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Setting the Processing Parameters in 
Injection Molding through Multiple Criteria 

Optimization: A Case Study 
Velia García Loera, Jesús Mireles Diaz, Óscar L. Chacón Mondragón, and Mauricio Cabrera-Ríos 

  
Abstract—In this work, a case study involving statistical 
characterization and multiple criteria optimization on injection 
molding is presented.  This case study is the first application of a 
method previously described in the literature involving Data 
Envelopment Analysis geared towards setting design and process 
variables to meet several performance measures.  
 

Index Terms—Data Envelopment Analysis, Design of 
Experiments, Injection Molding, Multiple Criteria Optimization  
 

I. INTRODUCTION 

Controlling the injection molding process of thermoplastics 
is critical due to the high dependency of the material behavior 
inside the mold and the final part’s properties on the process 
variables. The aim of this work was to set the process 
variables in a thermoplastic injection molding operation in a 
local company considering multiple criteria in a simultaneous 
manner. The task was approached through the application of 
an optimization strategy based on Data Envelopment Analysis 
(DEA). This work is, in fact, the first reported practical case 
of this strategy proposed on previous publications [1-4]. 

 

II. OPTIMIZATION STRATEGY 

 
The optimization strategy proposed by Cabrera-Ríos, et al. 

[3,4] and Castro, et al [5,6] to find the best compromises 
among multiple performance measures in polymer processing 
was used in this work.  The strategy comprises five steps 
schematically shown in Figure 1.  
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Figure 1. The Optimization Strategy 

 

The strategy prescribes, as a first step, to define the physical 
system to be studied. This step includes identifying the 
phenomena of interest, the controllable and non controllable 
variables, the experimental region as well as the performance 
measures to be included in the study. 

 
Once the physical system has been defined, the second step 

includes defining physics-based models (usually transport-
phenomena models) that relate the controllable variables with 
the performance measures of interest.  

 
In some cases, physics-based models might not exist or be 

too complex to handle either due to their functional form or 
due to the experimenters not having the right expertise. In 
these cases, however, it is possible to conduct an experimental 
design to elicit useful knowledge as indicated in the third step 
of the optimization strategy. Such knowledge will take the 
form of empirical models in the fourth step. These models are 
called metamodels from this point on. These metamodels are 
in general easier to use in an optimization problem.  

 
The fifth and last step of the strategy consists on using Data 

Envelopment Analysis (DEA) to solve the multiple criteria 
optimization problem involving the resulting metamodels. 
Solving such a problem translates into finding the best 
compromises among all performance measures of interest.  

 
The application in the case study of this optimization 
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strategy is detailed in the following sections.  
 

III. CASE STUDY 

The optimization strategy outlined above was applied as an 
offline control project in a local manufacturing plant at their 
thermoplastic injection molding operations. The objective was 
to determine the process settings that accomplished the 
following for a particular line of rear automotive lamps: i) 
having a tighter control over critical dimensions (Significant 
Characteristics or SCs) and ii) meeting required optical 
properties.  

 
The lamp under study had two components: (1) the body or 

housing (figure 2), and (2) the lens (figure 3). Both 
components are injection molded. Specifications for these 
components are determined considering industrial and safety 
standards as well as aesthetics. 

 

 
Figure 2. Lamp Body 
 
 

 
Figure 3. Lamp Lens 

 
As it can be inferred, light reflection is important for the 

lens. This phenomenon is measured through photometry 
instruments and reported as a Reflex Index, which relates to 
the intensity of light reflected by the lamp. Light is reflected 
by the lamp through molded cubic features (figure 4). When 
perfectly filled, these cubes act as mirrors [5]. 

 

 
Figure 4. Injection Molded Cubes for Optical Properties 
 

The general process to manufacture each lamp is shown in 
Figure 5. During the molding phase, parts are randomly 
chosen for inspection to measure their particular high impact 
characteristics (HICs).  

