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A Joint Coordinate System for the 
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Dimensional Motions: Application 
to the Knee1 

The experimental study of joint kinematics in three dimensions requires the 
description and measurement of six motion components. An important aspect of 
any method of description is the ease with which it is communicated to those who 
use the data. This paper presents a joint coordinate system that provides a simple 
geometric description of the three-dimensional rotational and translational motion 
between two rigid bodies. The coordinate system is applied to the knee and related 
to the commonly used clinical terms for knee joint motion. A convenient charac­
teristic of the coordinate system shared by spatial linkages is that large joint 
displacements are independent of the order in which the component translations 
and rotations occur. 

Introduction 

A complete understanding of joint kinematics is important 
in the diagnosis of joint disorders resulting from injury or 
disease, in the quantitative assessment of treatment, in the 
design of better prosthetic devices, and in the general study of 
locomotion. The motions which occur in most anatomical 
joints involve three-dimensional movement which is described 
by six independent coordinates or degrees of freedom. Three 
are translations and three are rotations [1-4]. 

To date, most experimental studies of joint motion have 
considered only the relative rotational motion between the 
articulating bones of the knee [5-8], hip [9,10], and elbow [11, 
12]. Typically, Euler angles are used as the rotational position 
coordinates. 

Only a few investigators have considered both the trans­
lation and rotation which occurs between body segments such 
as vertebral bodies of the spine [13,14], the wrist [15], the 
knee [16-21], and the shoulder [22]. Most commonly, the 
displacement between two relative positions of the body 
segments is characterized by the method of screws [22, 23]. 
However, we have found that this description of motion is not 
readily understood by clinicians, who might otherwise use 
such data to improve diagnosis and treatment. 

This paper is concerned with the description of three-
dimensional joint motion in a way which facilitates the 
communication between biomechanician and physician. A 
convenient coordinate system for describing three-
dimensional joint position is introduced along with its ap­
plication to the human knee. The rotations about and trans-
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lations along the defined coordinate axes form a set of in­
dependent generalized coordinates which can be described 
using commonly employed clinical terminology. A desirable 
characteristic of this coordinate system is that joint 
displacements within the system are independent of the order 
in which the component translations and rotations occur. This 
eliminates the requirement of specifying the order of the 
rotations, a precedure commonly believed to be necessary 
when Euler angles are used. 

Description of Coordinate System 

For the sake of clarity and generality, the coordinate system 
is first described in geometric terms. The corresponding 
equations are presented later, when the coordinate system is 
applied to the knee joint. Although basic, it is important to 
remember that the purpose of a coordinate system is to allow 
the relative position between two bodies to be specified. The 
description of motion is the characterization of how their 
relative position changes with time. 

As shown in Fig. 1, the geometry of each body is specified 
by a Cartesian coordinate system with origins located at 0 A 

and O B , and a set of surfaces which describe its shape. For the 
case at hand, body A is a parallelepiped whose shape is 
defined by three sets of parallel planes. Body B is specified by 
its cylindrical surface and its two parallel end planes. 

We start by considering the angular position and the 
corresponding rotational motion between these two arbitrary 
rigid bodies. Since angular position in three dimensions is 
specified by three independent angles [24,25], we specify the 
three spatial axes about which the corresponding rotational 
motions occur. Alternatively, we could specify the three 
planes which are perpendicular to the rotation axes. 

The three rotation axes which comprise the joint coordinate 
system are shown in Fig. 1. The nonorthogonal unit base 
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Body B 

Fig. 1 The generalized joint coordinate system composed of three 
axes. Two axes are embedded in the two bodies whose relative motion 
is to be described. These axes which have unit base vectors e1 and e3 , 
are called body fixed axes. The third axis, F, is the common per­
pendicular to both body fixed axes. Since the common perpendicular is 
not fixed to either body and moves in relation to both we call it the 
floating axis. The unit base vector for the floating axis is e2 . 

vectors of the coordinate systems which define the axes are 
denoted as e,, e2 and e,. Two of the axes, called body fixed 
axes, are embedded in the two bodies whose relative motion is 
to be described. Their direction is specified by unit base 
vectors e, in body A, and e3 in body B. The fixed axes move 
with the bodies so the spatial relationship between them 
changes with the motion. The third axis, F, is the common 
perpendicular to the body fixed axes. Therefore, its orien­
tation is given by the cross product of the unit base vectors 
which define the orientation of the fixed axes, e2 = e3 x ei / 
le, x ej I. We refer to the common perpendicular as the 

floating axis because it is not fixed in either body and moves 
in relation to both. 

Two of the relative rotations between the bodies may be 
thought of as spin of each body about its own fixed axis while 
the other body remains stationary. The magnitude of these 
rotations are measured by the angles (a, 7) formed between 
the floating axis and a reference line embedded in each body, 
see Fig. 1. The direction and sense of the reference lines are 
described by unit vectors e / and e / in each body and are 
taken to be perpendicular to the fixed axis. Their orientation 
about the fixed axes is chosen based upon convenience in each 
application. The third relative rotation occurs about the 
floating axis and is measured by the angle, /3, between the two 
body fixed axes, cos /3 = e{ • e3. 

