairs already considered in Section 4.3. Algorithm A1 is



24

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 10  100  1000  10000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution value (seconds)

2 procs
4 procs
8 procs

16 procs
32 procs

Fig. 23. Superimposed empirical run time distributions of independent parallel
GRASP with bidirectional path-relinking running on 2, 4, 8, 16, and 32 processors.

the GRASP with bidirectional path-relinking heuristic, while algorithm A2 is
a pure GRASP heuristic. Figure 24 displays the estimation of Pr(X1 ≤ X2)
as the target ranges from 577 to 735. N = 1, 000 independent runs have been
performed for each target value. Both algorithms behave similarly for easy (i.e.,
large) targets. The GRASP with bidirectional path-relinking heuristic performs
progressively better for hard (i.e., small) targets, with Pr(X1 ≤ X2) → 1 when
the target decreases and approaches the optimal value. However, a first look at
this plot gives the wrong idea that Pr(X1 ≤ X2) seems to behave erratically for
medium-range target values between 600 and 640. To better understand what
happens in this range, the upper part of Figure 25 displays Pr(X1 ≤ X2) for
this restricted range of target values. The lower part of this figure shows the
average running time over all 1,000 runs performed for the same target. We
first observe that the average running time of the pure GRASP heuristic decays
faster as the target approaches 615 from above. Contrarily, the average running
time of the GRASP with bidirectional path-relinking heuristic increases quicker
when the target approaches 615 from below. Consequently, Pr(X1 ≤ X2) attains
a minimum when the target is equal to 615, showing that its behavior is not
monotonic as one could possibly expect from a superficial analysis.



25

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

 560  580  600  620  640  660  680  700  720  740

pr
ob

ab
ili

ty

target solution value

Fig. 24. Variation of Pr(X1 ≤ X2) with the target hardness.

7 Concluding remarks

Run time distributions are very useful tools to characterize the running times of
stochastic algorithms for combinatorial optimization. In this work, we extended
previous tools for plotting and evaluating run time distributions.

Under the assumption that running times of two stochastic local search algo-
rithms follow exponential distributions, we derived a closed form index to com-
pute the probability that one of them finds a target solution value in a smaller
computation time than the other. A numerical iterative procedure was described
for the computation of such index in the case of general run time distributions.

This new tool and the resulting probability index revealed themselves as very
promising and provide a new, additional measure for comparing the performance
of stochastic local search algorithms or different versions of the same algorithm.
They can also be used for setting the best parameters of a given algorithm, by
providing an strategy for comparing the resulting implementations. Numerical
applications to different algorithm paradigms, problem types, and test instances
illustrated the applicability of the tool.

In another context, this tool was also used in the evaluation of parallel imple-
mentations of local search algorithms. It made it possible to provide insightful
analysis involving the trade-offs between computation time and solution quality
and the scalability of parallel implementations when the number of available
processors varies.



26

0.350000

0.400000

0.450000

0.500000

0.550000

0.600000

 600  615  630  645  660  675

pr
ob

ab
ili

ty

target solution value

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

 600  615  630  645  660  675

av
er

ag
e 

tim
e 

to
 ta

rg
et

 s
ol

ut
io

n 
va

lu
e

target solution value

GRASP
GRASP + biPR

Fig. 25. Analysis of the variation in the probability estimation with the target hard-
ness.



27

Acknowledgments. This paper is an extended version of that originally titled
“On the use of run time distributions to evaluate and compare sequential and
parallel stochastic local search algorithms” [34], which received the “Best Paper
Presentation Award” among all papers presented at the conference “Engineering
Stochastic Local Search Algorithms” held in Brussels from September 3 to 4,
2009.

References

[1] R.M. Aiex, P.M. Pardalos, M.G.C. Resende, and G. Toraldo. GRASP with path
relinking for three-index assignment. INFORMS Journal on Computing, 17:224–
247, 2005.

[2] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution
time in GRASP: An experimental investigation. Journal of Heuristics, 8:343–373,
2002.

[3] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to
create time-to-target plots. Optimization Letters, 1:355–366, 2007.

[4] R. Battiti and G. Tecchiolli. Parallel biased search for combinatorial optimization:
Genetic algorithms and TABU. Microprocessors and Microsystems, 16:351–367,
1992.

[5] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations
for the prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.

[6] G. Dahl and B. Johannessen. The 2-path network problem. Networks, 43:190–199,
2004.

[7] N. Dodd. Slow annealing versus multiple fast annealing runs: An empirical inves-
tigation. Parallel Computing, 16:269–272, 1990.

[8] H.M.M. Ten Eikelder, M.G.A. Verhoeven, T.W.M. Vossen, and E.H.L. Aarts.
A probabilistic analysis of local search. In I.H. Osman and J.P. Kelly, editors,
Metaheuristics: Theory and Applications, pages 605–618. Kluwer, 1996.