 

 
Figure 5. Schematic of Automotive Lamp Manufacturing 
Process 

 
Reflex index measurements are additionally performed in 

the lenses from the side and the rear. These are different due 
to the lenses’ geometry (Figure 6).  

 
Following injection molding, the body goes through an 

aluminum thermal spraying process. Finally, both the body 
and the lens are assembled together. A final inspection will 
randomly select assemblies to measure specifications required 
by the particular customer called significant characteristics 
(SCs).  
 

After analyzing the operation, it was decided to focus on 
the lenses, since they were experienced to show larger 
deflections than the bodies, and since the optical properties of 
the lamp came precisely from the material in this component 
(PMMA). The rationale was that it was necessary to map the 
dependency of the lenses’ HICs and Reflex Indexes to the 
injection molding process variables, and then to map the 
dependency of the assemblies’ SCs to the lenses´ HICs. 
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Figure 6. Shape of the Lamp Lens 

 

IV. THE OPTIMIZATION STRATEGY IN THE CASE STUDY 

 

A. First Step: Physical System 
 

Emphasis on this first step is on structuring the details of 
the physical system under study.  Controllable variables and 
their experimental range are chosen, as well as the 
performance measures of interest. In order to choose the 
controllable variables, it is helpful to gather knowledge either 
from technical expertise or from previous experience to 
improve the probability of these variables being significant to 
the performance measures.  

 
Table 1 shows the performance measures chosen for this 

case study. These performance measures represent the SCs of 
the lamp under study. Larger reflex and mass values are 
preferred; therefore, it is required to maximize these 
performance measures. One of the starting hypothesis of this 
study is that the higher the mass, the better the part will 
resemble the mold cavity, which in turn follows customer’s 
specifications.  
 

Table 1. Peformance Measures to be optimized. 
 

Performance Measure [units] Identifier 

Reflex Index - Rear Right [millicandelas/lux] ReflexRR 

Reflex Index - Rear Left [millicandelas/lux] ReflexRL 
Reflex Index - Lateral Right  

[millicandelas/lux]
ReflexLR 

Reflex Index - Lateral Left [millicandelas/lux] ReflexLL 

Mass of Right Lens [Kilograms] MassR 

Mass of Left Lens [Kilograms] MassL 
 

 
Table 2 shows the seven controllable variables, chosen 

with the aid of the company’s engineers, to be included in this 
study.  Packing pressure (Pp) and packing time (tp) were 
included because they can be used to compensate part 
shrinkage; valve temperature (Tv) and nozzle temperature (Tn) 
are important to keep the material liquid at the mold´s entry 
point and thereby allow for a better control of the flow; and 
injection speed (V) was chosen because of its effect on the 
part´s final quality: low speed could result in flow streaks 
and/or nonfills, and a high speed can result in material 
degradation and airtraps. Finally, mold temperatures such as 
the fixed half’s (Tf) and the moving half (Tw) are critical for 
the part cooling, and therefore for cycle time and part 
warpage. 

 
Table 2. Controllable Variables. 
 

Controllable Variable [units] Identifier 

Nozzle Temperature [Kelvins] Tn

Packing Pressure [Megapascals] Pp

Packing Time [seconds] tp

Mold Temperature (Fixed half) [Kelvins] Tf

Mold Temperature (Moving half) [Kelvins] Tw

Injection Speed [meters/second] V 

Valve Temperature [Kelvins] Tv

 
Experimental ranges for the controllable variables were 

determined based on the settings used by the company on their 
daily operations along with suppliers’ data sheets; Table 3 
shows the experimental region and the three sampling levels 
per variable initially planned. Three levels are necessary to 
characterize nonlinear behavior in the performance measures 
of interest.  

 
 

                   
 Table 3. The three levels per controllable variable used to 

explore the experimental region.         
 

