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ABSTRACT
Efficient memory management of dynamic non-blocking data
structures remains an important open question. Existing
methods either sacrifice the ability to deallocate objects or
reduce performance notably. In this paper, we present a
novel technique, called Drop the Anchor, which significantly
reduces the overhead associated with the memory manage-
ment while reclaiming objects even in the presence of thread
failures. We demonstrate this memory management scheme
on the common linked list data structure. Using extensive
evaluation, we show that Drop the Anchor significantly out-
performs Hazard Pointers, the widely used technique for
non-blocking memory management.
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1. INTRODUCTION
Non-blocking data structures [9, 11] are fast, scalable and

widely used. In the last two decades, many efficient non-
blocking implementations for almost any common data struc-
ture have been developed. However, when designing a dy-
namic non-blocking data structure, one must address the
non-trivial issue of how to manage its memory. Specifically,
one has to ensure that whenever a thread removes some in-
ternal node from the data structure, then (a) the memory
occupied by this node will be eventually deallocated (i.e., re-
turned to the memory manager for arbitrary reuse), and (b)
no other concurrently running thread will access the deal-
located memory, even though some threads might hold a
reference to the node.

Previous attempts to tackle the memory management prob-
lem had limited success. Existing non-blocking algorithms
usually take two standard approaches. The first approach
is to rely on automatic garbage collection (GC), simply de-
ferring the problem to the GC. By doing this, the design-
ers hinder the algorithm from being ported to environments
without GC [5]. Moreover, the implementations of these
designs with currently available (blocking) GC’s cannot be
considered non-blocking.

The second approach taken by designers of concurrent
data structures is to adopt one of the available non-blocking
memory management schemes. The most common schemes
are probably the Hazard Pointers technique by Michael [14]
or the similar Pass the Buck method by Herlihy et al. [10].
In these schemes, each thread has a pool of global point-
ers, called hazard pointers in [14] or guards in [10], which
are used to mark objects as ”live” or ready for reclamation.
When a thread t reclaims a node, t adds the node to a special
local reclamation buffer. Once in a while, t scans its buffer
and for each node it checks whether some other thread has
a hazard pointer1 to the node. If not, that node can be
safely deallocated. Special attention must be given to the
time interval after a thread obtains a reference to an object
and before it registers this object in a hazard pointer. Dur-
ing this time, the object may be reclaimed and reallocated.
Thus, by the time it gets protected by a hazard pointer,
it could have become a completely different entity. This
delicate point enforces validation of the object’s state after
assigning it with a hazard pointer.

Although these techniques are not universal (i.e., there
is no automatic way to incorporate them into a given al-
gorithm), they are relatively simple. Moreover, a failure

1In this paper we will use the term ”hazard pointers”, but
guard pointers are equally relevant.
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of one thread prevents only a small number of nodes (to
which the failed thread has references in its hazard point-
ers) from being deallocated. The major drawback of these
techniques, however, is their significant runtime overhead,
caused mainly by the management and validation of the
global pointers required before accessing each internal node
for the first time [8]. Along with that, expensive instruc-
tions, such as memory fences or compare-and-swap (CAS)
instructions [14, 10, 8], are required for correctness of those
schemes. Moreover, if the validation fails, the thread must
restart its operation on the data structure, harming the per-
formance further.

Another known method for memory management uses
per-thread timestamps, as in [7], which are incremented by
threads before every access to the data structure. When a
thread removes a node, it records the timestamps of other
threads. Later, it can deallocate the node once all threads
increase their timestamps beyond the recorded values. Al-
though this method is very lightweight, it is vulnerable to
thread delays and failures. In such cases, memory space of
an unbounded size may become impossible to reclaim [14].

In this paper, we concentrate on the linked list, one of
the most fundamental data structures, which is particularly
prone to the shortcomings of previous approaches [8]. The
presented technique eliminates the performance overhead as-
sociated with the memory management without sacrificing
the ability to deallocate memory in case of thread failures.
The good performance of our technique stems from the as-
sumption that thread failures are typically very uncommon
in real systems, and if they do occur, this is usually indica-
tive of more serious problems than being unable to deallo-
cate some small part of memory. Our approach provides a
flexible tradeoff between the runtime overhead introduced
by memory management and the size of memory that might
be lost when some thread fails.

Our memory management technique builds on a combi-
nation of three ideas: timestamps, anchors and freezing. As
in [7], we use per-thread timestamps to track the activity of
each thread on the data structure. Similarly to [14], we use
global pointers, which we call anchors. Unlike [14], however,
a thread drops the anchor (i.e., records a reference in the
anchor) every bunch of node accesses, e.g., every one thou-
sand nodes it traverses. As a result, the amortized cost of
anchor management is spread across multiple node accesses
and is thus very low. To recover the data structure from
a failure of a thread t, we apply freezing [3]. That is, us-
ing t’s anchors, other threads mark nodes that t may hold
a reference to, as frozen. Then they copy and replace the
frozen part of the data structure, restoring the ability of all
threads to deallocate memory. The recovery operation is
relatively expensive, but it is required only in the uncom-
mon case in which a thread fails to make progress for a long
while. Thus, the overall cost of the memory management
remains very low.

