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Abstract. For a connected graph G = (V,E), a subset U ⊆ V is called a
disconnected cut if U disconnects the graph and the subgraph induced by
U is disconnected as well. A natural condition is to impose that for any
u ∈ U the subgraph induced by (V \U)∪{u} is connected. In that case U
is called a minimal disconnected cut. We show that the problem of testing
whether a graph has a minimal disconnected cut is NP-complete. We also
show that the problem of testing whether a graph has a disconnected cut
separating two specified vertices s and t is NP-complete.
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1 Introduction

Graph connectivity is a fundamental graph-theoretic property that is well-studied
in the context of network robustness. In the literature several measures for graph
connectivity are known, such as requiring hamiltonicity, edge-disjoint spanning
trees, or edge- or vertex-cuts of sufficiently large size.

Let G = (V,E) be a connected simple graph. For a subset U ⊆ V , we denote
by G[U ] the subgraph of G induced by U . We say that U is a cut of G if U
disconnects G, that is, G[V \U ] contains at least two (connected) components. A
cut U is connected if G[U ] contains exactly one component, and disconnected if
G[U ] contains at least two components. We observe that G[U ] is a disconnected
cut if and only if G[V \U ] is a disconnected cut.

? Some of the results in this paper appeared in an extended abstract [6] presented at
the 20th International Symposium on Algorithms and Computation (ISAAC 2009).

?? Supported by EPSRC grant EP/G043434/1.
? ? ? Supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National

and Kapodistrian University of Athens (project code: 70/4/8757).



In our paper [6] we studied the following three problems. The Disconnected
Cut problem is to test whether a connected graph has a disconnected cut. For
a fixed integer k, the k-Cut problem is to test whether a connected graph
G = (V,E) has a cut U such that G[U ] contains exactly k components. For
fixed integers k, `, the (k, `)-Cut problem is to test whether a connected graph
G = (V,E) has a cut U such that G[U ] and G[V \U ] contain exactly k and `
components, respectively. We showed that the k-Cut problem is polynomial-
time solvable if k = 1, and NP-complete if k ≥ 2. We also showed that the (k, `)-
Cut problem is polynomial-time solvable if k = 1 or ` = 1, and NP-complete
otherwise.

The complexity of the Disconnected Cut problem is still open for general
graphs, but we showed that the problem can be solved in polynomial time for
planar graphs, claw-free graphs and chordal graphs [6]. In addition, Fleischner et
al. [5] showed that Disconnected Cut is polynomial-time solvable for triangle-
free graphs, graphs with bounded maximum degree, graphs with a dominating
edge (including co-graphs) and graphs that are not locally connected. In partic-
ular, they show that every graph of diameter at least three has a disconnected
cut.

The Disconnected Cut problem is equivalent to several other problems
posed in the literature. A graph G has a disconnected cut if and only if G allows
a vertex-surjective homomorphism to the reflexive 4-vertex cycle. Furthermore,
if G has diameter two, then G has a disconnected cut if and only if G allows a
compaction to the reflexive 4-vertex cycle if and only if G can be contracted to
some biclique. We refer to our paper [6] for more details. Here, we also mention
that a graph G = (V,E) has a disconnected cut if and only if its complement G =
(V, {uv | uv /∈ E}) has a spanning subgraph that consists of two bicliques [5].

The Disconnected Cut problem is also studied in the context of H-
partitions as introduced by Dantas et al. [1]. A model graph H with VH =
{h1, . . . , hk} has two types of edges: solid and dotted edges, and an H-partition
of a graph G is a partition of VG into k (nonempty) sets V1, . . . , Vk such that for
all vertices u ∈ Vi, v ∈ Vj and for all 1 ≤ i < j ≤ k the following two conditions
hold. Firstly, if hihj is a solid edge of H, then uv ∈ EG. Secondly, if hihj is a
dotted edge of H, then uv /∈ EG. There are no such restrictions when hi and hj

are not adjacent. Let 2K2 be the model graph with vertices h1, . . . , h4 and two
solid edges h1h3, h2h4, and 2S2 be the model graph with vertices h1, . . . , h4 and
two dotted edges h1h3, h2h4. Then a graph G has a disconnected cut if and only
if G has a 2S2-partition if and only if its complement G has a 2K2-partition.
The (equivalent) cases H = 2K2 and H = 2S2 are the only two cases of model
graphs on at most four vertices whose computational complexity is still open.
Especially, 2K2-partitions have been well studied, see e.g. two very recent papers
of Dantas, Maffray and Silva [2] and Teixeira, Dantas and de Figueiredo [7]. The
first paper [2] studies the 2K2-Partition problem for several graph classes and
the second paper [7] defines a new class of problems called 2K2-hard.

