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ABSTRACT 
This paper presents a novel linear time-varying (LTV) 

iterative learning control law that can provide additional 
performance while maintaining the robustness and convergence 
properties comparable to those obtained using traditional 
frequency domain design techniques.   Design aspects of causal 
and non-causal linear time-invariant (LTI), along with the 
proposed LTV, ILC update laws are discussed and 
demonstrated using a simplified example.  Asymptotic as well 
as monotonic convergence, robustness and performance 
characteristics of such systems are considered, and an 
equivalent condition to the frequency domain convergence 
condition is presented for the time-varying ILC.  Lastly the ILC 
algorithm developed here is implemented on a Microscale 
Robotic Deposition system to provide experimental 
verification. 

NOMENCLATURE 
j iteration number 
k discrete time index 
n number of samples in a period 
T length of period 
Pm plant model 
Pa actual plant 
L learning filter 
Q Q-filter 
Q* Q-filter with cutoff frequency ωc = * 
Qtv time-varying Q-filter 
Qzp zero phase application of Q 

u∞ converged control 
e∞ converged error 
qi, li, pi Markov parameters of Q, L, P 
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1. INTRODUCTION 
There is a large class of control applications where the 

same task is performed repeatedly.  An obvious example is 
robotic applications where the control objective is to track the 
same command over and over.  Typically, in this type of 
situation, the system would also encounter the same disturbance 
and nonlinear effects each time.  Under these conditions, 
traditional feedback controllers would generate the same set of 
errors at each recurrence of the control task.  It is obvious that 
performance of such systems can be improved significantly by 
using a controller that learns from the previous experience.  
Ideally, one would expect that a good controller of this type 
should generate a control effort that improves the system’s 
performance with each iteration.   Another natural notion is that 
such a controller would generate high frequency control effort 
when the reference (and/or disturbance) has significant high 
frequency components and the control effort would be of low 
frequency when the reference/disturbance are relatively 
constant.   

This paper combines these three ideas in proposing a time-
varying Iterative Learning Control (ILC) law that can improve 
the performance of a given system, while retaining good 
robustness properties, by tuning the control law for the 
system’s reference/disturbance signals.  This type of a  control 
law is especially beneficial for systems with localized hard 
nonlinearities such as stiction, or systems with reference 
trajectories and/or disturbances that have significant variation 
in their frequency content during different portions of the 
period.   Monotonic convergence conditions are presented to 
check when such a design results in improved control with each 
iteration.   

It is assumed that the control is implemented digitally, and 
therefore all analysis and modeling is performed in the discrete-
time domain.  The general linear ILC structure and associated 
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robustness and performance issues are introduced via discrete 
frequency domain analysis of causal, linear time-invariant 
(LTI) laws in the following section.  As a solution to some of 
the limitations of such laws, the time-varying ILC update law is 
presented in Section 3.  Next, stability and monotonic 
convergence conditions for such an update law are studied in a 
lifted discrete-time domain.  Following that, results from 
applying such a proposed law to the Microscale Robotic 
Depositioning (MRD) system are presented before concluding 
the paper.   

2. ITERATIVE LEARNING CONTROL 
Figure 1 shows a schematic of an ILC scheme. Here the 

subscript j represents the trial or repetition number, and the 
reference signal yd(t) is defined on the interval [0, T].  At any 
given repetition, j, a control input of uj(t) is applied to the 
system to produce output yj(t), t∈[0 T], where T is the length of 
the periodic reference.  The input and output of the jth trial are 
stored in memory and used along with the fixed reference to 
calculate the input for the j+1th

 trial.   In this way, iterative 
learning control is a feedforward control in the time domain 
that utilizes feedback from the iteration domain.  Thus the goal 
of the algorithm is to design an update law to produce the 
lowest possible error as j tends to infinity.  In most ILC 
systems, it is assumed that the plant initial conditions are reset 
at the start of every period (xj(0)=x0).  Also, the system is 
assumed to be stable, or stabilized using feedback control.   