We have implemented our scheme in C and compared its
performance to the widely used implementation of the linked
list based on Hazard Pointers (HP) [14]. Our performance
results show that the total running time, using the anchor-
based memory management, is about 250–500% faster the
one based on HP. We also discuss how to apply our technique
on other data structures, where the use of other approaches
for memory management is more expensive.

2. RELATED WORK
Memory management can be fairly considered as the Achilles

heel of many dynamically sized non-blocking data struc-
tures. In addition to the techniques mentioned in the in-
troduction (that use per-thread timestamps [7] or global
pointers [14, 10]), one can also find an approach based on
reference counting [16, 6, 4, 15]. There, the idea is to asso-
ciate a counter with every node, which is updated atomically
when a thread gains or drops a reference to the node. Such
atomic updates are typically performed with a fetch-and-
add instruction, and the node can be safely removed once
its reference count drops to zero. This approach suffers from
several drawbacks, such as requiring each node to keep the
reference count field even after the node is reclaimed [16,
15] or using uncommon atomic primitives, such as double
compare-and-swap (DCAS) [4]. The major problem, how-
ever, remains performance [14, 8], since even when applying
a read-only operation on the data structure, this approach
requires atomic reference counter updates on every node ac-
cess.

In a related work, Hart et al. [8] compare several memory
management techniques, including hazard pointers, refer-
ence counters, and so-called quiescent-state-based reclama-
tion. In the latter, the memory can be reclaimed when each
thread passes through at least one quiescent state [13], in
which it does not hold any reference to shared nodes, and
in particular, to nodes that have been removed from the
data structure. In fact, the timestamp-based technique [7]
discussed in the introduction can be seen as a special case
of the quiescent-state approach. Hart et al. [8] find that
when using hazard pointers or reference counters, expen-
sive atomic instructions, such as fences and compare-and-
swaps (CAS) executed for every traversed node, dominate
the performance cost. Quiescent-state reclamation usually
performs better, but it heavily depends on how often quies-
cent states occur. Moreover, if a thread fails before reaching
the quiescent state, no memory can be safely reclaimed from
that point.

Dragojevic et al. [5] consider how hardware transactional
memory (HTM) can help to alleviate the performance and
conceptual difficulties associated with memory management
techniques. In contrast to [5], our algorithm does not rely
on special hardware support, such as HTM.

The freezing idea was previously used in the context of
concurrent data structures by Braginsky and Petrank in
their recent work on chunk-based linked lists [3]. There, list
nodes are grouped into chunks for better cache locality and
list traversal performance. The freezing technique is used
in [3] for list restructuring to notify threads that the part of
the data structure they are currently using is obsolete. This
is done by setting a special freeze-bit on pointers belonging
to nodes in the obsolete part, making the pointers/nodes
unsuitable for traversing. A thread that fails to use a frozen
pointer realizes that this part of the data structure is ob-
solete and it restarts its operation, usually after helping to
accomplish the list restructuring procedure that froze that
part.

3. AN OVERVIEW OF DROP THE ANCHOR
As mentioned in the introduction, our technique relies

on three building blocks, namely timestamps, anchors, and
freezing. A thread t manages a monotonically increasing
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Figure 1: Transition diagram for possible states of
the thread t

timestamp in the following way. When t starts its opera-
tion on a list data structure, it reads the timestamps of all
threads and sets its timestamp to the maximal value it read
plus one. When t finishes its operation, it simply marks its
timestamp as idle.

The timestamp of t is associated with two flags, stuck
and idle. These flags specify one of the following states of
the timestamp (and of the corresponding thread): running
(both flags are turned off, meaning that t has a pending op-
eration on the data structure), idle (only the idle flag is on,
meaning that t does not have any pending operation on the
data stucture), running, but stuck, which we call for brevity
simply stuck (only the stuck flag is on, meaning that t
with a pending operation is suspected by other thread(s) to
be stuck) and recovered (both flags are turned on, meaning
that other threads have frozen and copied the memory that
might be accessed by t). The transition between these states
is captured in Figure 1. Normally, t moves between running
and idle states. Once some thread suspects t to be stuck,
t’s timestamp is marked as stuck. The only way for t to
return to the running state is to go through the recovered
state (cf. Figure 1).

The timestamps are also used to mark the insertion and
deletion times of list nodes. That is, each node in the list
has two additional fields, which are set as follows. When t
decides to insert (remove) a node into (from) the list, it sets
the node’s insertion (deletion, respectively) timestamp field
to be higher by one from the maximal timestamp value that
it observes among the timestamps of all threads.

The nodes deleted by t are stored in t’s special reclamation
buffer, which is scanned by t once in a while (as in [14]).
During each scan, and for each deleted node n, t checks
whether the deletion time of n is smaller than the current
timestamps of other threads (plus an additional condition
described later), and if so, deallocates the node. This check
ensures that all threads have started a new list operation
since the time this node was removed from the list, and
therefore, no thread can be viewing this node at this time.