Coded 

Levels 

Tn

(K) 

Pp

(MPa) 

tp 

(s)

Tf

(K) 

Tw 

(K) 

V 

 (m×10-2/s)

Tv

(K) 

-1 499.82  5.17 7 302.5
9

305.3
7

3.302 305.37 

0 510.93 5.52 8 310.9
2

310.9
2

3.556 310.927 

1 522.04 5.86 9 319.2
6

316.4
8

3.810 316.48 
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B. Second Step: Modelling the Physical System 
 

In this step physics-based models relating the controllable 
variables with the performance measures are defined. These 
models need to be a) verified, and b) validated, where a) refers 
to show that the model represents what it is supposed to 
represent, and b) means that the model represents the 
phenomenon to an adequate level of fidelity.  

 
In this case study, there were no simple physics-based 

models to relate the controllable variables and the 
performance measures of interest, so this step did not apply.  

 

C. Third Step: Run a Design of Experiments 
 
In this step, a design of experiments must be carried out to 

measure the statistical effect of controllable variables in the 
performance measures. In this case study, the aim was to be 
able to control mass and reflex indexes.  

 
A full factorial design is a common choice in this step. In a 

full factorial design, k factors each at mi, i=1,…,k levels are 
sampled in an exhaustive enumeration fashion i.e. trying all 
m1 × m2 × …× mk combinations. In this case study, however, 
a full factorial was not an option because even when 
considering only one replicate, it would have required 
manufacturing 37=2187 lenses. With three replicates, the total 
would have been 6561 lenses. This was clearly too expensive 
in terms of time and money.     

 
The choice, then, was a D-Optimal design [6]. This design 

comprises a subset of the experimental runs from the full 
factorial design, with a number of runs decided a priori. The 
runs are chosen to minimize the variance of the coefficients of 
the metamodels described in step four. A total of 40 runs with 
three replicates per run were finally required (120 lenses) 
according to the experimentation time and the material that 
would be used. The experiment was constrained to be run 
during normal production time.  

 
During the execution, several compromises had to be made 

along the way. Although the experiment was planned to be 
run in a random order, due to a malfunction in the injection 
molding machine it required a lot longer than the usual 15 min 
to get the injection molding machine to steady state for each 
combination, therefore it was decided to organize the runs as 
to have the fewest possible changes between them. Also 
because an urgent order came in requiring a different mold, 
the experiment’s time was cut short, making it possible to run 
only 21 runs. This resulted in sacrificing the estimability of 
some of our metamodels´ terms as well as not fully using three 
levels in all variables. The effects of these compromises are 
assessed in the next section, along with the explanation on 
how the metamodels were obtained. 

 

D. Fourth Step: Obtaining the metamodels.  
 
The data generated in the previous step was used to create 

empirical expressions called metamodels. These expressions 
relate the performance measures to the controllable variables 
with statistical basis. Among the best known metamodels one 
can find the regression models and the artificial neural 
networks.  

 
Following the optimization strategy, the metamodels would 

be used to, first, perform an analysis of variance and then to 
predict values for the performance measures. In this case 
study, the metamodels are solely used for the first objective. 

 
Six linear regression metamodels were created in this case 

study, one per performance measure of interest (Table 1). 
Table 4 shows these metamodels with their statistically 
significant terms at a confidence level of 95%. 
 

Besides checking for the adequate fit of the regression 
metamodels through the R2 value, special care was given to 
the behavior of the prediction errors (residuals). These must 
always be checked to follow a normal distribution, and have a 
mean of 0 and constant variance.  

 
Having obtained an R2 value larger than 93% for all but one 

performance measure in presence of replicates showed that the 
terms that could not be estimated could have accounted for no 
more than 7% of the total variation in the experiment, 
alleviating their omission. In the only case where this does not 
happen, the fit, at a value larger than 80%,  is still considered  
satisfactory for a replicated experiment Furthermore, having 
checked the independence of the residuals helped to verify 
that a major systematic error was not induced when decided to 
run the experiment in a non random order.  