In this manuscript, we study three natural variants of the Disconnected
Cut problem in order to increase our understanding of this problem. Our study
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is also motivated by the following example. Let Pn denote the path on n vertices.
We observe that P4 = p1p2p3p4 has a disconnected cut {p1, p3} and a discon-
nected cut {p2, p4}. We observe that both these cuts contain a vertex, namely
p1 and p4, respectively, such that moving this vertex from the cut back into
the graph keeps the graph disconnected. As such, the property of the cut being
disconnected can be viewed to be somewhat artificial in this case. Therefore,
we can define the following problem, where we call a disconnected cut U of a
connected graph G = (V,E) minimal if G[(V \U) ∪ {u}] is connected for every
u ∈ U .

Minimal Disconnected Cut
Instance: a connected graph G
Question: does G have a minimal disconnected cut U?

We can relax the minimality by defining a disconnected cut U of a con-
nected graph G = (V,E) to be semi-minimal if G[(V \U) ∪ {u}] contains fewer
components than G[V \U ] for every u ∈ U . This leads to the problem:

Semi-Minimal Disconnected Cut
Instance: a connected graph G
Question: does G have a semi-minimal disconnected cut U?

We note that any minimal disconnected cut is semi-minimal. However, the re-
verse is not true; to illustrate the differences between these two problems and
the Disconnected Cut problem we observe the following:

(i) The path Pk has a disconnected cut if and only if k ≥ 4.
(ii) The path Pk has a semi-minimal disconnected cut if and only if k ≥ 5.
(iii) The path Pk does not have a minimal disconnected cut for any k ≥ 1.

Because a minimal disconnected cut of a graph G does not contain a cut
vertex of G, we can generalize (iii) to the following statement: every connected
graph that contains a cut-vertex in all its cuts has no minimal disconnected cut.
We will show that the Minimal Cut and Semi-Minimal Cut problem are
NP-complete.

An s-t separator of a connected graph G with two specified vertices s and t
is a cut U such that s and t belong to two different components of G[V \U ]. We
say that an s-t separator U is disconnected if U is a disconnected cut.

Disconnected Separator
Instance: a graph G = (V,E) and two vertices s, t ∈ V
Question: does G have a disconnected s-t separator U?

We will prove that the Disconnected Separator problem is NP-complete.

2 Preliminaries

The graphs that we consider are undirected and without multiple edges. We
assume that they may contain self-loops. For undefined (standard) graph termi-
nology we refer to [3].
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Let G = (V,E) be a graph. Each maximal connected subgraph of G is called
a component of G. For a vertex u ∈ V , we denote its neighborhood, i.e., the set
of its adjacent vertices, by N(u) = {v |uv ∈ E}. Two disjoint nonempty subsets
U,U ′ ⊂ V are adjacent if there exist vertices u ∈ U and u′ ∈ U ′ with uu′ ∈ E.
The distance dG(u, v) between two vertices u and v in a graph G is the number
of edges in a shortest path between them. The diameter diam(G) is defined as
max{dG(u, v) | u, v ∈ V }. We say that S ⊂ V is separated from T ⊂ V by
W ⊂ V \ (S ∪ T ) if every path that starts in a vertex of S and that ends in a
vertex of T uses at least one vertex from W .

Let U be a cut of a graph G. If G[(V \U) ∪ {u}] is connected we say that
u is a minimal vertex of U . If G[(V \U) ∪ {u}] contains fewer components than
G[V \U ] we say that u is a semi-minimal vertex of U .

A graph is reflexive if it has a self-loop in every vertex. We denote the reflexive
n-vertex cycle by Cn. A graph with no self-loops is called irreflexive.