If threads did not fail, this would be everything needed to
manage the memory of non-blocking lists by a traditional
epoch-based approach [7]. Unfortunately, thread failures
may happen. In the design described so far, if a thread fails
during its operation on the list, no additional node can be
deallocated, since the timestamp of the failed thread would
not advance.

To cope with the problem of thread failures, we use two
additional concepts, namely anchors and freezing. Anchors
are simply pointers used by threads to point to list nodes.
In fact, hazard pointers[14] can be seen as a special case of

anchors. The difference between the two is that the anchor
is not dropped (set) before accessing every internal node
in the list, but rather every ten, one hundred, or several
thousands of node accesses (the frequency is controlled by
the anchor threshold parameter). As a result, the amor-
tized cost of anchor management is significantly reduced and
spread across the traversal of (controllably) many nodes in
the list data structure. The downside of our approach, how-
ever, is that when a thread t is suspected of being stuck,
other threads do not know for sure which object t may access
when (and if) it revives. They only know a range of nodes
where t might be, which includes the node pointed by t’s
anchor plus additional nodes reachable from that anchored
node. The suspecting threads use this range to recover the
list from the failure of t. Specifically, they freeze all nodes
in the range by setting the special freeze-bit of all point-
ers in these nodes2. Next, they copy all frozen nodes into
a new sub-list. Finally, they replace the frozen nodes with
the new sub-list and mark t’s timestamp as recovered. This
mark tells other threads that the list was recovered from
t’s failure. In other words, threads may again deallocate
nodes they remove from the data structure, disregarding t’s
timestamp.

The recovery procedure is relatively heavy performance-
wise and has certain technical issues, but in return, the com-
mon path, i.e., the traversal of the data structure, incurs
virtually no additional operations related to memory man-
agement. Since the recovery is expected to be very infre-
quent, we believe (and show in our performance measure-
ments) that the complication associated with the recovery
procedure pays off by eliminating the overhead in the com-
mon path. In the next section, we provide technical details
of the application of this general idea into the concrete non-
blocking implementation of the linked list.

4. DETAILED DESCRIPTION

4.1 Auxiliary fields and records
We use the singly linked list of Harris [7] as a basis for our

construction. To support our scheme, each thread main-
tains two records where it stores information related to the
memory management. The first record is global, i.e., it can
be read and written by any thread (not just the owner of
the record), and used to manage the thread’s timestamp
and anchor. The second record is local, and is used during
object reclamations and for deciding whether the recovery
procedure is necessary.

The structure of the records is given in Listing 1. The
global record contains two fields, timestampAndAnchor and
lowTimeStamp. The timeStampAndAnchor field contains the
timestamp, the anchor, and the idle and stuck bits of the
thread, combined into one word so that all can be modified
atomically. The width and the actual internal structure of
the field depends on the underlying machine. In certain set-
tings of 64-bit Linux-based architectures, the virtual mem-
ory addressing requires 48 bits; the two least significant bits
in a pointer are typically zeroed due to memory alignment.
Moreover, most existing architectures support wide-CAS in-
struction, which operates atomically on two adjacent mem-
ory words (i.e., 128 bits). In such settings, we allocate 64

2The freeze-bit is one of the least significant bits of a pointer,
which are normally zeroed due to memory alignment.



Listing 1: Auxiliary records
s t r u c t GlobalMemoryManagementRec{

u in t128 t timeStampAndAnchor ;
u in t64 t lowTimeStamp ;

} ;

s t r u c t LocalMemoryManagementRec{
l i s t t r e c l amat ionBuf f e r ;
u i n t64 t minTimeStamp ;
u in t32 t minTimeStampThreadID ;
u in t32 t minTimeStampThreadCnt ;

} ;

bits for the timestamp and 64 bits for the anchor pointer,
including two bits for two flags, which specify the state of
the thread (i.e., running, idle, stuck and recovered). In the
settings where only 64 bits can be a target for a CAS instruc-
tion, one can use 48 bits or fewer for the anchor pointer and,
respectively, 16 bits for timestamp. However, different allo-
cation techniques can be used to require fewer bits for the
pointer.

When a thread t accesses the list, it reads the timestamps
of all threads in the system and sets its own timestamp to
one plus the maximum among all the timestamp values that
were read. It writes its new timestamp in the timeStampAn-

dAnchor field, simultaneously setting the idle bit to zero.
When t completes its operation, it simply turns the idle bit
on (leaving the same timestamp value). The exact details
of the manipulation of this field are provided in subsequent
sections.

In addition to the timeStampAndAnchor field, the global
record contains a field called lowTimeStamp. This field is set
by t to the minimal timestamp observed by t when it starts
an operation on the list. As described in Section 4.4, the
lowTimeStamp field is used by other threads when they try
to recover the list from the failure of t (to identify nodes
that were inserted into the list before t started its current
operation).

The local record has four fields. The description of their
role is given in Section 4.3.

Along with adding auxiliary records for each thread, we
also augment each node in the linked list with two fields hav-
ing self-explanatory names, insertTS and retireTS. These
fields are set to the current maximal timestamp plus one
when a node is inserted into or deleted from the list, respec-
tively.