 

  System 

Learning 
Controller 

uj 

uj+1 

yj 

yd  
Fig. 1. First Order Learning Control Configuration 

A general first order ILC update law is of the form: 

 ( ) ( )ttetuftu jjLj ),(),(1 =+  (1) 

where 

 ( ) ( ) ( )tytyte jdj −=  (2) 

Three important attributes of such systems are:  
1) Stability / Convergence:  Existence of ( )tu∞  such that  

 ( ) ( )tutu jj ∞∞→
=lim  (3) 

2) Performance:  Existence of ε ≥ 0 such that the converged 
error ( )te∞  satisfies  

 ( ) ε<∞ te  (4) 

3) Robustness:  Satisfaction of stability / convergence 
condition in the presence of plant (P) uncertainties: 

 )1(~
∆+= PP  (5) 
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2.1  LTI Systems 
The input-output behavior of a general single-input-single-

output (SISO) causal LTI system for the jth iteration can be 
written in the following form [1-4]. 

 )()()()( zdzuzPzy jjj +=  (6) 

Where P(z) is a stable discrete-time transfer function, z-1 is the 
standard delay operator, and the disturbance is assumed the 
same for all iterations (dj(z) = d(z)).  The LTI first order update 
law can be written using two LTI discrete SISO systems, Q and 
L, as shown in (7). A schematic of the LTI first order ILC 
update law is given in Figure 2   

 [ ])()()()()(1 zezzLzuzQzu jjj +=+    (7) 

  
 
 
 

ILC using Fixed Q

zL(z)
Q(z) 

ej 

uj 

uj+1

 
Fig. 2. Causal, LTI ILC update law 

Here L(z) is a learning operator that modifies the  current 
control based on the previous error, Q(z) is generally a low pass 
filter designed to cutoff learning at high frequencies.  A one 
time-step lead is included in the error term to compensate for 
the relative degree of P(z), assumed to be one here.  This is 
achievable in ILC update laws because the entire error signal 
from the previous iteration is available at the next iteration.  
The learning operator L(z) is a discrete filter designed to satisfy 
the stability condition, (8).   

A widely known [1] sufficiency condition for monotonic 
convergence in the frequency domain for this LTI system is 
given by 

 [ ] ],0[        1)()(1)( πωωωωω ∈∀<− TiTiTiTi ePeLeeQ  (8) 

For a system that satisfies (8), the converged error is given by 

 [ ] ( ))()(
)()(1)(1

)(1)( zdzy
zPzzLzQ

zQze d −
−−
−

=∞  (9) 

Note from (9) that a necessary condition for convergence 
to zero error is that Q(z) ≡ 1.  However, a low pass Q-filter is 
vital in most practical problems because condition (8) could 
otherwise easily be violated in the presence of plant 
uncertainties, which usually come in at high frequencies.  From 
(7) it can be seen that the bandwidth of the Q-filter establishes 
the control bandwidth, and therefore sets off the trade-off 
between performance and robustness.  Increasing the Q-filter 
bandwidth enlarges the frequency range where perfect tracking 
can be achieved, while also increasing the risk of instability due 
to unmodeled dynamics or uncertainties.  This can be clearly 
seen for the case where Q is a cliff filter, so that Q(z) ≡ 1 for 
ω<ωc and Q(z) ≡ 0 for all ω≥ωc.  It is evident that ( ) 0=∞ ze  
∀ω<ωc and ( ) 0≠∞ ze  ∀ω≥ωc in such case.     

It has been observed that using a zero-phase Q-filter can 
provide improved system performance by reducing the error 
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due to the phase lag in Q [5].  In general, zero phase filters are 
non-causal in nature.  Given an LTI causal filter, one 
convenient way to eliminate phase lag is by filtering the same 
signal twice in the following fashion [6].  Filter the signal using 
the causal low pass filter once, )()()(~ kxqQkx = , and filter the 
new signal backwards using the same filter, 

)(~)()( kTxqQkTy −=− .  This procedure results in twice the 
attenuation and none of the phase lag.  Such an operation is 
achievable for ILC systems because the entire signal data from 
the previous iteration should be available when calculating uj 
for the current iteration.  Note that this also results in a decrease 
in the bandwidth as the attenuation increases for each 
frequency.  For MATLAB users, this type of filtering can be 
performed using the “filtfilt” command.  It has been shown that 
the discrete transfer function of such a filter can be written as 
follows [6]. 