Let f : VG → VH be a (graph) homomorphism from a graph G to a graph
H, i.e., f(u)f(v) ∈ EH whenever uv ∈ EG. We say that f is vertex-surjective
if f(VG) = VH . Here we used the shorthand notation f(S) = {f(u) | u ∈ S}
for a subset S ⊆ V . We say that f is a compaction if f is edge-surjective, i.e.,
for every edge xy ∈ EH with x 6= y there exist two adjacent vertices u, v with
f(u) = x and f(v) = y. We stress that the surjectivity condition only holds for
edges xy ∈ EH ; there is no such condition on the self-loops xx ∈ EH . If f is a
compaction from G to H, we also say that G compacts to H.

Let H be an induced subgraph of a graph G. A homomorphism f from a
graph G to H is a retraction from G to H if f(h) = h for all h ∈ VH . In that
case we say that G retracts to H.

The H-Compaction problem asks if a graph G compacts to a fixed graph
H, i.e., H is not part of the input. The H-Retraction problems asks if a graph
G retracts to a fixed graph H. The following two results proven by Feder and
Hell [4] and Vikas [8], respectively, are of importance to us.

Theorem 1 ([4]). The C4-Retraction problem is NP-complete.

Theorem 2 ([8]). The C4-Compaction problem is NP-complete.

3 Gadgets

In the remainder of this paper, the graph H denotes the reflexive 4-vertex cycle
h0h1h2h3h0 with self-loops hihi for i = 1, . . . , 4, and the graph G = (V,E)
denotes a graph that contains H as an induced subgraph.

For each vertex v ∈ VG\VH we add three new vertices uv, wv, yv with edges
h0uv, h0yv, h1uv, h2wv, h2yv, h3wv, uvv, uvwv, uvyv, vwv, wvyv. We also add all
edges between any two vertices uv, uv′ and between any two vertices wv, wv′ with
v 6= v′. For each edge vv′ in EG\EH we choose one arbitrary direction, say from
v to v′, and then add a new vertex xvv′ with edges vxvv′ , v

′xvv′ , uvxvv′ , wv′xvv′ .
We call the new graph G′ obtained from G an H-compactor of G. See Figure 1
for an example. This figure does not depict any self-loops, although formally G
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must have at least four self-loops, because G contains H as an induced subgraph.
However, this is irrelevant for our problems, and we may just as well assume that
G is irreflexive.

COMPACTION TO REFLEXIVE CYCLES 259

h3

wvuv
wv’uv’

xvv’

v’v

h0

h2h1

yv

yv’

Fig. 2.4. Construction of G′, with vv′ ∈ E(G−H).

For the vertex xvv′ of G′, with vv′ ∈ E(G−H), we define
r′(xvv′) = r(v), if r(v) = h2 or h3, and
r′(xvv′) = r(v′), if r(v) = h0 or h1.
We now verify that r′ : G′ → H is indeed a homomorphism (and hence a re-

traction). We shall do this by considering all the edges ab of G′ and proving that
r′(a)r′(b) is an edge of H.

Consider first an edge vv′, with vv′ ∈ E(G). We have r′(v)r′(v′) = r(v)r(v′).
Hence r′(v)r′(v′) is an edge of H (as r : G → H is a homomorphism).

Next consider an edge uvuv′ , with v, v′ ∈ V (G − H). We have that r′(uv) and
r′(uv′) are h0 or h1 depending on the values of r(v) and r(v′), respectively. Hence
r′(uv)r′(uv′) is always an edge of H. For the edges uvh0 and uvh1, with v ∈ V (G−H),
we argue similarly, since r′(h0) = r(h0) = h0 and r′(h1) = r(h1) = h1. In a similar
way, we also argue for the edges wvwv′ , wvh2, and wvh3, with v, v′ ∈ V (G−H).

Now consider an edge uvv, with v ∈ V (G − H). We have r′(v) = r(v), and if
r(v) = h1 or h2 then r(uv) = h1, otherwise r(uv) = h0. Thus r′(uv)r′(v) is always an

Fig. 1. The part of G′ that corresponds to edge vv′ ∈ EG \ EH as displayed in [8].