4.2 Anchor maintenance
Anchor maintenance is carried out when threads traverse

the list, looking for a particular key. The simplified pseudo-
code for this traversal composes the find method given in
the full version of this paper [2]. Recall that this method is
used by all list operations in [7].

A thread counts the number of list nodes it has passed
through and updates its anchor every anchor threshold
nodes (where anchor threshold is some preset number).
The anchor points to the first node in the list that can be
accessed by the thread (which is the node pointed by prev in
the find method). Anchor updates are made in the auxiliary
setAnchor function also shown in [2]. An anchor update

may fail for thread ti if some other thread tj has marked
the timeStampAndAnchor field of ti as stuck, as explained in
Section 4.4.

It is important to note that the actual update of the an-
chor is done with CAS (and not with a simple write opera-
tion) to avoid races with concurrently running threads that
might suspect ti being stuck and try to set the stuck bit in
ti’s timeStampAndAnchor. From a performance standpoint,
however, the write operation of a hazard pointer, made on
accessing every node, requires an expensive memory fence
right after it [14, 8]. In contrast, the CAS in our approach
is performed only every anchor threshold node accesses,
and its amortized cost is negligible.

We note that the find function is allowed to traverse the
frozen nodes of the list. A node is frozen if the second least
significant bit in its next pointer is turned on (while the first
least significant bit is used to mark the node as deleted [7]).
If there is a need to update the next pointer of the frozen
node, the update operation fails (as in [3]) and retries af-
ter invoking the helpRecovery method (pseudo-code can be
found in [2]). As its name suggests, the latter method is
used to help the recovery process of some stuck thread. This
method is also called when a thread fails to update its anchor
in setAnchor.

Finally, we note that at any time instant, list operations
have references to at most two adjacent list nodes. (Re-
call that for the linked list data structure two hazard point-
ers are required [14]). As we require that a stuck thread
will be able to access nodes only between its current anchor
and (but not including) the next potential anchor, the an-
chor threshold parameter for the linked lists has to be at
least 2.

4.3 Node reclamation
When a thread ti removes a node from the list, it calls

the retireNode method, which sets the deletion timestamp
of the node (i.e., the retireTS field) to the current maximal
timestamp plus one. Then, similarly to [14], the retireN-

ode method adds the deleted node to a reclamation buffer.
The latter is simply a local linked list (cf. Listing 1) where
ti stores nodes deleted from the list data structure, but not
deallocated yet. When the size of the buffer reaches a prede-
fined bound (controlled by the retire threshold param-
eter), ti runs through the buffer and deallocates all nodes
with the retire timestamp smaller than the current mini-
mal timestamp (plus an additional condition elaborated in
Section 4.4). Note that if the deletion time of a node n is
smaller than the timestamp of a thread tj , tj started its last
operation on the list after n was removed from the list; thus,
tj will never access n. Obviously, if this holds for any tj , it
is safe to deallocate n.

When ti finds that some thread tj exists such that the
timestamp of tj is smaller than or equal to the timestamp of
one of the nodes in ti’s reclamation buffer, ti stores the ID
of that thread (i.e., j) in the minTimeStampThreadID field of
its local memory management record (cf. Listing 1) and tj ’s
timestamp in the minTimeStamp field of that record. It also
sets the minTimeStampThreadCnt field to 1. It is important
to note that if several threads have the same minimal times-
tamp, ti will store the smallest ID in minTimeStampThrea-

dID. This will ensure that even if several threads are stuck
with the same timestamp, all threads will consider the same
thread in the recovery procedure.



On later scans of the reclamation buffer, if ti finds that the
thread tj (whose ID is stored in ti’s minTimeStampThreadID)
still has the same timestamp, ti will increase the minTime-

StampThreadCnt counter. Once the counter reaches the pre-
defined recovery threshold parameter, ti will suspect
that tj has failed and will start the recovery procedure de-
scribed in Section 4.4.

4.4 Recovery procedure
The recovery procedure is invoked in one of the following

three cases. First, it is invoked by a thread ti that tries to
deallocate an object n from its reclamation buffer, but re-
peatedly finds a running thread tj whose timestamp remains
smaller than or equal to the timestamp of n (cf. Section 4.3).
The second case is when a thread ti tries to modify the next

pointer of one of the nodes in the list, but finds that this node
is frozen (cf. Section 4.2). Finally, the third case happens
when a thread tries to update its anchor by modifying its
timeStampAndAnchor field, but finds that some other thread
turned the stuck bit on in this field (cf. Section 4.2). In
two last cases ti invokes the helpRecovery method. There,
ti scans through global records of the threads, looking for
a thread tj with the stuck bit in tj ’s timeStampAndAnchor

field turned on.
The recovery procedure consists of four phases (the code

can be found in [2]). We explain these phases using the ex-
ample in Figure 2. Assume that at some point in time the
list data structure is in the state depicted in Figure 2(a), and
thread t0 decides to recover the list from the failure of thread
t1. Before invoking the first phase of the recovery procedure,
t0 stores locally the current value of t1’s timeStampAndAn-

chor field. Then, in the first phase of the recovery proce-
dure, t0 attempts to modify t1’s timeStampAndAnchor field
by turning the stuck bit on using CAS operation (cf. Fig-
ure 2(b)). If this operation fails, t0 rereads t1’s timeStam-

pAndAnchor field and checks whether it was marked as stuck
by some other thread. If not, it aborts the recovery pro-
cedure (since either t1 is actually alive and has modified its
timeStampAndAnchor field, or some other thread, i.e., t2, has
finished the recovery of t1 and, as we will see later, turned
both stuck and idle bits on). Otherwise, if the CAS oper-
ation that turns the stuck bit on succeeds, or if it fails, but
t1 is marked as stuck by another thread, t0 proceeds to the
second phase.

