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ABSTRACT: We study the problem of a single ideal polymer chain tethered to a surface at the midpoint
of a repulsive potential stripe. If the potential is very weak, the chain remains unperturbed. However, as
the potential is increased, the chain conformation undergoes a sudden change. The chain forms a tether
to the edge of the stripe and moves most of the monomers off to the region of lower potential. This is a
simple example of an escape transition previously discussed for compression of polymer chains. We show
how these two systems are analogous and clear up some controversy regarding the exact form of the

force versus height curve for the compressive system.

I. Introduction

The deformation of polymer chains by externally
applied forces is one of the most fundamental topics in
polymer science. One example, the compression of an
ideal polymer chain lodged between two infinite plates,
is a classical problem which is well-understood.? The
ideal chain resists compression in the slit because
confinement reduces the chain’s entropy. The free
energy penalty for compression of a chain of N mono-
mers of size a sandwiched between plates separated by
a distance H is F O kTNa?%/H?2 in the regime of moderate
compression a < H < N¥2a.12 Recently a different
compression problem was tackled. This is the problem
of a chain tethered by one end to a surface and
compressed by an obstacle, the flat end of a cylinder of
radius R (Figure 1a).8712 A novel transition was pre-
dicted to occur in this system. At weak compressions
the chain remains wholly under the obstacle: we refer
to this completely confined chain as imprisoned. How-
ever, at a certain critical compression the chain partially
escapes from underneath the obstacle by forming a
stretched tether from the grafting site to the edge of
the obstacle. The remainder of the chain sits outside
the obstacle and avoids compression: the chain has
escaped. This escape transition was predicted to be first-
order; i.e., at the critical compression, quantities such
as the chain size and compressive force undergo finite
jumps. This transition can only occur when the obstacle
size R is larger than the natural chain size aN'2 but
still smaller than the fully extended chain length Na.
One likely place in which this transition might be seen
is in atomic force microscopy experiments on single
polymer chains, which are now fairly commonplace. The
existence of this transition and some of the details have
been confirmed by several Monte Carlo simulations.8-12
Another place where escape might occur is in emulsion
polymerization, where a polymer can be confined inside
an oily drop, but where compression might cause escape.

In this paper, another escape problem is presented
which contains the same essential physics of the escape
transition, but permits a simpler analysis. We consider
a chain which is end-tethered to the center of a repulsive
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potential stripe (Figure 1b). Any monomer that resides
within the stripe, i.e., between —R and R from the tether
point, is penalized an energy, U, while monomers
located outside of the stripe suffer no potential energy
penalty. If the energy per monomer, Uy, is small, the
chain will remain confined to the potential stripe; in
analogy to the compression problem, we say that the
chain is imprisoned. However if Uy, is made sufficiently
large, the chain will form a tether, stretched to the edge
of the potential stripe such that the remaining mono-
mers will be deposited outside of the stripe. Similar to
a highly compressed system, the chain has escaped.

This problem has two different motivations. First, it
has recently become possible to make chemically striped
surfaces with a stripe width of the same order as the
effective size of a polymer chain.13-15 Polymers grafted
to such stripes should show the kind of transition
considered here. Second, the escape transition in a
striped potential is directly analogous to escape in the
compression problem. Unlike the compression problem,”
the partition function of a chain tethered in a striped
potential can be evaluated exactly in some limits and
very simply in most other cases. This is important
because there have been several recent attempts to
describe the escape transition in the compression prob-
lem in terms of coexistence of two phases or states.
According to this, the compressive force, like the coex-
istence pressure, would be constant through the transi-
tion from one state (imprisoned) to another (escaped).
We show in this paper that this is incorrect in the
experiment where the height is the independent vari-
able and the force is measured.