Vikas [8] proves Theorem 2 by a reduction from H-Retraction, which is
NP-complete by Theorem 1. In his proof he shows the following result, which we
will use as well.

Lemma 1 ([8]). Let G′ be an H-compactor of a graph G that has H as an
induced subgraph. Then the following statements are equivalent:

(i) G retracts to H;
(ii) G′ retracts to H;

(iii) G′ compacts to H.

Below we explore the properties of a retraction f from an H-compactor G′

to H. We call a subgraph of G′, every vertex of which is mapped to the same
vertex hi by f monochromatic.

Lemma 2. Let G′ be an H-compactor of a graph G that has H as an induced
subgraph. Any retraction f from G′ to H satisfies:
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(i) for i = 0, . . . , 3, the subgraph G′i induced by {u ∈ VG′ | f(u) = hi} is
connected;

(ii) for i = 0, . . . , 3, each vertex u with f(u) = hi has a neighbor v with f(v) = hj

for some j 6= i.

Proof. Let G′ be an H-compactor of a graph G with H as an induced subgraph.
Let f be a retraction from G′ to H. We prove that (i) and (ii) hold.

Proof of (i). By definition, f(hi) = hi for i = 0, . . . , 3. This means that f maps
uv-vertices to h0 and h1, and wv-vertices to h2 and h3. It also means that f
maps yv-vertices to h1 or h3.

We first prove the following claim.

Claim 1. For every v ∈ VG \ VH , if f(v) ∈ {h0, h1} then f(uv) = f(v), and if
f(v) ∈ {h2, h3} then f(wv) = f(v).

We prove Claim 1 as follows. Suppose f(v) ∈ {h0, h1} and f(uv) 6= f(v). Recall
that f(uv) ∈ {h0, h1} and f(wv) ∈ {h2, h3}. Then f maps uv, v, wv to three
different vertices of H. This is not possible, because uv, v, wv form a triangle in
G′. By the same argument we can show that f(wv) = f(v) if f(v) ∈ {h2, h3}.
This proves Claim 1.

We now show that G′0 is connected. Let V0 denote the vertex set of G′0. Let z 6= h0

be a vertex in V0, so f(z) = h0. We show that z is in the same component of G′0
as h0. This means that G′0 is connected as desired.

Suppose z is a uv-vertex. Then z is adjacent to h0. Note that z is neither a wv-
vertex nor a yv-vertex, because such a vertex is mapped to a vertex in {h2, h3}
or {h1, h3}, respectively. Suppose z = v for some v ∈ VG\VH . By Claim 1, we
find that f(uv) = f(v) = h0. Then v is in the same component of G[V0] as h0

due to the monochromatic path vuvh0.

Finally suppose z = xvv′ for two adjacent vertices v, v′ ∈ VG\VH . If f(uv) =
h0, then xvv′ is connected to h0 in G[V0] due to the path xvv′uvh0. If f(uv) 6= h0

then f(uv) = h1. Because v is adjacent to xvv′ with f(xvv′) = h0 and to uv with
f(uv) = h1, we obtain f(v) ∈ {h0, h1}. Then by Claim 1, f(v) = f(uv) = h1.
Because f(xvv′) = h0 and f(wv′) ∈ {h2, h3}, we find that f(wv′) = h3. Then v′

is adjacent to three vertices, namely xvv′ , v, wv′ , that are mapped to h0, h1, h3,
respectively. This means that f(v′) = h0. Consequently, f(uv′) = f(v′) = h0

by Claim 1. Hence, xvv′ is in the same component of G[V0] as h0 due to the
monochromatic path xvv′v

′uv′h0.

From the above we conclude that G′0 is connected. By symmetry, we find
that G′2 is connected as well. We now show that G′1 is connected.