These three angular coordinates, (a, /3, 7) provide a general 
geometric description of Euler angles. The floating axis, 
whose direction is defined by the unit vector e2, is always 
parallel to the line of nodes and is coincident with it when the 
three axes intersect at a common point. 

Joint translations are described by the relative position of 
the two reference points, PA and PB , located in each body as 
shown in Fig. 1. The relative position of the reference points is 
characterized by the vector, H, which connects them and is 

directed from body A to body B. The components of the 
translation vector are taken along the directions of the three 
coordinate axes. The magnitude of the translation vector, and 
its components, depends upon where the reference points are 
located in each body. This property is common to all methods 
of specifying translation and dictates the need for some 
rationale in the selection of the reference points. This will 
depend upon the specific application at hand and will be 
discussed later with reference to knee motions. 

Application to the Knee 

In constructing the coordinate system for the knee, or any 
other joint structure, it is necessary to specify: 1) the 
cartesian coordinate system fixed in each bone used to 
describe its shape; 2) the body fixed axes of the joint 
coordinate system and the reference axes of the joint coor­
dinate system used to describe the relative motion between the 
two bones; and 3) the location of the translation reference 
point. It is convenient to establish the cartesian systems 
located in each bone so that two of their axes correspond to 
the body fixed and reference axes of the joint coordinate 
system and to locate the origin of the cartesian system so it is 
coincident with the translation reference point. While this 
approach is taken in the forthcoming, the reader should keep 
in mind the clear distinction between the Cartesian coordinate 
system located in each body and the joint coordinate system 
which is composed of the two body fixed axes, ej and e3 and 
their mutual perpendicular, e2. The forthcoming discussion 
assumes that the coordinate system axes are established using 
bony landmarks identifiable on bi-planar X-rays. 

For clarity, capitalized letters X, Y, Z will be used to denote 
the femoral cartesian coordinate system axes with I, J, K as 
the respective base vectors, and lower case letters x, y, z will 
be used with i, j , k as their respective base vectors for the 
tibial Cartesian coordinate system. 

For the knee, we begin with the tibia as shown in Figs. 2 and 
3. Table 1 summarizes for the reader the application of the 
joint coordinate system to the human knee. One clinical 
motion of interest is the internal-external rotation of the tibia 
about its mechanical axis. This axis, labelled as the z-axis in 
Fig. 2, is therefore selected as the tibial body fixed axis (e3 = 
k). It is located so it passes midway between the two in­
tercondylar eminences proximally and through the center of 
the ankle distally. The reference direction, e3

r , is taken 
oriented anteriorly and is identified as the tibial .y-axis in Fig. 
2 (e3

 r = j). Operationally we define the tibial anterior 
direction as the cross product of the fixed axis with a line 
connecting the approximate center of each plateau. The 
uncertainty, due to the error in defining the plateau centers 
from X-rays produces a fixed error in the measurement of 
absolute rotational position, but has no effect on quantifying 
rotational displacements. The third axis of the Cartesian 
coordinate system, the x direction, is obtained by completing 
a right-handed coordinate system. The x-axis is positive to the 
right, and therefore oriented laterally in the right knee and 
medially in the left knee. 

In the femur, the body fixed axis is chosen so that rotations 
about it correspond to the clinical motion of flexion-
extension. This is accomplished by choosing the fixed axis so 
it is perpendicular to the femoral sagittal plane, correspon­
ding to the femoral .Y-axis in Fig. 2 (e, =1) . 

It is important that the flexion axis not be confused with the 
screw axis for functional knee flexion measured by Blacharski 
[16] and others. The screw axis is skewed with respect to the 
sagittal plane since it represents the combined effect of tibial 
axial rotation and adduction motions in addition to flexion. 

To orient the flexion axis within the femur we start by 
defining the femoral mechanical axis, Z-axis, as shown in Fig. 
2. Proximally this axis passes through the center of the 
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Table 1 Joint coordinate system - application to the human 
knee 

Fig. 2 Cartesian coordinate systems are defined in each bone. 
Capitalized letters X, V, Z denote the femoral system axes while lower 
case letters, x, y, z, denote the tibial system axes. For both bones the z-
axis is positive in the proximal direction, the y-axis is positive an­
teriorly, and the x-axis is positive to the right. The unit base vectors of 
these systems are I, J, K in the femur and i, j , k in the tibia. 

Fig. 3 Joint angles are defined by rotations occurring about the three 
joint coordinate axes. Flexion-extension is about the femoral body 
fixed axes. External-internal tibial rotation is about the tibial fixed axis 
and ab-adduction is about the floating axis (F). 

femoral head. At the knee, it passes through the most distal 
point on the posterior surface of the femur midway between 
the medial and lateral condyles. The next step is to define the 
femoral frontal plane. The frontal plane contains the femoral 
mechanical axis, Z, and is oriented so that the most posterior 
points on the femoral condyles are equidistant from the plane. 
When using Arrays to define the bony landmarks, the points 
are taken at the level of the subchondral bones. 
Operationally, the normal to the frontal plane (femoral 
anterior or y-axis) is obtained from the cross product of the 
mechanical axis and a line connecting the two points on the 
posterior surface of the femoral condyles. The direction of the 
flexion axis, which lies within the femoral frontal plane, is 
obtained as the cross product of the unit base vectors of the 
femoral anterior-posterior and mechanical axes. The femoral 
body fixed axes e! corresponds to the ,Y-axis whose base 