In the second phase of the recovery procedure, t0 freezes
and copies all nodes that t1 might access if t1 revived and
traversed the list until realizing at the next anchor update
that its anchor is marked as stuck. To identify such nodes,
t0 extracts t1’s anchor pointer out of the value stored in
t1’s timeStampAndAnchor field (which points to node 25 in
our example in Figure 2(a)). Then, t0 starts setting the
freeze-bit in the next pointers of reachable nodes, starting
from node 25. It copies the frozen nodes (with the freeze-bit
set off) into a new list. Note that some of the nodes may
already be deleted from the list (e.g., node 25, 27 and 42
in Figure 2), but not disconnected or reclaimed yet. Such
nodes are frozen, but they do not enter the new copied part
of the list. The thread t0 keeps freezing and copying until it
passes through anchor threshold nodes having an inser-
tion timestamp smaller than the value of t1’s lowTimeStamp
field. In our example in Figure 2, let us assume that these
are nodes 25, 27, 40, 41 and 42. Note that for traversing
those nodes, t0 had to update its own anchor to be the same

as t1’s anchor in order to handle t0’s failure during the re-
covery procedure. At the end of the second phase the list
looks as depicted in Figure 2(c). The pseudo-code for how
we freeze the nodes and create the copies can be found in
[2].

In the third phase, t0 attempts to replace the frozen nodes
with a locally copied part of the list. To this end, it runs
from the beginning of the list data structure and looks for the
first (not-deleted) node m whose next pointer either points
to the not-deleted frozen nodes or it is followed by a sequence
of one or more deleted nodes such that the next pointer of
the last node in the sequence points to a not-deleted frozen
node (in Figure 2(c), m is the node 12). If such m were
not found by reaching the end of the list data structure,
t0 would finish this phase, as it would assume that some
other thread has replaced the frozen part of the list with
the new list created by that thread. Otherwise, t0 attempts
to update m’s next pointer to point to the corresponding
copied node in the new list. If it fails, it restarts this phase
from the beginning. Otherwise, t0 inserts all nodes between
m and the first frozen node (i.e., node 20 in Figure 2(c))
into its reclamation buffer in order to deallocate them later,
bringing the list to the state exhibited in Figure 2(d). The
code of the procedure for replacing frozen nodes can also be
found in [2].

One subtlety that is left out of the code for lack of space,
is the verification that the new local list indeed matches the
frozen nodes being replaced. It is crucial to ensure that if a
thread running the recovery procedure gets delayed, it does
not replace another frozen part of the list when it resumes.
To this end, we record the sources of the new nodes, when
they are copied, and CAS the new list into the data structure
only if it replaces the adequate original nodes that can be
found in the recorded sources.

In the final, fourth phase, t0 sets the idle bit in the t1’s
timeStampAndAnchor field, marking t1 as recovered. Addi-
tionally, t0 promotes t1’s timestamp, recording the (logical)
time when t1 was recovered (cf. Figure 2(e)). Note that t0
does not need to check whether its CAS has succeeded, since
if it hasn’t, some other thread has performed this operation.
We denote a timestamp of a thread with idle and stuck
flags turned on as recovery timestamp.

4.5 The refined reclamation procedure
Thread t1, considered stuck, might actually have a pointer

to a node n which is already not a part of the list. For in-
stance, in the state of the list shown in Figure 2(a), t1 might
be stopped while inspecting node 25 (or 27). If this node
is currently in the reclamation buffer of some other thread
tk (i.e., t0 or t2), and if tk does not consider t1 after the re-
covery is done (i.e., tk only checks that node 25’s retireTS

is smaller than the timestamp of any running thread), tk
might deallocate node 25 and t1 might erroneously access
this memory if and when it revives. Note that node 27 may
already be unreachable from the node pointed by t1’s anchor
by the time of t1’s recovery, if, e.g., the next pointer of node
25 was updated while t1 was inspecting node 27. In this
case, node 27 will not be frozen and copied at all. In order
to cope with such situations, before deallocating a node we
require its retire timestamp (retireTS) to be larger than
the timestamp of any thread in the recovered state (in ad-
dition to being smaller than the timestamp of any running
thread). This way we prevent nodes removed from the list
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(a) The state of the list before the recovery is in-
voked

 

121   0 0 

TS anchor I S

5  0 0

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2 

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

121   0 0 

TS anchor I S

5  0 1
TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2 

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

121   0 0 

TS anchor I S

5  0 1

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

41 

41 

40 

41 

121   0 0 

TS anchor I S

5  0 1

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

40 

(b) Phase 1

 