This paper is organized as follows: In the next section
we describe the escape of an end-tethered chain from a
potential stripe using a mean-field approach. While
illustrative, this coarse-grained approach does not detail
the escape transition to the extent expected in, for
example, computer simulaton. Thus, in section 111 we
present a simple model consisting of a single monomer
tethered to the midpoint of the stripe by an expandable
spring. This model possesses a simple partition function
from which thermodynamic properties such as free
energy and, by analogy with the compression problem,
force can be unambiguously calculated. In section IV we
construct the partition function for a finite-sized exten-
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Figure 1. The analogy between the escape by compression and the escape from a repulsive potential stripe. In panel a the chain
is compressed by a finite obstacle. At weak compressions or large slit width H (left), the chain is imprisoned, while at stronger
compressions (right) it escapes. In panel b the chain is tethered to the center of a potential stripe. For a small potential, U, (left),
all monomers reside in the repulsive potential, i.e., the chain is imprisoned, while for a larger potential (right), the chain escapes.

sible chain of many monomers end-tethered to the
potential stripe. From this partition function, we show
that the compressive force profile (force versus slit
width) has characteristics distinctly different from that
expected from a pressure profile (pressure versus vol-
ume) in two-phase coexistence. In the transition region,
our force profiles display a maximum rather than a flat
force profile, which one might anticipate from analogy
with say, gas—liquid coexistence. This is discussed in
some detail in section V, where we examine the case of
experiments conducted with force as the independent
variable. Throughout this paper we make the simplifi-
cation that the problem is one-dimensional. Thus only
the trajectory in the x direction is considered and the
problem becomes that of a chain tethered to a potential
bump.

Il. Mean-Field Description

Similar to the compressive escape problem, a mean-
field analytic calculation can provide a first description
of the system. When the chain is entirely confined to
the potential stripe, or it is in an imprisoned state, its
Helmholtz free energy is simply given by Finmp = NUj.
In the escaped state the chain can form a tether of p
monomers with the remaining (N — p) monomers
escaped outside of the potential stripe. The free energy
of this state consists of two terms: a stretching penalty
for the tether, akTR?/(pa?), and the energy of the tether,
pU,. Here a is a numerical constant. The average
number of monomers in the tether, p, is that which
minimizes the chain’s free energy, i.e., p = \/E(R/a)
J/KT/U,, and the free energy of the escaped state is
thus Fese = 2\/E(R/a)4/uka. Neglecting fluctuations,
which lead to an exchange of states, we say that the
state, imprisoned or escaped, of lower free energy
prevails. The critical potential at which the transition
between states occurs occurs when Fimp = Fesgc, OF

U,* = 4akTR?/(N%a?) (1)

One obvious signature for the transition is a discon-
tinuous change in slope of the free energy curve. Below
the transition the free energy is proportional to Uy,
whereas above the transition it grows only as UyY2. For
a sharp transition, we require the potential thickness,
R, to be several times the natural size of the chain, Rg

= aN2, so that thermal fluctuations are unimportant.
Let us set R = BRo where B is larger than 1. The critical
potential for escape is then Uy* = 4aB’kTN~. Note that
this escape potential is very small due to the factor N.
For large N it can be very much less than kT. This
shows that escape can occur even for very weak poten-
tials. What is important in this problem is not the
energy per monomer, Uy, but the energy of all the
monomers NUy. A similar situation exists in the classic
problem of polymer adsorption, where the energy per
monomer is small but the total energy is very large.

We note one interesting point about this transition.
At the ctritical potential it is easy to show that the
number of monomers in the tether is equal to the
number of monomers in the escaped part, i.e., p = N/2,
and that the stretching free energy and the change in
potential energy are equal. A similar thing happens in
the case of the compression problem.

I11. A Monomer on a Spring, End-Tethered to a
Potential Stripe

Although the mean-field calculation is useful in
understanding the escape transition in a striped poten-
tial, it does not go beyond the calculations previously
presented for compressive systems. To do this we need
to examine the full statistical mechanics of the escaping
system. In this section we do this with the very simplest
case, that of one monomer, tethered to the origin by a
spring of energy wx2. The partition function for this
system is

z= [ dxexp(-Bwx* + U(x)) =
ZJ;R dx exp(—Bwx’ + Uy)) + 2 [ exp(—pwx’) (2)

where = 1/(KT). This can be evaluated as

Z = Jal(Bw)(1 + erf(RvVBw)(exp(—AU,) — 1)) (3)

where erf is the error function. From this partition
function, all of the thermodynamic properties of the
monomer-spring system can be derived. In particular,
we can obtain the Helmholtz free energy F = —KT In Z,
given in Figure 2. In all the computations we set the
monomer size a equal to 1. At small Uy the monomer is
imprisoned in the potential stripe and the free energy