 )()()( 1
zp zQzQzQ −=  (10) 

At this point, an example is introduced to demonstrate 
some of the convergence, robustness and performance issues 
encountered in LTI ILC systems.  This same example is used to 
demonstrate the design procedure of the time varying Q-filter 
based ILC law and the ensuing benefits in Section 3 

2.2  Motivating Example 
Consider a system as shown in Figure 3a, with noise on the 

signals and backlash on the output, required to track the 
trajectory shown in Figure 3b repeatedly.  A sample time of 
0.01 seconds is used in this example.  We assume that the linear 
model of the plant obtained using frequency response is given 
by Pm, whereas the actual plant contains additional high 
frequency dynamics, as in Pa.  Figure 4 shows the bode plots of 
the actual plant and the plant model.   

 

Pa(z) 
u(z) y(z) 
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Fig. 3. (a) Example system and (b) reference, yd  
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Fig. 4. Bode Plots of Pm and Pa. 
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 A PD-type learning law can be designed using the plant model 
to satisfy (8) without a Q-filter.  However, such an update law 
violates the convergence condition in the actual system. This 
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can be seen in Figure 5, where the magnitude of the stability 
transfer function, ( ))()(1)( zPzzLzQ − , is plotted.  Adding a 
first order butterworth Q-filter with cutoff frequency of 20 
rads/sec stabilizes the update law for the actual plant.    
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Fig. 5. Condition (8) for Pm(z) and Pa(z) 

Figure 6 shows the maximum values of the error as a 
function of iteration for both the actual system and the 
simplified model, Pm, with and without using the low-pass Q-
filter. The performance loss due to the filtering is apparent from 
the converged error values of Pm.  At the same time, the 
necessity of the added robustness given by the Q-filter is 
plainly visible by the fact that the actual plant diverges without 
filtering on u.   
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Fig. 6. The maximum value of the error at each iteration. 

3. TIME-VARYING ILC DESIGN 
As was mentioned earlier, condition (8) is a sufficient 

condition for convergence of the LTI ILC systems, which could 
be overly restrictive at times.  For many cases, one can achieve 
considerably better performance while maintaining good 
convergence behavior by increasing the bandwidth of the Q-
filter for short intervals of time when necessary.  This section 
uses the example from Section 2.2 to introduce the design 
procedure for the proposed time-varying ILC law.   

Step 1. For a given system, generate the plant model from 
frequency response data obtained using available tools. 
Stabilize the plant using feedback control as needed. 

Step 2.  Design a filter L(z) to satisfy (8), without needing a Q-
filter if possible. 

Step 3.  Apply a Q-filter with cutoff frequency based on the 
resolution of the frequency response, or as needed to satisfy (8), 
whichever is lower.   

Steps 1, 2, and 3 have been performed for the previous 
example.  It is assumed that the maximum resolution of the 
frequency response is 20 rads/sec, and therefore a first order 
butterworth filter with ωc = 20 rads/sec is set as the base filter.  
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Fig. 7. (a) e1(t) and (b) the time-frequency distribution of e1(t). 

Step 4.  Analyze the time-frequency content of the error signal 
generated at the first iteration – i.e. without ILC – to identify 
effects due to nonlinearities, disturbances, reference, noise, etc. 
on the actual plant.  

Figures 7a and 7b show e1(t) and the Wigner-Ville time-
frequency distribution of e1(t) respectively.  It can be seen that 
in this case, the significant high frequency energy content is 
present in the signal during the intervals t∈(0,0.2) and 
t∈(1,1.2), while most of the energy is contained in the low 
frequency regions in the remainder of the period. 