 
The term “cavity” in Table 4 refers to a blocking factor not 

considered initially. Because the mold used in the experiment 
was a multicavity one, it was assumed to produce identical 
parts in all cavities, however, the analysis of variance showed 
that this assumption did not hold. This finding led to including 
this term in the model to characterize its effect on the 
performance measures.  

 
Further exploration of Table 4 can help uncover how 

different performance measures are affected in conflicting 
directions by changes in particular variables. One example of 
this is the effect of Tw  on the mass values and the reflex index 
values, where it would be desirable that all measures changed 
in the same direction.  
 

E. Fifth Step: Optimize 
 
In order to conclude this study, the performance measures 

that resulted from the experiment were evaluated to assess 
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which process settings gave the best compromises among 
them. This entailed a multiple objective optimization task, 
solved here through Data Envelopment Analysis (DEA) as 
prescribed by the optimization strategy.  One of the 
advantages of using DEA is that it relies in the solution of a 
series of linear optimization problems even when the objective 
functions involved are nonlinear.  

 
DEA is able to find the efficient frontier or envelope of a 

set of candidate solutions. The solutions in this envelope are 
in turn the best compromises described previously, and are 
formally called Pareto-efficient solutions or efficient solutions 
for simplicity. In this case, the candidate solutions were the 
averages of the performance measures of the three lenses 
produced under each particular combination of process 
settings tried in the experiment. A total of 21 candidate 
solutions were analyzed.  

 
The DEA formulations in their so called BCC model forms, 

named after their authors Banks, Charnes and Cooper [7,8], 
are given as follows: 
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where µ and ν are column vectors of multipliers to be 

determined along with variables and  in the first case 

and 

+
0µ −

0µ
+
0ν  and −

0ν  in the second case;  and are 

column vectors containing the values of the j

min
jY max

jY
th combination of 

performance measures to be minimized and maximized 
respectively; finally ε  is a scalar typically set to a value of 
1x10-6. 

 

Model (1) is called the input-oriented BCC model and 
model (2) is the output-oriented BCC model. Both models 
must be applied to each of the n candidate solutions. The 
particular solution with an optimal objective function value 
equal to 1 in both models is considered a Pareto-efficient 
solution, and therefore, it belongs to the envelope of the 
solution set. A more detailed discussion regarding DEA can 
be found in [1-4,7]. 

V. RESULTS 

Table 5 and Figure 7 show the seven combinations of 
settings found to be efficient through DEA along with their 
predicted performance values. With this information, the 
decision maker can quantitatively assess the compromise 
implied by the choice of a particular solution over the others.  

 
 For example, in reference to Table 5 and Figure 7, the 

decision maker can opt for high Reflex Index values with their 
associated mass values or, if the dimensions are critical, the 
maximum mass values can be sought after with their 
associated Reflex index values. 

 
The advantage of this part of the optimization strategy is 

precisely the objectivity of the final analysis, where only 
efficient solutions are presented for the decision maker to 
choose from. This has to do with the decision maker’s 
preference being revealed a posteriori and not a priori.  

 
In this particular case, the choice was to pick the option 

with the lowest combined mass (Option 6), to allow for 
material savings. These settings still kept the Reflex Index 
values to acceptable levels, i.e. larger than 4.5 mcd/lx and less 
than 300 mcd/lx. 

  

VI. CONCLUSIONS AND FUTURE WORK 

 
Controlling an injection molding process to obtain 

conforming parts is complicated by the fact that the behavior 
of the material inside the mold depends heavily on the process 
parameters. Such behavior affects several key performance 
measures simultaneously, not all of them in a positive manner, 
thereby imposing different compromises. Adequately setting 
these parameters require a deep understanding of the 
phenomena involved in the process and their variation as 
functions of the processing parameters. 

 
In this work, an optimization strategy previously proposed 

in references [1-4] was demonstrated through a case study to 
gain knowledge about the injection molding process, as well 
as to competitively set the controllable variables to result in 
the best compromises among several performance measures 
concurrently. This is the first reported practical case of the 
above mentioned strategy.  
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Future work in this research line will include the 
formulation of efficient injection molding process windows 
through a finer characterization of the efficient set of 
solutions.  
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Figure 7.  The seven efficient solutions in terms of their performance measure values. 
 