Femoral axis 
(flexion) 
Tibial axis 
(tibial rotation) 

ei = k 

ei r = J 

i,I directed to the right 
j,J directed anteriorly 

Table 2 Clinical rotations and translations 
Clinical rotations 

• a = Flexion ( + ve) 
f 7r/2 + Adduction, right knee 
t 7r/2 - Adduction, left knee 

• 7 = External rotation ( + ve) 

Clinical translations 

sina= — e2«K 

cosj3 = I'k 

f - e 2 ' i right knee 
siny= j 

<- e2-i left knee 

• <7i ( + ve) lateral tibial displacement 
• <?2 (+ ve) anterior tibial drawer displacement 
• <?3 ( + ve) joint distraction 

vector is I, and the reference axis is chosen in the anterior 
direction, e / = J. 

The relative joint rotations between the bones are shown in 
Fig. 3. Table 2 summarizes the sign convention used in 
defining the clinical rotations. Flexion-extension occurs about 
the femoral fixed axis and internal-external rotation is about 
the tibial fixed axis. Abduction-adduction motion occurs 
about the floating axis. Flexion and tibial rotation are the 
angles formed between the floating axis and the reference or 
anterior axis in each bone. Thus, we have the two relations: 

cos a = e| '»e2 = J«e2 a = flexion (la) 

cos 7 = e3 '«e2 = j»e2 7 = tibial rotation (\b) 

which can be used to obtain the magnitude of a and 7 but not 
their sign, since cos (a) = cos ( — a). In order to determine the 
sign of the angles we use the following relations: 

e2>K = cos (ir/2 + a) = - s i n a (2a) 

cos ( T / 2 + 7) 

cos (7r/2 - 7) 

- sin 7 right knee (2b) 

sin 7 left knee (2c) 

The signs in equation (2) are arbitrarily chosen so that flexion 
and external tibial rotation are both positive angles as 
summarized in Table 2. 

The amount of joint adduction is obtained from the angle, 
/3, between the tibial and femoral body fixed axes as follows: 

cos /3 = I«k 

Adduction = 
P-T/2 

7T/2-/3 

right knee 

left knee 
(3) 

Translation between the femur and the tibia is denoted by 
the vector H, shown in Fig. 4, which is directed from the 
femoral origin to the tibial origin. The components of H with 
respect to the femoral system of axes a re / / v , //,,, Hz, so: 

H = Hxl + HyJ + Hzk (4a) 

Similarly, with respect to the tibial system, we have 

h = - H = A,i + /iJ,j-r-/!,k (4b) 

where hx, hy and hz are the components of the components of 

138/Vol. 105, MAY 1983 Transactions of the ASME 
Downloaded From: https://biomechanical.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 4 Joint t ranslat ions-when the femoral and tibial origins do not 
coincide, the floating axis, F, is located along the common per­
pendicular to the body fixed axes. Translation between the femoral and 
tibial origins is represented by the vector H. 

the vector locating the femoral origin with respect to the tibial 
origin written in the tibial system of axes. The components of 
H with respect to the nonorthogonal base vectors e,, e2 and e3 

of the joint coordinate system are the three joint translations 
and designated by S,, S2 and S3, respectively, so that, 

H = S ,e ,+S 2 e 2 +S 3 e 3 (4c) 

Physically, S, is the distance from the femoral origin to the 
intersection of the e, and e2-axes. S2 is the distance between 
the ej and e3-axes along their common perpendicular, e2, and 
S3 the distance along the e3-axis from its intersection with the 
floating e2-axis to the tibial origin. 

Clinical Translations 

No widely accepted conventions currently exist for the 
clinical description of joint translation. Thus, it is necessary 
to adopt a set of mathematical definitions which correspond 
as closely as possible to existing clinical terminology. The 
clinical terms we adopt here are: medial-lateral tibial thrust or 
shift, designated by <?,, is a motion along the e, -axis; anterior-
posterior tibial drawer, designated by q2, is a motion along 
the floating e2-axis; and, joint distraction-compression, 
designated by q3, is a motion along the e3-axis. 
Geometrically, medial-lateral thrust, qu is taken as the 
medial-lateral displacement of the tibial origin with respect to 
the femoral origin. Anterior drawer, q2, is the displacement 
of the tibial origin along the floating, e2, axis; and joint 
distraction, qit is the height of the femoral origin above the 
tibial transverse plane. 

Mathematically, the three clinical translations q\,q2 and qz 

are defined as the projections of the translation vector H 
along each of the axes of the joint coordinate system. One can 
write the following relations: 

<7i = H-e, (5a) 

q2 = H-e2 (5b) 

q3 = - H - e 3 (5c) 

where the negative sign is introduced in equation (5c) to make 
joint distraction positive. 

When the joint abduction angle is zero, j3 = 90 deg, the 
joint translations, S,, introduced in the last section 
correspond to clinical descriptions of joint translation. Thus 
medial-lateral thrust is motion along the e, axis and qx = S,. 
Anterior drawer motion occurs along the e2, adduction, axis 
and q2 = S2. Finally, joint distraction is motion along the 
tibial mechanical axis, e3 and q3 = ~S}. 