Let z 6= h0 be a vertex in V1, so f(z) = h1. We show that z is in the same
component of G′1 as h1 by the same arguments as we used for i = 0; the only
difference is the argument for the case in which z is a yv-vertex. In that case z is
connected to h1 by the edge h1z. Hence, we conclude that G′1 is connected. By
symmetry, we find that G′3 is connected as well. Consequently, we have shown
(i).
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Proof of (ii). Let z be a vertex in G′. Suppose f(z) = h0. Then z is neither a
wv-vertex nor a yv-vertex, and z is not in {h1, h2, h3} either, because f does
not map such vertices to h0. If z is h0 or a uv-vertex, then z is adjacent to h1

with f(z) = h1. Otherwise, z ∈ VG\VH or z = xvv′ for some vv′ ∈ EG\EH . In
both cases, z is adjacent to a wv-vertex, which f maps to h2 or h3. The case
f(z) = h2 follows by symmetry.

Suppose f(z) = h1. We can use the same arguments as in the previous case;
the only difference is when z is a yv-vertex. In that case z is adjacent to h0 with
f(h0) = h0. The case f(z) = h3 follows by symmetry. Consequently, we have
shown (ii). This completes the proof of Lemma 2. ut

The following lemma will be used later on as well, in order to strengthen
our NP-hardness results. We note that it also strengthens Theorem 2, i.e., the
H-Compaction problem is NP-complete, even for graphs of diameter 3.

Lemma 3. Let G be a graph that has H as induced subgraph. The H-compactor
of G has diameter three.

Proof. Let G′ be the H-compactor of G that has H as an induced subgraph. We
choose that G′ has diameter 3 by a straightforward case analysis.

Consider a vertex hi ∈ VH . By symmetry, we may assume i ∈ {0, 1}. As
H is isomorphic to C4, we have d(hi, hj) ≤ 2 for all hj ∈ H\{hi}. Suppose
v ∈ VG\VH . Then d(hi, v) ≤ 2 and d(hi, uv) = 1 due to the path hiuvv. We also
deduce d(hi, wv) = 2 due to the path hiuvwv, and d(hi, yv) ≤ 2 due to the path
hiyv if i = 0 or hihi−1yv if i = 1. Furthermore, d(hi, xv′v′′) = 2 holds for any
v′v′′ ∈ EG\EH due to the path hiuv′xv′v′′ .

Consider a vertex v ∈ VG\VH . By construction, d(v, uv) = d(v, uw) = 1.
We deduce d(v, yv) = 2 due to the path vuvyv, and for all vv′ ∈ EG\EH we
have d(v, xvv′) = 1 due to the edge vxvv′ . Suppose v′ ∈ VG\(VH ∪ {v}). Then
d(v, v′) ≤ 3 and d(v, uv′) = 2 due to the path vuvuv′v

′. Also, d(v, wv′) = 2 due
to the path vwvwv′ , and d(v, yv′) ≤ 3 due to the path vuvuv′yv′ . Furthermore,
d(v, xv′v′′) ≤ 3 for all v′v′′ ∈ EG\EH due to the path vuvuv′xv′v′′ .

Consider a vertex uv for some v ∈ VG\VH . By construction, d(uv, wv) =
d(uv, yv) = 1 and also d(uv, xvv′) = 1 for all vv′ ∈ EG\EH . Suppose v′ ∈
VG\(VH ∪ {v}. Then d(uvu

′
v) = 1 by the edge uvuv′ , and d(uv, wv′) = 2 due to

the path uvuv′wv′ , and d(uv, yv′) = 2 due to the path uvuv′yv′ . Furthermore,
d(uv, xv′v′′) = 2 for all v′v′′ ∈ EG\EH with v′ 6= v due to the path uvu

′
vxv′v′′ .

Consider a vertex wv for some v ∈ VG\VH . By symmetry, we return to the
previous case.

Consider a vertex yv for some v ∈ VG\VH . Then d(yv, xvv′) ≤ 2 for all
vv′ ∈ EG\EH due to the path yvuvxvv′ . Suppose v′ ∈ VG\(VH ∪ {v}). Then
d(yv, yv′) = 2 due to the path yvh0yv′ . Furthermore, d(yv, xv′v′′) ≤ 3 for all
v′v′′ ∈ EG\EH with v′ 6= v due to the path yvuvuv′xv′v′′ .