[9] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

[10] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search
procedure for maximum independent set. Operations Research, 42:860–878, 1994.

[11] E. Fonseca, R. Fuchsuber, L.F.M. Santos, A. Plastino, and S.L. Martins. Exploring
the hybrid metaheuristic DM-GRASP for efficient server replication for reliable
multicast. In International Conference on Metaheuristics and Nature Inspired

Computing, page 44, Hammamet, 2008.
[12] H.H. Hoos. On the run-time behaviour of stochastic local search algorithms for

SAT. In Proc. AAAI-99, pages 661–666. MIT Press, 1999.
[13] H.H. Hoos and T. Stützle. Evaluation of Las Vegas algorithms - Pitfalls and

remedies. In Proceedings of the 14th Conference on Uncertainty in Artificial In-

telligence, pages 238–245, 1998.
[14] H.H. Hoos and T. Stützle. On the empirical evaluation of Las Vegas algorithms -

Position paper. Technical report, Computer Science Department, University of
British Columbia, 1998.

[15] H.H. Hoos and T. Stützle. Some surprising regularities in the behaviour of stochas-
tic local search. Lecture Notes in Computer Science, 1520:470, 1998.

[16] H.H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochas-
tic local search algorithms for SAT. Artificial Intelligence, 112:213–232, 1999.



28

[17] E. Hyytiã and J. Virtamo. Wavelength assignment and routing in WDM networks.
In Nordic Teletraffic Seminar 14, pages 31–40, 1998.

[18] O. Kariv and S.L. Hakimi. An algorithmic approach to network location problems
ii: The p-medians. SIAM Journal of Applied Mathematics, 37:513–538, 1979.

[19] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive
search procedure for the quadratic assignment problem. In P.M. Pardalos and
H. Wolkowicz, editors, Quadratic Assignment and Related Problems, volume 16
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 237–261. American Mathematical Society, 1994.

[20] A.P. Lucena, C.C. Ribeiro, and A.C. Santos. A hybrid heuristic for the diameter
constrained minimum spanning tree problem. Journal of Global Optimization,
46:363–381, 2010.

[21] P. Manohar, D. Manjunath, and R.K. Shevgaonkar. Routing and wavelength
assignment in optical networks from edge disjoint path algorithms. IEEE Com-

munications Letters, 5:211–213, 2002.
[22] T.F. Noronha and C.C. Ribeiro. Routing and wavelength assignment by partition

coloring. European Journal of Operational Research, 171:797–810, 2006.
[23] L.J. Osborne and B.E. Gillett. A comparison of two simulated annealing algo-

rithms applied to the directed Steiner problem on networks. ORSA Journal on

Computing, 3:213–225, 1991.
[24] M.G.C. Resende. Computing approximate solutions of the maximum covering

problem using GRASP. Journal of Heuristics, 4:161–171, 1998.
[25] M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: Fortran subroutines

for approximate solution of maximum independent set problems using GRASP.
ACM Trans. Math. Software, 24:386–394, 1998.

[26] M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines
for approximate solution of dense quadratic assignment problems using GRASP.
ACM Transactions on Mathematical Software, 22:104–118, 1996.

[27] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for com-
puting approximate solutions of MAX-SAT problems using GRASP. Discrete

Applied Mathematics, 100:95–113, 2000.
[28] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks,

29:173–189, 1997.
[29] M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances

and applications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuris-

tics: Progress as Real Problem Solvers, pages 29–63. Springer, 2005.
[30] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search proce-

dures: Advances and applications. In M. Gendreau and J.-Y. Potvin, editors,
Handbook of Metaheuristics, pages 283–319. Springer, 2nd edition, 2010.

[31] C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subroutines for approx-
imate solution of graph planarization problems using GRASP. ACM Transactions

on Mathematical Software, 25:342–352, 1999.
[32] C.C. Ribeiro and I. Rosseti. A parallel GRASP heuristic for the 2-path network

design problem. Lecture Notes in Computer Science, 2400:922–926, 2002.
[33] C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implementations of

GRASP heuristics. Parallel Computing, 33:21–35, 2007.
[34] C.C. Ribeiro, I. Rosseti, and R. Vallejos. On the use of run time distributions to

evaluate and compare stochastic local search algorithms. In T. Stützle, M. Bi-
ratari, and H.H. Hoos, editors, Engineering Stochastic Local Search Algorithms,
volume 5752 of Lecture Notes in Computer Science, pages 16–30. Springer, 2009.



29

[35] L.F. Santos, S.L. Martins, and A. Plastino. Applications of the DM-GRASP
heuristic: A survey. International Transactions in Operational Research, 15:387–
416, 2008.

[36] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search.
In Proceedings of the AAAI-94, pages 337–343. MIT Press, 1994.

[37] E.D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel
Computing, 17:443–455, 1991.

[38] M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search. Journal of Heuristics,
1:43–66, 1995.