When the body fixed axes are not perpendicular, /3 ^ 90 
deg, the joint translations, Sh are not equal to the clinical 
translations, q,, since e, and e3 are not perpendicular. Thus 
when jS ̂  90 deg, distraction of the tibia along the e3-axis also 
affects medial-lateral thrust position, and medial-lateral shift 
along e, also affects distraction and compression. This 
coupling of medial-laterial translation and distraction-
compression translation in the skewed knee has presented no 
difficulty in communication with the physician since it is 
readily visualized and understood. 

From the definitions of the clinical translations given in 
equations (5) and the selection of base vectors t{ and e3 given 
in Table 1, we see that <y, = Hx is the lateral displacement of 
the tibial origin along the femoral X-ax i s , q2 = S2 is the 
anterior drawer displacement between tibia and femur along 
the adduction axis and q3 = hz is the proximal displacement 
of the femoral origin along the tibial z-axis. Note that when 
the joint is abducted, H ^ q{ e, + q2 e2 + q3 e3 because et 

and e3 are not perpendicular. 
For a right knee, one would express the clinical translations 

in terms of the joint translations as 

<?, = S, +S3cos/3 (6) 

<5»3 = - S 3 - S , cos/3 (7) 

andg2 = S2 for all joint positions. 

Coordinate Transformations 

Although the joint coordinate system is convenient to use in 
describing joint motion, there is often a need to describe the 
location of specific points (i.e., ligament insertion sites, axes 
of rotation, etc.) relative to a coordinate system fixed to one 
of the bones. This dictates the need for describing the relation 
between the femoral and the tibial coordinate systems and the 
relation between the joint coordinate system and both the 
femoral and tibial coordinate systems. 

If r = xi + y\ + zk describes a point with respect to the 
tibial coordinate system, then the vector R = XI + Yi + ZK 
describing the same point with respect to the femoral coor­
dinate system is given by 

R = [/?]r + H (8a) 

where H is the vector which locates the tibial origin with 
respect to the femoral coordinate system and [R] is a (3 x 3) 
rotation matrix. Equation (8a) can be rewritten as 

r = [ ^ ] r R + T (8b) 

where T locates the femoral origin with respect to the tibial 
coordinate system. The elements of the rotation matrix are 
derived in Appendix A in terms of the clinical rotations (a, /3, 
7)-

Also, the components of the translation vector H with 
respect to the femoral system of axes, Hx, Hy, Hz are ex­
pressed in terms of the three joint translations Sit S2, S3 in 
Appendix A as 

H = [U]S (9) 

where 
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[U]: 

1 0 cos (3 

0 cos a sin a sin /3 

0 - s in a cos a sin/3 

(10) 

The three components of S are given in terms of H by in­
verting equation (9). Thus 

S = [ L T ' H 

where 
(Ha) 

\U\ 

1 - sin a cos /3 /sin /3 - cos a cos /3 /sin /3 

0 cos a - s in a 

0 sin a /sin /3 cos a/sin/3 

(116) 

When (3 is zero, corresponding to 90 deg abduction, a 
singularity exists such that only the sum (S, + S3) is defined. 
Physically this occurs when both body fixed axes are parallel 
to each other but not coincident. In this situation the direction 
of the common perpendicular (floating axis) is well defined, 
but it has no single unique location. For this condition 
equation (11) reduces to two simultaneous equations: 

S2 = Hv cos a - H. sin a (12a) 

5, = S3 = Hx (126) 

Note that although S, and S3 are undefined for this condition, 
the clinical translations qt and o3 are defined and q3 = ± qx 

depending upon whether /3 = 0 or 180 deg. This can be shown 
by expressing the clinical translations q, in terms of the 
femoral components of the translation vector H,, as given in 
Appendix A by: 

q = m H (13a) 

where 

m = 

1 0 0 

0 cos a. — sin a 

-cos/3 — sin a sin /3 - cos a sin /3 

(136) 

For the singularity where /3 = 0, this reduces to: 

qx = - # 3 - Hx (14a) 

q2 = Hy cos a - H, sin a (146) 

A second singularity exists when both /3 and S2 are zero. 
Physically this occurs when both body fixed axes are not only 
parallel to each other but also co-linear with each other. This 
corresponds to the well-known gyroscopic singularity referred 
to as gimbal lock. Under these conditions, equation (8a) 
reduces to 

R=[fl]r + H 

where 

[R]-

and 

0 1 

-sin (a + y) 

-cos (a + y) 

cos (a + y) 0 

- sin (a + y) 0 

(15a) 

H = [S,+S3 0 0]T (156) 

Note that only the sums (Sx + S3) and (a + y) are defined for 
this singularity. 

Although knowledge of the singularities is important, such 
conditions normally do not exist in human anatomical joints, 
with the possible exception of the glenoid-humeral joint. The 
dual singularity for the shoulder, however, can easily be 
prevented by selecting the body fixed axes so that they cannot 
become coincident when they are parallel. 