Step 5.  If the signal has significant frequency band variations, 
switch to a higher bandwidth Q-filter locally in time to 
accommodate the high frequency content in e.  That is, at time 
intervals during which considerable amount of energy is 
contained in the high frequency bands, switch to a high 
bandwidth Q-filter, Qhigh.  Details of the filter implementation 
are given shortly.  Effectively, this method increases the 
bandwidth of the filtered signal locally, and one can plot the 
effective bandwidth as a function of time, as shown in Figure 8.  
Ideally, we would like to switch to a fixed high frequency filter 
at these intervals, as shown in Figure 8a, but in practice it is 
important to have a smooth bandwidth profile as shown in 
Figure 8b.     

low

high

T  

low
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T  
Fig. 8. (a) ideal and (b) actual Q-filter bandwidth profile 
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Fig. 9.  Schematic of proposed time-varying ILC law. 
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This is equivalent to the time-varying Q-filter, Qtv, effectively 
switching between fixed filters Q1, Q2,…,Qm during the course 
of each iteration.  It is assumed that the switching order is fixed 
for all iterations.   
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Fig. 10. Bandwidth profile for time-varying Q-filter 

For the example, the time-varying Q-filter bandwidth can 
be designed as follows.  As a first try, increase the bandwidth 
of the Q-filter to 35 rads/sec during the high frequency regions.  
One can use a zero-phase filter to smoothen this switched 
bandwidth profile to obtain the continuously varying profile for 
the time-varying filter, as shown in Figure 10.    

Step 6.  Apply the designed time-varying Q-filter.  The system 
should remain convergent for short enough deviations from the 
low bandwidth filter.     

Figure 11 shows the convergence behavior of the error in 
the iteration domain for a causal and zero-phase application of 
the designed Q-filter to the actual plant, Pa.  These plots show 
the convergence using LTI updates laws with (1) the low 
bandwidth Q-filter, Qlow and (2) the high bandwidth Q-filter, 
Qhigh, to be compared with (3) the LTV filter Qtv that has 
bandwidth profile shown in Figure 10, and (4) the zero phase 
application of this time-varying Q-filter.  The converged errors 
at the 25th iteration are plotted in Figure 12 to show the 
performance improvement obtained by increasing the Q-filter 
bandwidth at the regions with considerable energy in the higher 
frequencies.   
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Fig. 11. Maximum value of error at each iteration  
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Fig. 12.  Converged error plots. 

The added robustness of the time-varying Q-filter is more 
apparent when the maximum cutoff frequency in Figure 10 is 
raised to 200 rads/sec.  Figure 13 plots the convergence 
behavior for this case.  Note the improved performance 
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obtained by increasing the maximum bandwidth of the Q-filter.  
However, the LTI Q-filter of cutoff frequency 200 rads/sec 
results in errors as high as emax ≅ 3*107 by the 25th iteration.  
Clearly convergence behavior such as this is unacceptable in 
practical applications.    
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Fig. 13.  Maximum value of error at each iteration  

From this example, it is seen that some filters can violate 
the sufficiency condition (8) and yet give good convergence 
behavior, while others result in system divergence.  The 
following section gives necessary and sufficient conditions for 
convergence of time-varying and LTI ILC systems, as well as 
conditions for monotonic convergence. 

4. CONVERGENCE CONDITIONS 
This section develops convergence conditions for LTI and 

LTV update laws in the iteration domain using matrix 
representation of the time-domain system dynamics.  This way, 
the otherwise 2D ILC problem can be written as a 1D problem 
in the iteration domain.   

The LTI plant, P(z), defined in (6) has state space 
representation (13), and its input output behavior can be written 
in the form of a convolution sum.  Here k is the discrete time 
index and n is the number of time steps in a period. 

∑
−
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ikk nkiBuCAkdxCAky

nkkdkCxky
nkkBukAxkx

L

L

L

 (13) 

Assuming zero initial conditions, P(z) can be written as follows 
[1],[2],[4],[7].  Here pi, sometimes called the Markov 
parameters of the plant, are given by BCAi 1− . 