Macromolecules, Vol. 32, No. 20, 1999

25 v s e — J

20 ]

w i {
5] -
o : :
S . ]
" 10 - _ v |
o e g: }
£ 1

5=
O:Au_ Lot e A AAA_‘___A“‘_‘_J
0 10 20 30 40
Potential, Ub

Figure 2. The free energy, F, versus a stripe potential, Uy,
for the one-monomer spring, end-tethered in potential stripe.
The parameters used here are KT = 1, spring constant w =
2.0, and potential stripe thickness R = 3.0. For small potentials
the free energy grows linearly with the potential until a critical
potential of Uy ~ 20 is reached. Beyond this critical repulsive
potential, the spring is stretched across R = 3.0 and the
monomer resides outside of the repulsive potential strip. The
single-monomer chain has escaped.
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Figure 3. The force, f, versus compression, H, for the one-
monomer spring, end-tethered underneath an obstacle. The
parameters are the same as in Figure 2. With compression,
the force increases until H ~ 2.5, where the force drops to zero,
signaling the escape of the single monomer from underneath
the obstacle.

is simply proportional to U,. However, at a critical Uy
the single monomer escapes from the stripe and the
system free energy is attributable to the spring energy
only. Thus the free energy is constant for U, greater
than the critical escape potential. For a realistic many-
monomer system, a stretched tether will contain mono-
mers and, above the critical potential, the free energy
will depend on Up. We will show this in the following
section.

In the striped potential problem, there is no physical
force. However, by setting the confining potential equal
to Up = kTa?H?, where H is the slit width between
surface and obstacle, we can map our striped potential
problem onto the compressive problem. This allows us
to write the free energy as a function of H, and hence
to obtain the force f = —9F/o0H. With this mapping, we
predict a force profile, f versus H, which has a sharp
drop near the expected transition (Figure 3). The force
falls to zero at strong compression, or small H, simply
because the single monomer is outside of the obstacle:
there are no monomers confined underneath the ob-
stacle imposing a force upon the obstacle. It is important
to note that this calculation is an “exact” one, albeit for
the simplest of model systems. We have followed strictly
the rules of statistical mechanics: evaluate Z, find the
Helmholtz free energy F = —KT In Z, and then calculate
f = —dF/oH. No artificial constructions are needed and
statistical mechanics gives us the answer to the problem
directly.
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One important point should be noted. In mapping
from the compression problem to the potential problem
we have replaced a purely entropic free energy term by
a purely enthalpic potential term. This mapping is only
approximate, but from the point of view of equilibrium
thermodynamics, it does not matter what the origin of
the terms in the free energy are, all that matters is the
free energy.

In fact, as one referee has pointed out, the case of a
single monomer under compression can be solved ex-
actly; i.e., we can evaluate the partition function. When
this is done, we see no sharp escape transition, merely
a smooth crossover. We will not do this calculation here,
but only mention that this occurs mainly because only
one monomer is involved and there is no monomer in
the tether. This means that this is a very special case
and one which is not relevant to the general case where
there are many monomers. In some sense the results
for a single monomer are spurious, because once the
monomer has escaped, the tether suffers no compression
penalty.

IV. A Long Chain End-Tethered to a Potential
Stripe

The one-monomer problem is both simple and artifi-
cial and cannot be expected to capture all of the physics
of a chain tethered in a repulsive potential stripe. The
above calculation can be extended to two or more
monomers, but only at the expense of great algebraic
complexity. Instead, we take a different approach. We
describe the polymer as a random walk on in one
dimension. The trajectory of an N-monomer chain
consists of N unidirectional steps of size +1, starting
from an origin which is the midpoint of the striped
potential of width 2R. The partition function of this
finitely extensible chain is then

Z= L )
aIItraj;orieSyi exp( ﬁ ,) (4)

where U; is the energy of ith trajectory, equal to the
sum of the energy felt by each of the N monomers. The
partition function can be simplified by introducing a
function Qn(n,R), which is the number of unbiased
random walks of length N which have exactly n mono-
mers in the region |x|] < R. Each of these walks
represents a chain of energy nUy, so that the partition
function can be recast as

N
Z= ) Qu(nR) exp(=fnU,) ®)

n=

where the sum is over n, the number of monomers
within the striped potential. This partition function
permits direct evaluation of the free energy as well as
the compressive force for the isomorphic compression
problem.