Table 4.  Six metamodels created with their significant terms at a confidence level of 95%. 
 

 
Metamodel 

Term 

MassR Reflex 
LR 

Reflex RR MassL Reflex 
LL 

Reflex 
RL 

Constant 0.347099 15.9453 14.6645 0.349265 30.2467 10.4766

Cavity (Block) 0.007355 1.0196 0.4940 -0.011118 1.5192 0.0704

Tn -0.000750 -0.9124 -0.7762 -0.000772 -0.7553 -0.5441

Pp -0.001846 0.3383 0.2490 -0.002139 -0.5849 0.2136

V -0.000281 0.1762 0.0665 -0.000423 -0.4661 0.0920

Tv 0.000558 0.4277 0.5031 0.000646 1.1283 0.2715

Tf -0.000464 -1.1636 -0.4949 -0.000719 -3.7669 -0.4568

Tp -0.000682 -0.6821 -0.6525 -0.000737 -1.1610 -0.3339

Tw 0.002107 -2.5428 -3.1097 0.001340 -3.8072 -2.4608

Tn*Tn 0.000574 1.9937 2.4183 0.001148 4.1486 1.5194

Pp*Pp -0.000735 -1.3309 -1.5143 -0.001305 -4.0818 -1.2816

Tp*Tp -0.000522 0.9444 0.6506 -0.000617 -0.9205 0.6555

Tw*Tw 0.000017 0.4650 0.0888 -0.000290 0.7561 0.0988

Tn*Pp -0.000073 0.6598 0.5198 -0.000433 0.9824 0.2594

Tn*V 0.000725 0.8729 1.1083 0.001164 1.9293 0.7589
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Tn*Tv 0.000155 0.2171 0.0575 -0.000098 -0.8940 -0.0670

Tn*Tf 0.000411 2.0182 2.1603 0.000436 3.0806 1.4868

Tn*Tp -0.000328 -1.5385 -1.7094 -0.000591 -2.8001 -1.1881

Tn*Tw -0.000812 0.4442 0.4904 -0.001067 -0.4022 0.2340

Pp*V -0.000075 -1.7040 -2.2320 -0.000414 -3.6213 -1.4985

Pp*Tv -0.000031 -0.0217 0.3229 0.000103 0.3635 0.1832

Pp*Tp 0.000027 0.0792 0.3117 0.000410 0.3800 0.2508

R-Sq 93.7% 95.5% 98.8% 96.4% 88.6% 97.8%

R-Sq(adj) 90.4% 93.3% 98.2% 94.5% 82.8% 96.7%
 
 
 
 
 
Table 5.  Best compromises identified through Data Envelopment Analysis for the combinations of processing conditions. 
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Option 1 
522.04 5.17 3.30 316.48 319.26 7 330.37 0.3391 22.78 20.23 0.3471 32.70 15.00 

Option 2 
522.04 5.17 3.30 305.37 302.59 7 302.59 0.3440 10.82 9.26 0.3513 16.97 6.77 

Option 3 
499.82 5.17 3.30 305.37 319.26 7 302.59 0.3449 14.40 11.80 0.3455 24.20 8.10 

Option 4 
499.82 5.17 3.30 305.37 302.59 7 330.37 0.3400 18.54 18.20 0.3481 27.67 13.10 

Option 5 510.93 5.17 3.30 305.37 302.59 9 302.59 0.3489 12.48 9.70 0.3421 16.53 6.40 

Option 6 499.82 5.17 3.81 316.48 302.59 7 330.37 0.3428 19.29 18.87 0.3387 31.80 13.67 

Option 7 522.04 5.17 3.81 316.48 302.59 9 330.37 0.3402 19.35 18.73 0.3483 27.00 13.23 
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