Consider a vertex xvv′ for some vv′ ∈ EG\EH . Suppose v′′v∗ ∈ EG\(EH ∪
{vv′}). Then d(xvv′ , xv′′v∗) ≤ 3 due to the path xvv′uvuv′′xv′′v∗ if v 6= v′′;
otherwise we can take the path xvv′uvxv′′v∗ . This completes our case analysis,
and we have proven Lemma 3. ut

7



4 NP-completeness proofs

We first prove the following result on H-compactors.

Lemma 4. Let G′ be the H-compactor of a graph G that has H as an induced
subgraph. Then the following three statements are equivalent.

(i) G′ compacts to H.
(ii) G′ has a minimal disconnected cut.

(iii) G′ has a semi-minimal disconnected cut.

Proof. Let G′ be the H-compactor of a graph G that has H as an induced
subgraph.

“(i) ⇒ (ii)” Suppose G′ compacts to H. Then by Lemma 1 there exists a
retraction f from G′ to H. Then f partitions VG′ into four classes Vi = {u ∈
V | f(u) = hi} for i = 0, . . . , 3. By Lemma 2 (i), each Vi induces a connected
subgraph of G′.

Consider V0. We repeatedly perform the following operation as long as pos-
sible. Let v ∈ V0. By Lemma 2 (ii), v has at least one neighbor in V1 ∪ V3. If v
is adjacent to a vertex in V1 but not adjacent to any vertex in V3, then put v in
V1. Similarly, if v is adjacent to a vertex in V3 but not adjacent to any vertex in
V1, put v in V3. Afterwards we end up with a subset V ′0 ⊆ V0 that only contains
vertices that have a neighbor in both V1 and V3. We note that h0 ∈ V ′0 , because
h0 is in V0, and h0 is adjacent to h1 ∈ V1 and h3 ∈ V3. Hence, V ′0 6= ∅.

By the same arguments we modify V2 into a nonempty set V ′2 in which
all vertices have a neighbor in V1 and a neighbor in V3. Note that the above
operations do not introduce an edge between V1 and V3. They do not introduce
an edge between V ′0 and V ′2 either. Furthermore, V1 and V3 still induce connected
subgraphs of G′. Because every vertex in V ′0 ∪ V ′2 is adjacent to a vertex in V1

and to a vertex in V3, this means that V ′0 ∪ V ′2 is a minimal disconnected cut
of G′.

“(ii)⇒ (iii)” This follows directly from the two definitions.

“(iii)⇒ (i)” Suppose G′ has a semi-minimal disconnected cut U . Let the com-
ponents of G′[U ] be A1, . . . , Ak for some k ≥ 2. Let the components of G′[V \U ]
be B1, . . . , B` for some ` ≥ 2. Because U is semi-minimal, every vertex u ∈ A1

has a neighbor in at least two components Bi and Bj for some 1 ≤ i < j ≤ `.
By the same reasoning, every vertex v ∈ A2 has a neighbor in at least two com-
ponents Bi′ and Bj′ for some 1 ≤ i′ < j′ ≤ `. Because i 6= j and i′ 6= j′, we may
assume without loss of generality that i 6= j′ and i′ 6= j; otherwise we swap two
indices.

We define the function f that maps each vertex in A1 to h0, each vertex in
A2 ∪ . . .∪Ak to h2, each vertex in Bi ∪Bi′ to h1, and each vertex in Bj ∪Bj′ to
h3. We let f map all remaining vertices of VG′\U to h3 as well. By our choice of
indices i, i′, j, j′, we find that f is a compaction from G′ to H. This finishes the
proof of Lemma 4. ut

We are now able to show the first main result of this section.
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Theorem 3. The Minimal Disconnected Cut and the Semi-Minimal Dis-
connected Cut problem are NP-complete, even for the class of graphs of di-
ameter three.

Proof. Note that both problems are in NP. To prove NP-completeness, we use
a reduction from the C4-Retraction problem, which is NP-complete by The-
orem 1. Let G be a graph that has H as an induced subgraph. Let G′ be an
H-compactor of G. By Lemma 3, G′ has diameter three. By Lemma 1 and
Lemma 4 we find that G retracts to H if and only if G′ compacts to H if and
only if G′ has a minimal disconnected cut if and only if G′ has a semi-minimal
disconnected cut. This proves Theorem 3. ut

Here is our second main result.