The problem is to evaluate the function Q. Here we
take two approaches: exact (full) enumeration and
stochastic (partial) enumeration. If we were able to
generate each random walk configuration of N steps,
we could exactly partition the count and construct the
function Qn. However, there are 2N configurations
available to an N monomer chain; so for a chain of N =
25 monomers there are nearly 34 million random walks.
Each of these can be enumerated on a computer and
an exact count of Qy can be generated. However, for
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Figure 4. The Helmholtz free energy, F, versus the potential,
U, for the case of an N = 100 monomer chain tethered to the
midpoint of potential stripes of range (or half-thickness) R/
VN = 3.0 and R/v/N = 2.5. Here kT is unity. The energy was
evaluated directly from the partition function using 10° one-
dimensional random walks to obtain Q. At small repulsive
potential, the free energy is a linear with Uy, indicating that
the chain is trapped. At higher potentials the chain escapes
and the free energy increases more weakly with Uj.

larger N, such a direct and complete enumeration is not
possible. In that case, we evaluate Qy stochastically. We
do this by randomly generating many random walks,
say 108 chains, a mere 1/10%* of all possible N = 100
chains, and partition these into Qn. While this does not
provide an exact Qn, we can show that a stochastic
generation of /34 of all possible random walks of N =
25 provides a Qn which is indistinguishable from that
constructed from exact/full enumeration. For N = 100,
where we are unable to generate this fraction of walks,
we have been able to show that the character of the free
energy and force profiles are unchanged near the
transition region and at weak compression. Only in the
region of high compression, or low H, where the unbi-
ased random walks become rare, do the profiles change
with the number of random walks generated.

Once we have the function Qy, either exactly or
stochastically, we can evaluate the partition function,
Z, and hence F and the force, f = —9dF/9H. Figure 4
provides the free energy versus potential, Uy, for an N
= 100 chain for two different potential ranges, R. Like
the single monomer-spring model, the free energy is
proportional to U, at small potentials, indicating that
all monomers of the chain are imprisoned within the
potential stripe. Above a critical Uy, monomers escape
and the free energy is less sensitive to the magnitude
of the potential, as there are fewer monomers residing
within the stripe. Figure 5 provides the force, f, versus
slit separation, H, for N = 100 inextensible chains,
where H is again related to the stripe potential accord-
ing to U, = kTa?/H2. Force curves are presented for
various obstacle radii, spanning 2.5—4.5 times the
natural size of the chain. At weak compressions, the
chain is fully imprisoned underneath the obstacle and
the force is independent of the size of the obstacle. At
very strong compression, after escape takes place, the
magnitude of the force profile depends on the number
of monomers in the tether, p. Escape from larger
obstacles requires longer tethers, more monomers un-
derneath the obstacle, and hence higher compressive
force. The transition between the imprisoned and es-
caped portions of the force profile is marked by a
maximum in the force curve. The maximum becomes
more marked with an increase in obstacle size, occurring
at stronger compressions (lower H) and higher compres-
sive force. It is important to emphasize that these force
curves were generated from partition functions and are
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Figure 5. The force, f, versus compression, H, obtained as
described in Figure 4 with the variable mapping U, = kKT/H2.
Various different potential ranges R are shown. At weak
compression (H > 3.0), all obstacles exert the same force on
the chain, which has all of its monomers trapped. With further
compression, the chains partially escape from the smaller
obstacles, first, and escape from progressively larger obstacles
at higher compressions. The escape transition is marked by a
departure from the obstacle-independent (weak compression)
curve with an S-shaped force profile, which exhibits a local
maximum in the force. This local maximum is particularly
evident for obstacles which are 3—4 times the natural size of
the chain. Once escaped, the larger obstacles require a larger
compressive force, as there are more monomers in the stretched
tether.