121   0 0 

TS anchor I S

5  0 0

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2 

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

121   0 0 

TS anchor I S

5  0 1
TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2 

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

121   0 0 

TS anchor I S

5  0 1

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2 

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

41 

41 

40 

41 

121   0 0 

TS anchor I S

5  0 1

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

40 

(c) Phase 2  

121   0 0 

TS anchor I S

5  0 0

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2 

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

121   0 0 

TS anchor I S

5  0 1
TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2 

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

121   0 0 

TS anchor I S

5  0 1

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

41 

41 

40 

41 

121   0 0 

TS anchor I S

5  0 1

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

40 

(d) Phase 3

 
 
 
 

 

41 

121   0 0 

TS anchor I S

130  1 1

TS anchor I S

129  0 0 

TS anchor I S

thread 0 thread 1 thread 2

3 

head 

12 20   x 40  42   x 43 

25   x 27   x

41 

40 

(e) Phase 4

Figure 2: Recovery phases. Nodes marked with ’x’ are deleted, i.e., the delete-bit of their next pointer is
turned on [7]. Shaded nodes are frozen, i.e., the freeze-bit of their next pointer is turned on.



before some thread got recovered from being deallocated,
as the thread being recovered might hold a pointer to such
node. When (and if) the recovered thread becomes running
again, it will be possible to reclaim those nodes. To summa-
rize, when a thread wants to deallocate a node n, it checks
that n is not frozen (i.e., the freeze-bit in its next pointer is
not set) and that the following condition holds:

MAX({timestamp of tx | tx is recovered}) < n.retireTS <
MIN({timestamp of tx | tx is running})

It should be noted that when calculations of the retire
timestamp and the recovery timestamp are done simultane-
ously (by different threads), the retire timestamp can erro-
neously be higher than the recovery timestamp, and wrong
reclamation can happen. Therefore, when calculating the
retire timestamp for a node, we require a thread to pass
twice over the timestamps of the threads verifying that no
thread was marked stuck or recovered concurrently. If such
thread(s) is found, the node is inserted into the reclamation
stack as frozen.

For simplicity of presentation, in the algorithm described
above frozen nodes are not reclaimed. Such nodes can only
appear if threads fail and such a solution may be acceptable.
However, frozen nodes can be easily reclaimed for recovered
threads that have resumed operation. A recovered thread
can reclaim nodes according to the recovery timestamps.
Also, a frozen node that appears in a reclamation stack can
be reclaimed using its retireTS field and the lowTimeStamp

field of all stuck threads. Details are omitted.

4.6 Correctness argument
In this section we give high-level arguments behind the

proofs of correctness. We start by outlining the assumed
memory model and defining linearization points for the mod-
ified list operations. Then we argue that any internal node
deleted after the last recovery was finished (or deleted any
time if no thread has been suspected being stuck) will be
eventually reclaimed (we call this property eventual con-
ditional reclamation). Next, we argue that our technique
guarantees the safety of memory references. In other words,
no thread t accesses the memory that has been reclaimed
since the time t obtained a reference to it. Finally, we argue
that our technique is non-blocking, meaning that whenever
a thread t starts the recovery procedure, then after a finite
number of t’s steps either t completes the recovery, or some
other thread completes an operation on the list. In addi-
tion, we show that the system-wide progress with respect to
the list operations is preserved, that is after a finite num-
ber of completed recovery procedures there is at least one
completed list operation.

Due to space limitation, the proof sketch of all lemmas
appears in the full version of this paper [2].

4.6.1 Model and linearizability
Our model for concurrent multi-threaded computation fol-

lows the linearizability model of [12]. In particular, we as-
sume an asynchronous shared memory system where n de-
terministic threads communicate by executing atomic op-
erations on some finite number of shared variables. Each
thread performs a sequence of steps, where in each step the
tread may perform some local computation or invoke a single
atomic operation on a shared variable. The atomic opera-
tions allowed in our model are reads, writes, or compare-
and-swaps (CAS). The latter receives a memory address of

a shared variable v and two values, old and new. It sets the
value of v to new only if the value of v right before CAS
is applied is old ; in this case CAS returns true. Otherwise,
the value of v does to change and CAS returns false. We
assume that each thread has an ID, denoted as tid, which is
a value between 0 and n−1. In systems where tid may have
values from arbitrary range, known non-blocking renaming
algorithms can be applied (e.g., [1]). In addition, we assume
each thread can access its tid and n.