Determination of the Clinical Parameters From the 
Position Matrix 

When describing the transformation between the femur and 
the tibia, equation (8a) can be rewritten using equation (10) in 
the form 

R=[B]T (16a) 

where 

[B] = 

1 0 0 0 

[R] (166) 
(S,+S3cosj3) ! 
(S2cosa + S3sina:sin/3) I 
( —S2sina + S3cosasin/3) | 

Usually the transformation matrix is determined ex­
perimentally and it is necessary to calculate the clinical 
rotations and translations knowing the elements _6,y, 
ij= 1,2,3,4. Using the rotation matrix calculated in Appendix 
A with equation (16) and the definitions of the clinical 
rotations given in equations (l)-(3), one can easily write the 
following relations: 

Adduction = cos ~' B24 - 7r/2 (17a) 

Flexion angle = tan - ' (BM/B44) (176) 

Tibial rotation = tan " ' (B23 /B22) (17c) 

The lateral translation of the tibia with respect to the femur 
is defined in equation (6) as being qx =Sl+Si COSJS. This is 
exactly equal to Bl2 in equation (16). Therefore 

Qi=B2l (18) 

The anterior drawer, q2, is defined to be S2. This is ob­
tained from the following equations 

q2=S2=B31cosa — Bl4sina (19) 

The axial translation of the femur with respect to the tibia, q}, 
is defined in equation (7) as <73 = — S3 — 5, cos/3. Using 
equations (9) and (16), q3 may be obtained by the following 
equation: 

qi = -(B42Bn+B43Bl3+B44Bl4) (20) 

Selection of Translation Reference Points 

The magnitude of the translation vector, and hence its 
components, depends upon where the reference points are 
located in each body. As described in the foregoing, the 
reference points are most often taken to be the origins of the 
femoral and tibial coordinate systems. These were initially 
chosen as identifiable bony landmarks observable on X-rays. 
The tibial origin was located on the tibial mechanical axis 
where the axis passes through subchondral bone between the 
two intercondylar eminences. The femoral origin was located 
on the femoral mechanical axis at the most distal bony point 
midway between the femoral condyles. 

Shown as dashed lines in Fig. 5 are the three translational 
motions between these origins which occurred in one human 
cadaver knee during passive flexion with the tibia hanging 
vertically under the influence of gravity while the femur was 
flexed. The flexion was performed slowly so that the knee 
found its own equilibrium position at each flexion angle. The 
motion was measured using an instrumented spatial linkage 
with an absolute accuracy of ± 0.5 mm and a resolution of 0.1 
mm. As seen in Fig. 5, we found that large distraction 
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Fig. 5 Shown are the translational motions in millimeters versus 
flexion angle in degrees which occurred in one human cadaver knee 
during passive flexion. The dashed lines are the translations obtained 
when the origins of the femoral and tibial coordinate systems are used 
as the reference points. The solid lines represent the translations when 
the reference points are selected so as to minimize the magnitude of 
the translation vector for passive flexion. 

translations resulted due to the position of the origins and the 
shape of the condyles. Also, a large anterior-posterior drawer 
motion occurred, again due to the position of the origin. 

Since the curves shown in Fig. 5 correspond to a well-
defined equilibrium position, in which only gravitational 
loading along the tibial axis is present, they represent one 
possible definition of the knee's translational neutral 
position. In most instances it is the deviation from this neutral 
position which is of interest. In order to more readily detect 
these deviations it is useful to minimize the translation 
associated with the neutral or reference condition. This may 
be accomplished by selecting translational reference points 
that are located on the screw displacement axis for the 
reference joint motion. To determine this, we calculated the 
screw displacement axis for passive flexion from 0 to 90 deg. 
The femoral origin was located at the intersection of the screw 
axis with the mid-femoral sagittal plane. The tibial origin was 
taken as the average of the two locations of the femoral origin 
corresponding to the beginning and the end of the motion. 
The translational motions computed using these definitions of 
the reference points is shown as solid lines in Fig. 5. A 
dramatic reduction in the anterior-posterior drawer and 
distraction compression motions are apparent. 

The rotational and translational parameters described here 
(a, (3, 7, Sit /'= 1, 2, 3) or (a, /3, y, qh /= 1, 2, 3) form a set of 
independent coordinates that completely define joint position. 
Further, for any motion the final joint position is a function 
only of the magnitude of the component rotations and 
translations, and not upon the order in which the individual 
motions occur. This is contrary to the general belief that finite 
rotational motions are sequence dependent. A proof of the 
sequence independency is given in the forthcoming. 

Sequence Independency of Rotations 

It is widely recognized that the net rotational displacement 
produced by a sequence of finite rotations performed about 
the axes of a cartesian coordinate system depends upon the 
order in which the individual rotations occur [28]. In contrast, 
we have noted [19, 21] that finite rotations performed about 
the axes of the joint coordinate system are not dependent 
upon sequence. Roth [29] has previously shown that 
sequences of screw rotations are independent of order when 
the screw axes combine in a chain structure such that the 
perpendicular distance and angle between adjacent screw axes 
is fixed. Recently, Chao [7] has applied Roth's proof to the 
gyroscopic mechanism which forms the motion sensing part 
of the triaxial goniometer [10]. 