thus unambiguous. Errors associated with a stochastic
(partial) evaluation of Qn are minimal. We have shown
that the R = 2.5, 3.0, and 3.5 force profiles are
unchanged when the number of unbiased random walks
used to generate Qy are reduced from 100 to 15 million.
There are some changes to the force curves for the larger
radii obstacles (R = 4.2 and 4.5) at strong compression,
and these variations are not correlated with the number
of random walks generated. This occurs as an escaped
chain with only a few p tether monomers within R of
the tether point and the remaining monomers located
outside of the R is rarely sampled in our unbiased
generation of random walks. Nevertheless, the character
of the curves, namely the maximum, does not change.

V. Force as the Independent Variable

Our motivation for studying this system has been to
examine a real experimentally feasible system (a poly-
mer tethered to a stripe), and to clear up some issues
surrounding the more complicated compressive system.
In particular, by choosing U, = kTa%/H? we can map
one problem onto the other. This is particularly impor-
tant as there is some confusion concerning the escape
transition in compressive systems. The original predic-
tions®~6 of this transition were based upon simple mean-
field calculations, and most of the conclusions have been
confirmed by more recent Monte Carlo simulations.8-12
However, Monte Carlo simulations of this system suffer
from a major drawback, common to all first-order
transition problems. This is the fact that we have a
system with two states, “imprisoned” and “escaped”,
with a barrier between them. This energetic barrier is
attributed to the stretching free energy of the tether.
An imprisoned chain needs to stretch beyond the
obstacle to see that escape is favorable, and this can
cost a large amount of free energy. This means that the
system often becomes trapped in one of the two states.
Thus, Metropolis-based Monte Carlo simulations, where
successive configurations are made by attempted moves
on only one or a few monomers, must be run over very
many configurations in order to see the transition.
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Inevitably, in an attempt to speed up the collection of
data, parameters are chosen such that the barrier is
small. This of course leads to a significant washing out
of the transition and, in particular, to a removal of any
jumps in the force curve. This has led several authors
to state in preprints that there are no jumps in the force
versus compression curves. In particular there have
been attempts to draw an analogy between the escaping
system and a system with coexisting phases, the most
usual one being the liquid—gas coexistence of a fluid in
a closed container. The conclusions from this kind of
analogy have lead to the prediction of a flat region of
the force versus compression curve, i.e., near the transi-
tion the force is independent of compression. In par-
ticular, even when the Monte Carlo data show a
maximum in the force curve, there have been attempts
to apply a Maxwell construction to the data and to give
a flat force curve.

This is not what is predicted by the early theories,
nor is it what is seen in exact calculations of the
compression problem?” or in the potential problem
studied here. What has been done here and in recent
work by Ennis et al.” is to examine the problem from
the point of view of classical statistical mechanics, which
gives a unique prescription for finding the correct
answer. We calculate the partition function, Z, at fixed
H, find the Helmholtz free energy F = —kT In Z, and
then calculate the force f = —9F/9H. This procedure does
give, correctly, a maximum in the force versus height
curves, and no spurious Maxwell constructions are
needed.

However, this does not entirely settle the matter,
since in principle there are two possible experiments
that can be conducted. In one scenario, which we refer
to as experiment A, the height of the obstacle is
controlled and the force or other quantities are mea-
sured; i.e., the height is the independent variable.
Alternatively in experiment B, a fixed force is applied,
and the other quantities, including H, are measured:
in this experiment, force is the independent variable.
Case B is in fact the case of most importance to some
AFM experiments, where it is usual to fix the force
rather than the displacement. In all cases studied thus
far, by mean-field theory, partition function methods,
and Monte Carlo simulation, case A is used. In this case
the Helmholtz free energy, F = U — TS, is the appropri-
ate thermodynamic potential, and a maximum in the
force curve is both predicted and seen in simulation and
from the partition function. Case B clearly is different,
since a maximum in the force curve corresponds to a
multivalued function when seen with force as the
independent variable. In case B, the appropriate poten-
tial is the Gibb's free energy, G, which is given by G =
F + Hf. Now, of course, for most of the force curve both
potentials give the same answer for the force versus H
relation, since f = —dF/oH and 0 = aG/oH = oF/oH + f.
However, near the transition this cannot be the case.