The original implementation of all operations of the non-
blocking linked list by Harris [7] is linearizable [12]. We
argue that after applying Drop the Anchor memory man-
agement technique, all list operations remain linearizable.
Recall that all list operations invoke the find method, which
returns pointers to two adjacent nodes, one of which holds
the value smaller than the given key. For further details,
see [7]). Denote this node as prev. Furthermore, recall that
list operations may invoke find several times. For instance,
insert will invoke find again if the next pointer of prev
has being concurrently modified (in particular, in our case,
frozen). Thus, we define the linearization points for a list
operation op with respect to the prev returned from the last
invocation of find by op. If this prev node is not frozen (i.e.,
the freeze-bit of its next pointer is not set), the linearization
point of op is exactly as in [7]. However, if this prev node
is frozen, we set the linearization point of op at the time in-
stance defined as following. Consider the sequence of frozen
nodes read by the corresponding find operation starting
from a frozen node m and including the (frozen) node prev
(where m and prev might be the same node). The lineariza-
tion point of op is defined at the latest of the two events:
(a) the corresponding find traversed m (i.e., read the next

pointer of the node previous to m in the list) and (b) the
latest time at which some node between (and including) m
and prev was inserted or marked as deleted. The intuition
is that when find returns a result from a frozen part of the
list, this part no longer reflects the actual state of the list at
the moment prev node is read. Thus, we have to linearize
the corresponding operation at some earlier time instance,
at which the nodes read by find are still consistent with the
actual keys stored in the list.

4.6.2 Eventual conditional reclamation

Lemma 4.1. Let Ts and Tf be the time when a thread t
starts and finishes, respectively, the call to retireNode(node)

and Tr > Tf is the time when t finishes to scan its reclama-
tion buffer. Then at least one of the following events occurs
in the time interval [Ts, Tr]:

1. Some thread remains running throughout [Tf , Tr], and
its timestamp changes at most once in [Tf , Tr].

2. Some thread becomes recovered at some point in time
in [Ts, Tr].

3. The memory allocated to node is reclaimed by the time
Tr.

Based on the lemma above, we prove that when a thread
removes a node from the list, as long as that tread keeps ap-
plying (delete) operations on the list and particularly ”bad”
things do not happen to other threads (e.g., they are not
suspected to be failed), the memory of that node will be
eventually reclaimed.



Total time for different number of threads using 
different memory reclamation techniques

0

50

100

150

200

250

4 8 12 16 20 24 28 32 36 40
Number of threads

R
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

HP (with fence instruction)
Anchor every 2 nodes
Anchor every 10 nodes
Anchor every 100 nodes
Delayed Reclamation

(a) The total running time comparison for searches
only.

Relative performance ratio compared to 
delayed reclamation

0

1

2

3

4

5

6

7

4 8 12 16 20 24 28 32 36 40
Number of threads

O
ve

rh
ea

d 
in

 s
ec

on
ds

HP (with fence) Ratio

Anchor 2 Ratio

Anchor 10 Ratio

Anchor 100 Ratio

(b) Memory management overhead referred to delayed
reclamation for searches only.

Figure 3: Drop the Anchor vs. Hazard Pointers for lists with the initial size of 100k keys, the read-only
workload results.

Lemma 4.2. Let Ts be the time when a thread t starts
the call to retireNode(node). Then node will be eventually
reclaimed as long as t keeps removing nodes from the list and
there is no thread that is stuck or recovered at or after Ts.

Note that even if some thread tx gets stuck or recovered
after Ts as above, it may have impact only on nodes being
removed before (or concurrently to) tx’s recovery.

4.6.3 Safety of memory references
First, we prove that access to any node that can be reached

from t’s anchor (for any thread t) is safe, i.e., such node can-
not be reclaimed.

Lemma 4.3. No node reachable from an anchor of some
thread can be reclaimed.

Using the lemma above, we show that with the Drop the
Anchor memory management, no thread will access a re-
claimed memory.

Lemma 4.4. No thread t accesses the memory that has
been reclaimed since the time t obtained a reference to it.

4.6.4 Progress guarantees
The original implementation of all operations of the non-

blocking linked list by Harris [7] is lock-free [12] . We argue
that after applying Drop the Anchor memory management
technique, all list operations remain lock-free. We say that
a thread ti starts the recovery of a thread tj when ti sets the
stuck bit on in tj ’s timestampAndAnchor field. Similarly,
we say a thread ti completes the recovery of a stuck thread
tj when ti sets the idle bit on in tj ’s timestampAndAnchor

field.

Lemma 4.5. If a thread ti starts the recovery of tj at Ts,
then the recovery of tj will be completed at Tf > Ts (by possi-
bly another thread tk) and/or infinitely many list operations
will be linearized after Ts.

Next, we show that despite recovery operations, the system-
wide progress is preserved, i.e., threads never keep recovering
one another forever without completing list operations.

Lemma 4.6. Consider n+1 recovery operations completed
at times T1 < T2 < ... < Tn+1. Then there must be at
least one list (delete) operation linearized in the time interval
[T1, Tn+1].

5. PERFORMANCE EVALUATION
We have implemented the non-blocking linked list data

structure of Harris [7] with several memory management
techniques. First, we have implemented the Hazard Point-
ers technique following the pseudo-code presented in [14],
but with the additional memory fence instruction added just
after the write of a new value to the hazard pointer of a
thread [8]. Second, we have implemented our new Drop the
Anchor technique presented in this paper. Finally, we have
also implemented a simple technique, where nodes removed
by a thread t from the list are added to t’s reclamation stack
and reclaimed later once 64 nodes are collected in the recla-
mation stack. We refer to this implementation as delayed
reclamation. We note that this scheme is incorrect in a sense
that it allows threads to access deallocated memory, but we
used this implementation to represent a memory manage-
ment scheme with a minimal performance impact. All our
implementations were coded in C and compiled with -O3
optimization level.