( ) L+++=−= −−−− 3
3

2
2

1
1

1)( zpzpzpBAzICzP  (14) 

Note that it is assumed the plant is of relative degree 1 here.  
For a transfer function of relative degree r, the first nonzero 
element will be multiplied by z-r.  Define vectors jŷ  and jû , 
and matrix P as follows:   

;
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Then the linear plant (6) can now be written as follows: 

 duPy jj
ˆˆˆ +=  (16) 
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where d̂  is a vector of the form (15) containing the effects of 
periodic disturbance.  The general ILC update law can be 
written in the form:   

 ( )jjj eLuQu ˆˆˆ
1 +=+  (17) 

where Q and L are nxn matrices that determine the updated 
control vector of the j+1th iteration based on the current control 
and error vectors.   

A well-known necessary and sufficient (N&S) condition 
for asymptotic convergence of jû to ∞û  as ∞→j  is given by 
[1], [7]:   

 ( ) niLPIQi ,,2,1   1)( L=∀<−λ  (18) 

Here the matrix Q(I-LP) is the stability matrix that 
determines the iteration dynamics of a given ILC system.  A 
sufficient (S) condition for monotonic convergence of the 
system in a given norm 

i
.  is given by: 

 ( ) 1<−
i

LPIQ  (19) 

Here 
i

.  is the induced norm of the matrix.  For a system 
that satisfies (18), the converged error is given by: 

[ ][ ]( )dyQLQLPQIPIee djj

ˆˆˆlimˆ 1 −+−−== −

∞→∞  (20) 

Where dŷ  is a vector of the form (15) that represents the 
desired trajectory.  Note again that in general, perfect tracking 
and disturbance rejection can only be obtained if Q = I. 

The matrices Q and L in (15) were of the most general 
form. For an ILC update law described by causal, LTI discrete 
transfer functions, matrices Q and L will be of similar form as 
P.   
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Here it is assumed the transfer functions L(z) and Q(z) are 
of relative degree zero, or the matrices have been shifted 
accordingly.  In this case, the stability transfer function Q(I-LP) 
is lower triangular, with identical values across its diagonal.  
Hence the N&S condition (18) simplifies to a scalar condition.  

 1)1( 100 <− plq  (22) 

A time-varying Q-filter that switches between two causal 
LTI filters Qa(z) and Qb(z) can be written as shown in (23) [7].    
Here qa,i and qb,i represent the Markov parameters of filter Qa 
and Qb respectively 
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 (23) 

The N&S conditions for convergence of the ILC system 
defined by (16) using the update law (17) with Q filter of the 
form (23) is given by:   

 1)1( 100, <− plqa  and 1)1( 100, <− plqb  (24) 

It can be seen that this result can easily be extended to a 
system switching between m Q-filters, as shown in (25).  The 
sufficient condition for monotonic convergence in a given norm 
remains the same, (19).   

 1)1(max 100,,,2,
<−

=
plqimii L

 (25) 

It is noted here that the use of non-causal filters results in 
full matrices Q and L, and (18) and (19) give the N&S  and S 
conditions for convergence in such case. Typically, zero phase 
filters have band-diagonal form.  A Q-filter that filters 
backwards and forwards in time, such as described by (10), can 
be written as follows, where Q contains the Markov parameters 
of Q(z). 

 QQQ T=zp  (26) 

Similarly, a time-varying zero-phase filter contains 
parameters of the individual filter being used at a given time 
instant in the corresponding row.  In summary, for a given ILC 
system, the general absolute condition for convergence 
(stability) is given by (18), which simplifies to (22, 24, 25) for 
causal update laws.  Monotonic convergence behavior can be 
guaranteed for a given system if (19) is satisfied.  However, 
(19) is a sufficiency condition, which can be violated sometimes 
and yet result in monotonic convergence.  It was shown in [1] 
that LTI systems satisfying (8) will also satisfy the lifted 
monotonic convergence condition, (19) for the 2-norm.   In 
fact, they are equivalent in the limit, as n approaches ∞.  
Therefore, writing the time-varying Q-matrices in forms (23), 
or the equivalent zero-phase form, allows the user to perform a 
convergence test equivalent to (8) for time-variant filters using 
the 2-norm check given by (19).   