Theorem 4. The Disconnected Separator problem is NP-complete even
for the class of graphs of diameter 3.

Proof. Note that this problem is in NP. To prove NP-completeness, we use a re-
duction from the C4-Retraction problem, which is NP-complete by Theorem 1.
Let G be a graph that has H as an induced subgraph. Let G′ be an H-compactor
of G. By Lemma 3, G′ has diameter three. We claim that G retracts to H if and
only if G′ has a disconnected h0-h2 separator.

Suppose G retracts to H. By Lemma 1, there exists a retraction f from G′

to H. Let Vi = {x ∈ VG′ | f(x) = hi for i = 0, . . . , 3}. By definition, h0 ∈ V0

and h2 ∈ V2, and there are no edges between V0 and V2, and no edges between
V1 and V3. Because h1 ∈ V1 and h3 ∈ V3 by definition, V1 is nonempty and V3 is
nonempty. Hence V1 ∪ V3 is a disconnected h0-h2 separator of G′.

In order to prove the reverse implication, suppose G′ has a disconnected h0-
h2 separator U . Let A1, . . . , Ak be the vertex sets of the components of G[U ]
and let B1, . . . , B` be the vertex sets of the components of G[V \U ]. As U is an
h0-h2 separator, we may without loss of generality assume that h0 ∈ B1 and
h2 ∈ B2. Because h1 and h3 are each adjacent to both h0 and h1, we find that
h1 and h3 are in V \ U , say h1 ∈ A1 and h3 ∈ Ai for some i ≥ 1; note that we
must consider the case h3 ∈ A1 as a possibility.

Define f : VG → VH as follows. Let f map each vertex of B1 to h0, each vertex
of B2∪· · ·∪B` to h2, each vertex of A1 to h1 and each vertex of A2∪· · ·∪Ak to
h3. We observe that f is a homomorphism to H with f(hi) = hi for 0 ≤ i ≤ 2.
Because A2 ∪ · · · ∪ Ak is nonempty, it contains a vertex z, which is mapped to
h3. If we can show that z is adjacent to a vertex mapped to h0 and to a vertex
mapped to h2, then we find that f is a compaction from G′ to H. Then, by
Lemma 1, G retracts to H, and we are done. Below we consider each possibility.

We first note that z cannot be a uv-vertex. The reason is that a uv-vertex
is mapped to a vertex in {h0, h1}, because it is adjacent to h0 with f(h0) = h0

and to h1 with f(h1) = h1.
Suppose z = h3. Then z is adjacent to h0, which is mapped to h0, and to h2,

which is mapped to h2, as desired. Suppose we cannot choose z to be h3. Then
h3 ∈ A1, and consequently, f(h3) = h1.
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Because f(h3) = h1, we find that z cannot be a wv-vertex. The reason is that
a wv-vertex is also adjacent to h2 with f(h2) = h2. Hence, it must be mapped
to a vertex in {h1, h2}.

Suppose z is a yv-vertex. Then z is adjacent to both h0 with f(h0) = h0 and
h2 with f(h2) = h2, as desired. Suppose this is not the case.

Suppose z = v for some v ∈ VG\VH . Recall that uv is adjacent to h0, h1, v.
Because f(h0) = h0 and f(h1) = 1, we then find that f(uv) = h0. Recall that
wv is adjacent to h2, h3, uv, v, which are mapped to h2, h1, h0, h3, respectively.
This is not possible. Hence, z cannot be in VG\VH .

Suppose z = xvv′ for some vv′ ∈ EG \ EH . Recall that xvv′ is adjacent to
uv and wv′ . Because uv is also adjacent to h0 with f(h0) = h0 and to h1 with
f(h1) = 1, we find that f(uv) = h0. Because wv′ is also adjacent to h2 with
f(h2) = h2 and to h3 with f(h3) = h1, we find that f(wv′) = h2. Hence, z is
adjacent to a vertex that is mapped to h0, namely uv, and to a vertex that is
mapped to h2, namely wv′ , as desired. This completes our case analysis. Hence,
we have proven Theorem 4. ut

5 Further Work

The main open problem is to determine the computational complexity of the
Disconnected Cut problem. Graphs with diameter at least three have a dis-
connected cut [5]. Graphs with diameter one are complete graphs and do not
have a disconnected cut. Hence, we may restrict ourselves to graphs of diameter
two. For this reason the following result are of interest. It shows that the four
problems Disconnected Cut, Minimal Disconnected Cut, Semi-Minimal
Disconnected Cut and C4-Compaction are polynomially equivalent to each
other for graphs of diameter two.