It is easy to show that the property of sequence in­
dependence holds for any set of independent parameters 
which describe three-dimensional position. Since the 
parameters are independent, we can consider sequences of 

displacements where only one parameter changes at a time. 
Consider two sequences of differing order. If order is im­
portant then the final positions are different. In this case, the 
three parameters alone are not sufficient to describe the final 
position; we need the parameters plus their sequence. 
However, this contradicts the starting hypothesis, proved by 
Euler [24], that three independent parameters are sufficient to 
describe three-dimensional rotational position. Thus, we 
conclude that the final position produced by finite changes in 
independent rotational position parameters must be in­
dependent of their sequence. 

The sequence dependency commonly referred to is for 
rotations performed about the three axes of a cartesian 
coordinate system. The reason for the sequence dependency is 
that these angles are not independent of each other [28]. 

Euler Angles Versus Joint Coordinate System Angles 

Any review of the literature will show a wide variety of 
differing conventions for Euler angles. These different 
conventions have been classified into two axes and three axes 
types by several authors [7, 29]. The number of axes, two or 
three, refers to the axes in the moving body which the Euler 
rotations are thought to occur about. For example, a sequence 
like the z, x, z combination described by Goldstein [3] is of the 
two axes type, while the rotation sequence z, x, y sometimes 
referred to as Dexter angles would be of the three axes type. 
This description of Euler angles is sequence-dependent 
because the angles are defined by rotations performed about 
the axes of a cartesian system located in the moving body. As 
noted in the foregoing, such angles are not independent. 
Mathematically, the sequence dependency is observable from 
the coordinate transformation equation 

r2 = [R^[Re]lRv]ri (21) 

where ^ is a vector in system 1, r2 is the same vector expressed 
in system 2 and [Rv], [Re], [R^,] are an ordered set of 
rotations performed about the axes of the moving system 1. If 
the order of the i/< and 6 rotations are reversed, the 
transformation equation becomes 

r2'=[*»][**][*„]r, (22) 

The two sequences described by equations (21) and (22) result 
in different displacements because the inner product of two 
matrices is not commutative, [-R»][i?,/,] ^ [R^][Rg]-

Our definition of Euler angles is sequence independent and 
eliminates much of the confusion relative to nomenclature. In 
our definition the rotations of equation (21) are thought of as 
occurring about the axes of the joint coordinate system. Thus 
the first and last rotations [R^,] and [R^,] occur about the body 
fixed axes, while the second rotation, [Rg], occurs about the 
floating axis. The first consequence is that all sets of Euler 
angles now have three axes making the prior distinction 
between two axes and three axes types inconsequential. For 
example, the two axes set of z, x, z described by Goldstein [3] 
is now thought of as Z, F, z. Where the first rotation occurs 
about the Z-axis of the fixed system, which is initially coin­
cident with the z-axis of the moving system; the second 
rotation is about the floating axis, F, which corresponds to 
the line of nodes or x-axis; and the third rotation is about the 
z-axis of the moving system. Equation (21) can now be 
rewritten as 

r2 = [Rzm[RF(d)}[RzM}ri (23) 
where [Rz(<p)] is thought of as a operator which produces a 
rotation of magnitude, <p, about the Z axis. The form of the 
operator is just the screw rotation matrix with the direction 
cosines of the screw axis expressed with respect to system 2. 
The direction cosines of the screw axis are, of course, those 
which describe its orientation when the rotation is performed. 
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When the sequence of rotation is changed 

r1=[RF{e)][RzW][Rz{'P)]r, (24) 

two of the three axes will have a new orientation with respect 
to system 2 so that the individual elements of the operator are 
altered. Roth's proof of sequence independence [29] is based 
on the fact that the change in the elements of the operators is 
given by the similarity transformation so that different 
sequences all produce the same net displacement. 

The relation between the conventional Euler angles and the 
angles in our joint coordinate system can be explained as 
follows. For a given set of Euler angles, there exists a unique 
set of axis corresponding to the joint coordinate system: a 
body fixed axis in the moving system, a body fixed axis in the 
stationary system and a common perpendicular to these two 
body fixed axes. When the conventional definition of Euler 
angles is used, a change in the order of rotations will produce 
a different joint coordinate system where the fixed axes have 
new orientations within their respective bodies. Thus, dif­
ferent sequences of the Euler rotations will produce different 
motions. 

The body fixed axes which correspond to any set of Euler 
angles can be readily identified as follows: the first rotation 
performed when the coordinate system are coincident is about 
the fixed axis in the stationary body; the second rotation is 
about the floating axis, line of nodes; and the third rotation is 
about the fixed axis in the moving body. Thus, if the femur is 
assumed to be fixed and the tibia moving, the joint coordinate 
system presented here would correspond to a sequence of 
Euler rotation; first about the common x-axes, second about 
the rotated y in the tibia, and third about the twice rotated z-
axis in the tibia. 

Because the sequence of Euler rotations specifies the body 
fixed axes of the joint coordinate system, it can be concluded 
that the different sets of Euler angles have the axes of the joint 
coordinate system as their common geometric basis. 

Discussion 

Rigid body kinematics has been applied to the study of 
anatomical joints to determine the motions occurring during 
normal function and resulting from injury or disease. Several 
engineering descriptors of rigid body motion exist and have 
been applied to the description of joint motion. Often, dif­
ficulty exists in communicating these engineering descriptions 
to the clinician who must ultimately use them. 