Example System Asymptotic Convergence: The values of the 
various pi, li, and qi used in the example are given in (27). For 
the causal update laws, it is apparent by inspection that N&S 
condition (18) is satisfied for both Pm and Pa using any given 
filter.  So in theory, the apparently divergent systems shown in 
Figures 6 and 13 would have converged eventually, without the 
presence of nonlinearities and other external effects.  This can 
explain why some of the update laws which used filters 
violating condition (8) converged, while others did not.  As was 
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mentioned before, fulfilling (18) ensures eventual convergence, 
but not monotonic convergence. 
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Example System Monotonic Convergence: Monotonic 
convergence condition (19) was satisfied by all update laws for 
the plant model, Pm, under the 2-norm, as per prediction.  Next, 
condition (19) was checked for the actual plant using the 2-
norm, and the results are shown below.  An ideal switched filter 
of the form (23), i.e. with effective bandwidth profile of the 
form Figure 8a, was assumed in these calculations.  Here, one 
can see how (19) forms an equivalent condition as (8) for LTI 
as well as LTV update ILC systems.  Also apparent is the 
advantage of using the LTV update law rather than an LTI filter 
using the highest cut-off frequency in the LTV law.  Monotonic 
convergence can be guaranteed for the time-varying update law 
with ωc,max = 35, but not the LTI Q-filter using the same cut-off 
frequency, although both achieved similar performance.  This 
shows that one can generate significantly better performing ILC 
update laws using the proposed method while retaining not only 
convergence, but also monotonic convergence properties.   
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5. EXPERIMENTAL RESULTS 

The Microscale Robotic Deposition (µRD) system uses robotic 
positioning to deposit an ‘ink’ for 3-D construction of complex 
parts of small dimensions [8].  The tracking stage used and a 
schematic of the system are shown in Figure 14a and 14b.  
Very precise X-Y-Z axis positioning of the robot end effector is 
required for the accurate manufacturing of the desired parts.  
The causal algorithm described in this paper is applied to 
control the X-axis position here.  The X-axis is driven by a 
linear motor with lubricated ball bearing slides.  A double lead 
feedback controller is implemented in addition to the ILC 
controller.   
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Fig. 14. (a) The actual µRD tracking stage, and (b) a schematic. 

The discrete linear model used for the closed loop X-axis 
positioning system dynamics using a sampling period of 1ms is 
shown in (29).  The actual system, in addition to having high 
frequency resonances, experiences friction and other nonlinear 
effects.  
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The reference trajectory shown in Figure 15a is used for a 
1mm change in y.  The ILC update algorithm uses a PD 
learning law as described in [8] with KpX =1.779 and KdX =111.  
Error at the first iteration and its Wigner-Ville time-frequency 
distribution are plotted in Figures 15b and 16a.  The causal 
time-varying Q-filter used has effective bandwidth profile 
shown is Figure 16b, and satisfies conditions (18) and (19) 
using the plant model.  
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Fig. 15. (a) Desired trajectory, yd(t), and (b) e1(t) 
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Fig. 16. (a) T-F distribution of  e1(t), and (b) bandwidth profile 
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Fig. 17.  (a) Experimentally obtained RMS values of e(t), and 

(b) converged e(t) at the 50th iteration. 
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Figures 17 demonstrates the improved performance obtained 
by increasing the bandwidth for a short period, t∈[0.3, 0.45].       

6. CONCLUSIONS 
Convergence, robustness, and performance issues are 

studied for ILC systems.  The design of a novel time-varying 
ILC algorithm is presented.  This algorithm is shown to 
circumvent the traditional trade-off that arises between system 
performance and robustness to nonlinearities and model 
uncertainties for a class of systems.  A framework is set up for 
convergence analysis for such systems.  Finally, the proposed 
algorithm is applied on a system with nonlinear effects and 
high frequency resonances to demonstrate its effectiveness.   
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