Proposition 1. Let G be a graph of diameter two. Then the following state-
ments are equivalent.

(i) G has a disconnected cut;
(ii) G has a minimal disconnected cut;

(iii) G has a semi-minimal disconnected cut.
(iv) G compacts to C4.

Proof. By definition, any minimal disconnected cut is a semi-minimal discon-
nected cut, and any semi-minimal disconnected cut is a disconnected cut. The
equivalence “(i) ⇔ (iv)” is straightforward and has been shown in [5]. Hence,
we only need to prove ”(i)⇒ (ii)”.

Suppose G = (V,E) has a disconnected cut U . As long as U stays a discon-
nected cut we move vertices from U to V \U . Denote the resulting disconnected
cut by U ′. We claim that U ′ is minimal. Suppose not. Then U ′ contains a vertex
u that is not minimal. Then G[U ′] consists of a component A and a component
{u}; if not we would have added u to V \U ′. As u is not minimal, there exists a
component B of G[V \U ′] such that u is not adjacent to VB . Let v be a vertex
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in B. Then a shortest path from v to u must use at least one vertex from A
and some other component B′ 6= B of G[V \U ′]. Hence dG(u, v) ≥ 3. This is not
possible as diam(G) = 2. ut

The following two questions are of interest as well.

1. What is the computational complexity of the Disconnected Separator
problem for graphs of diameter two?

2. What is the computational complexity of the C4-Retraction problem for
graphs of diameter two?

Regarding question 2, recall that the C4-Retraction problem is NP-complete
by Theorem 1. Below we show that C4-Retraction problem is NP-complete
even for graphs of diameter three.

Proposition 2. The C4-Retraction problem is NP-complete even for graphs
of diameter three.

Proof. We reduce from C4-Retraction for general graphs. Let G = (V,E) be a
graph that has H as an induced subgraph. Let V = {v1, . . . , vn}. For each pair
of different vertices vi, vj we add a new vertex aij only adjacent to vi and vj .
We add a vertex b and edges aijb for all 1 ≤ i < j ≤ n. We denote the resulting
graph by G∗ = (V ∗, E∗).

We show that G∗ has diameter 3. Consider a vertex vi ∈ V . Then vi is of dis-
tance at most two from each vertex vj ∈ V due to the path viaijvj . Furthermore,
vi is of distance at most three from each vertex ajk due to the path viaijbajk.
As b is on this path, vi has distance two to b. A vertex aij is of distance one
from b due to the edge aijb and of distance two from a vertex ak` due to the
path aijbak`. Hence, G∗ has diameter 3 indeed. Below we prove that G retracts
to H if and only if G∗ retracts to H.

Suppose G retracts to H via f . Consider a vertex aij . Suppose h0 ∈ f({vi, vj}).
If f({vi, vj}) does not contain h2, then we map aij to h0. Otherwise we map
aij to h1. Suppose h0 /∈ f({vi, vj}) and h1 ∈ f({vi, vj}). If f({vi, vj}) does
not contain h3, then we map aij to h1. Otherwise we map aij to h2. Sup-
pose {h0, h1} ∩ f({vi, vj}) = ∅. Then we map aij to h2. Finally, we map b
to h1. This way we have extended f to a homomorphism f∗ from G∗ to H with
f∗(hi) = f(hi) = hi for i = 0, . . . , 3. Hence G∗ retracts to H.

Suppose G∗ retracts to H. Because G is a subgraph of G∗ and H is a subgraph
of G, we find that G retracts to H. This completes the proof of Proposition 2. ut

Acknowledgments. We would like to thank Robert Šámal for observing the natu-
ral variant of a disconnected cut to be minimal and for posing the corresponding
computational complexity question.
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