Townsend, et al. [18] measured knee motions in terms of 
flexion-extension, angulation (ab-adduction), and tibial axial 
rotation. Chao and Morrey [12] described elbow motion using 
Euler angles and related these to clinical descriptions for 
rotations. In this paper, they state that a particular sequence 
of rotation is necessary in order to define the unique orien­
tation. However, Chao [7] applies a gyroscopic system as a 
special set of Euler angles and shows their sequence in­
dependence. Lewis and Lew [8] recognized the advantages of 
employing Euler angles and used them to describe knee 
rotations. To date, only the screw axis has been used to 
describe the translatory motions occurring in the knee [16, 
17]. 

The joint coordinate system presented here provides a set of 
independent generalized coordinates for describing three-
dimensional motion and permits a precise definition of the 
clinical descriptions of knee motion, both rotations and 
translations. 

We have found that Euler angles, as described by the joint 
coordinate system, provide a precise mathematical description 
of clinical terminology for joint rotational motions. Further, 
we have shown that rotational motions about the axes of the 
proposed joint coordinate system commute. That is, the net 
displacement is independent of the sequence in which the 

individual rotations occur. This is not a new concept. Roth 
[29] has previously shown, using the similarity trans­
formation, that screw displacements commute if two con­
ditions are met. These are that the perpendicular distance and 
angle between adjacent screw axes are fixed. This is equivalent 
to saying the axes are the connecting joints in a series of rigid 
links forming a spatial linkage. Both of these conditions are 
met for the axes of the joint coordinate system we proposed. 

The joint coordinate system presented here also overcomes 
the problems that exist if the joint translation vector H is 
described by its components along the cartesian systems fixed 
in the femur or in the tibia. For example, the direction of the 
clinical anterior-posterior drawer varies with respect to the 
femur as joint flexion changes while the direction 
corresponding to joint distraction motions varies as the knee 
is abducted. Similarly, the direction of anterior-posterior 
drawer varies with respect to the tibia as tibial axial rotation 
changes, while the direction corresponding to medial lateral 
thrust varies as the knee is abducted. These problems are 
eliminated when using the joint coordinate system, with the 
three nonorthogonal unit base vectors, e,, e2 and e3 to 
describe the joint translation vector H. The two joint trans­
lations S, and S3, locate the floating axis along the femoral 
and tibial fixed body axes, respectively. The clinical trans­
lations occur along the three base vectors of the joint coor­
dinate system. When the joint abduction angle is zero, the 
joint translations correspond to the clinical ones. 

It is important to emphasize that the magnitude of the 
translation vector depends upon where the reference points 
are located in each body. We have proposed a method for 
defining these reference points by minimizing the magnitude 

Fig. 6 The joint coordinate system is modeled as a four-link kinematic 
chain consisting of cylindrical joints. The first and last links are the 
tibia and femur, respectively. Two imaginary links exist between them. 
All three joints are cylindrical. 
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of the translation vector based on a selected reference motion. 
For the knee, we selected passive flexion from 0 to 90 deg. 
This permits translation motions that deviate from passive 
flexion to be detected more readily. 

The joint coordinate system we have presented in the 
foregoing can be applied to any instrumented spatial linkage. 
For a typical triaxial goniometer with three degrees of 
freedom only the rotation can be measured after inherent 
crosstalk is accounted for. If a linkage with six degrees of 
freedom is used then the joint coordinate system provides the 
three-dimensional motion in terms of the clinical parameters 
for both rotations and translations. Errors in six degree of 
freedom systems result from mechanical and transducer 
tolerances alone, and not from crosstalk. 

Interestingly, we have shown in [26] that the joint coor­
dinate system introduced herein can be modeled as a four-link 
kinematic chain where the relative motion between links is 
described using Hartenberg and Denavit method [27]. For 
such a chain, the joints are cylindrical pairs which allow 
rotation and translation. The relative motion between links k 
and k+1 is then described by two variables: sk for trans­
lation and dk for rotation. The geometry of the connecting 
links describing the relative position of the successive joints is 
determined by two more parameters: the common per­
pendicular between two successive joints, ak, and the angle 
between joint axes at each end of the link , ak. For the joint 
coordinate system of Fig. 4, the first and the last link are the 
tibia and femur, respectively, as shown in Fig. 6. Two 
imaginary links exist between the body fixed axes and the 
floating axis. Since the fixed and floating axes intersect, the 
lengths of the imaginary connecting links, ak, are zero. 
Further, since the fixed and floating axes are perpendicular, 
the angles of twist, ak, of the imaginary links are 90 deg. 

Summary 

1 We have presented a joint coordinate system having 
three nonorthogonal unit base vectors for describing the six 
degrees-of-freedom motion of the knee joint. In this system, 
joint position is independent of the order in which the 
translations and rotations are performed. 

2 We have found that Euler angles, as described by the 
joint coordinate system, provide a mathematical description 
of clinical terminology for joint rotations. 

3 We have introduced a set of mathematical definitions 
for the clinical translations which we believe make it easier to 
communicate translational motion to clinicians. 