We have run our experiments on the machine with two
AMD Opteron(TM) 6272 16-core processors, operated by
Linux OS (Ubuntu 12.04). We have varied the number of
threads between 1 and 40, slightly above the number of
threads that can run concurrently on this machine (32). If
not stated otherwise, each test starts by building an initial
list with 100k random keys. After that, we measure the
total time of 320k operations divided equally between all
threads. The keys for searches and insertions are randomly
chosen 20-bit sized keys. For deletion operations, we en-
sure that randomly chosen keys actually exist in the list in
order to make the reclamation process substantial. The val-
ues of recovery threshold and retire threshold were
always 64. All threads are synchronized to start their op-
erations immediately after the initial list is built and we
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Figure 4: Drop the Anchor vs. Hazard Pointers for lists with the initial size of 100k keys, the mixed workload
results.

measure the time it takes to complete all operations by all
threads. We run each test 10 times and present the average
results. The variance of all reported results is below 1.5% of
the average.

Figures 3 and 4 show the measurements of the total time
required to complete our benchmark using the HP mem-
ory management, the delayed reclamation and the Drop
the Anchor method. For the latter, we have used three
versions with different values for the anchor threshold
value. Specifically, in the first version the anchor is dropped
every second node (which is the lowest legitimate value for
anchor threshold in the case of the linked list), in the
second version the anchor is dropped every 10 nodes, and
in the third – every 100 nodes. We show the results for
read-only workload where all operations are searches (Fig-
ure 3(a)) and for the mixed workload, where 20% of all op-
erations are insertions, 20% are deletions, and the remaining
60% are searches (Figure 4(a)).

Our measurements show that in the mixed workload the
Drop the Anchor-based implementation is faster in about
150–250% than the HP-based one, even if the anchor is
dropped every second node. When increasing the anchor th-
reshold parameter from 2 to 100, we get even higher im-
provement of 300–450% over the performance of HPs.

In read-only workload we can see even better performance
improvement (400% on average) due to anchors usage com-
pared to HP usage (cf. Figure 3(a)). Finally, we can see
that for substantial amount of threads, the Drop the Anchor-
based linked list performance is very close to the linked list
implementation based on the simple delayed reclamation.
This suggests that the amortized cost of the memory man-
agement in the Drop the Anchor technique is very small.

Additionally, Figures 3(b), 4(b) present the relative per-
formance ratio of each memory management technique, ex-
plained above, compared to delayed reclamation. When the
ratio is close to 1 it means that the memory management
technique adds almost no overhead over the delayed recla-
mation. The HP memory management shows 400–550%
slowdown, where Anchor-based implementation shows 7–

10% slowdown for anchors dropped every 100 nodes, and
200–250% slowdown for anchors dropped every 2 nodes, all
compared to delayed reclamation results.

In another set of experiments, we measure the impact of
the initial size of the list on the performance of the HP-
based and Drop the Anchor-based implementations, while
the number of threads is constant (16) and the workload
is mixed. The results are depicted in Figure 5(a). It can
be seen that the running time of both implementations in-
creases linearly with the size of the list as threads need to
traverse more nodes per operation on average. The slope
of the HP-based implementation is much steeper, however,
suggesting that the overhead introduced by fences is much
more significant than the cost of the anchor management.

In Figure 5(b) we can see the performance impact of the
recovery procedure in the Drop the Anchor technique. We
use the version of the technique with the anchor threshold
value equals 100 for more significant impact. We explicitly
delay one of the threads, thus causing this thread to be con-
sidered as stuck and recovered by other threads. The stuck
thread returns to run after 2 seconds and the presented total
time is measured until all threads finish their runs. The re-
sults show that the recovery procedure has 15–50% impact
on the performance, even when the anchor threshold
value is high. In any case, the Anchors-based implemen-
tation’s performance (with the delay and recovery) is much
better than the HP-based one.

6. DISCUSSION
We presented a new method for memory management of

non-blocking data structures called Drop the Anchor. Drop
the Anchor is a novel combination of the time-stamping
method (which cannot handle thread failures) with the an-
chors and freezing techniques that provide a fallback al-
lowing reclamation even when threads fail. Non-blocking
algorithms must be robust to thread failures and so cop-
ing with thread failures in the memory manager is crucial.
We have applied Drop the Anchor for the common non-
blocking linked list implementation and compared it with
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the standard Hazard Pointers method. Measurements show
that Drop the Anchor drastically reduces the memory man-
agement overhead, while robustly reclaiming objects in all
executions.

We believe our technique can be applied for other non-
blocking data structures. Specifically, assume a data struc-
ture represented by a directed graph, where vertices cor-
respond to internal nodes and edges correspond to pointers
between these nodes. When recovering a thread t, we need to
freeze and copy the sub-graph containing all internal nodes
at the distance that depends on the anchor threshold pa-
rameter, from the node pointed by t’s anchor. Essentially,
although the copying operation might be expensive and even
involve the whole data structure, the scalability bottleneck
associated with the memory fences will be removed from the
common node access step.
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