4 We proposed a method for the selection of the trans­
lation reference points which permits the magnitude of the 
translation reference vector to be minimized for a selected 
reference motion. For the knee we selected passive flexion as 
the reference motion. Thus, translational motions which 
deviate from those during passive flexion are easier to detect. 
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A P P E N D I X A 

1 Rotation Matrix. If I, J, K are unit base vectors in 
femoral system and i, j , k, are the base vectors in the tibial 
system and we let R=Xl+YJ + ZK describe a point with 
respect to the femoral coordinate system, then the vector 
i=xi+yi + zk describing the same point with respect to the 
tibial coordinate system is given in accordance with equation 
(8a) as 

r=[ JR] rR + T (25) 

where T is the vector which locates the femoral origin with 
respect to the tibial coordinate system and [R]T is the trans­
pose of a (3 x 3) rotation matrix. The rotation matrix is most 
commonly derived in the literature by considering a specific 
sequence of three rotations and forming the appropriate inner 
product of the individual rotation matrices. Since the inner 
product of two matrices is, in general, noncommutative, the 
reader is left with the impression that the resulting rotation 
matrix is only valid for a specific sequence of rotations. In the 
forthcoming we provide a derivation of the rotation matrix 
from the known geometry without any reference to a sequence 
of rotations. 
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The rotation matrix is defined as 

[R]T = 
L i 
I-j 
Lk 

J«i 
J- j 
J«k 

KM 
K-j 
K'k 

(26) 

where its nine components are determined in terms of the 
clinical rotations (a, /3, 7). Using the definitions of these 
clinical rotations, one can write the following relations be­
tween the unit base vectors of the femoral system, the tibial 
system and the joint coordinate system for a right knee: 

J«e2 = cosa 

K«e2 = cos(7r/2 + a) = - sina 

j - e 2 = c o s 7 

i«e2 = cos(7r/2 + 7) = - ski7 

e, x J = Isina 

(27) 

e2 x j = -ks in7 

I«k = cos/3 

At this point, one is able to evaluate the rotation matrix as 
follows: 

First Column: 

I.i = l . ( j x k ) = j . ( k x l ) 

=j-e2 sin/3 (28) 

= COS7 sin/3 

I . j = l«(kxi) = i . ( l xk ) 

= -i«e2sin/3 (29) 

= sin7 sin/3 

I.k = cos/3 (30) 

Second Column: 

J - i=J [ ( i . e 2 ) e 2 + [i.(e2 xk)](e2 xk)) 

= (i.e2)(J.e2) + [i-(e2xk)][J.(e2xk)] 

= - cosas in7 + [e2»(kxi)][k»(Jxe2)] 

= -cosasin7+[e2«j][k«(-Isina)] (31) 

= -cosas in7-cos7s inak»I 

= — cosa sin7 — C0S7 sina cos/3 

j . j = j . ( j . e 2 )e 2 + [j.(e2 xk)](e2 xk) 

= G-e2)(J'e2) + [j.(e2 xk)][J.(e2 xk)] 

= cosacos7+ [e2.(kXj)][k«(Jxe2)] 

= cosacos7+ [-(e2«i)][k.(-Isina)] (32) 

= cosa COS7 + (e2 • i)(k • I)sina 

= cosa COS7 + (— sin7)coS|3 sina 

= cosa COS7 — sinY sina cos/3 

J .k = (K.I)^k = k . (KxI ) = K. ( Ixk) 

= - sin/3 K..e2 = - sin/3( - sina) 

= sin/3 sina 

Third Column: 

K-iK.(i.e2)e2 + [i«(e2 x k)](e2 x k) 

= (i.e2)(K.e2) + [i .(e2xk)][K-(e2xk)] 

= (i.e2)(K.e2) + (e2 . j)[k.(Kxe2)] 

= sinasin7 + C0S7[k«- Isin(a + TT/2)] 

= sina sin7 - COS7 cosa (k • I) 

= sina sin7 - COS7 cosa cos/3 

K.j = K.a-e2)e2 + Fj-(e2 xk)](e2 xk) 

= a-e2)(K.e2) + [j .(e2xk)][K.(e2xk)] 

= COS7 ( - sina) + [e2 • (k X j)] [ - cosa cos/3] 

= - COS7 sina - cosa cos/3 sin7 

K'k = ( IxJ ) -k = J ' (k . I ) = J«e2sin/3 

= cosasin/3 

(33) 

(34) 

(35) 

(36) 

2 Coordinate Transformations. The components of the 
translation vector H with respect to the femoral system of 
axes, Hx, Hy, Hz are expressed in terms of the three joint 
translations Su S2, S3 as 

e[«I e2»I e3«I 
ej «J e2«J e3-J 
e!«K e2-K e3«K 

Si 
s2 
s3 

(37) 

while the clinical translations q\,qi, #3 are expressed in terms 
of the femoral components of the translation vector as 

<7i 
Qi 

<?3 
= 

L I 
I-e2 

- L k 

J . I 
J . e 2 

- J . k 

K.I 
K-e2 

- K - k ft (38) 

These equations readily reduce to equations (10) and (13) in 
the text when the relations e, =1 and e3 =k are substituted 
along with equations (28) through (36). 
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