What happens here can best be resolved by consider-
ing the specific example of the escape under compression
using the mean-field approach. The Gibbs free energy
of the imprisoned state is Gimp = kTNa?/H? + fH. With
f fixed this needs to be minimized over H, to give Himp
= (2NkTa?f)¥® and a Gibbs free energy of Gimp =
3(NkTa2f2/4)13, In the escaped state the Gibbs free
energy is Gesc = pkTa?/H2 + kTR?/(pa?) + fH, where we
have set the parameter o equal to 1. This needs to be
minimized over the number of trapped monomers, p,
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Figure 6. The force versus compression curve obtained in the
mean field approximation under two different conditions: (a)
where height is the independent variable and (b) where force
is the independent variable. The full lines are the predicted
force vs compression curves in each case, while the dotted lines
are used as guides to emphasize the jump in the measured
quantities, either force in part a or height in part b. This coarse
grained mean-field treatment was accomplished with KT = 1,
a=1,N =100, and R = 20.

and the height, H, giving p = HR/a? and Hes. = (2RKT/
)12, The final form of the Gibbs free energy when escape
takes place is then Gese = (8fRKT)Y2. Under conditions
of fixed given force, the system wants to minimize the
Gibbs free energy. The imprisoned and escaped con-
figurations have different dependencies on f; i.e., they
grow as 23 and f2, respectively. Thus, as the force is
increased, we expect a jump from imprisoned to escaped.
This occurs when Gesc = Gimp, i.€., at a critical force of

RS

*~ KT NERC

(6)

Here the numerical factor refactors have not been
included, as they have been approximated in the free
energy contributions. When this critical force is reached,
the system suddenly jumps from imprisoned to escaped.
This results in a sudden decrease in the height, which
can easily be calculated to be

_ 9 \a2p-1
OH == Na’R @)

This jump could be a considerable fraction of the
initial chain radius.

We can use these results and the earlier results with
H as the independent variable to plot f versus H curves
for the two cases (Figure 6). Note that the force versus
height curve shows a sudden jump in the case where
force is the independent variable (Figure 6b). There is
no flat region in the curve, and no coexistence. The
analogy between this system and the liquid—gas system
is false. This is basically because in the liquid—gas
system coexistence arises from cooperative effects—the
system can place some atoms in a gas phase and some
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in the liquid phase to lower the total free energy. In the
escape system the chain is either imprisoned or escaped,
and it makes no sense to put some of the chains in one
state while the remainder are in another. Essentially,
the system chooses which state has the lowest free
energy and puts all the chains there. This result is
modified somewhat by thermal fluctuations, where
states of high energy can be populated,” but this is
different from coexistence.

V1. Summary

In this paper we have discussed the escape transition
which occurs when a polymer is tethered to a potential
stripe. This is a system which is of some experimental
interest due to recent advances in making patterned
surfaces on the appropriate lengthscale, of order 1000
A. The reader should, however, note that our study is a
very simplified version of the real experimental systems.
Often these involve grooved or rough surfaces and often
the chains are only weakly adsorbed so that not all the
monomers feel the potential. Apart from being a possible
experimental system, the case of a polymer on a
potential stripe is a simple example of an escape
transition, which previously has been discussed for the
compression problem. The potential problem has the
advantage of containing the essential physics of the
more complicated system, but in a much simpler form,
allowing some exact analysis. This has enabled us to
clear up some of the controversy and confusion that has
surrounded the computer simulation of this system. We
note finally that the problem of a polymer in a potential
contains a lot of rich and interesting physics, some of
which has been discussed recently.16:17

In this paper we have concentrated on the case of a
polymer confined in one-dimension by a potential. A
referee has pointed out three other cases where escape
either does or might occur. One is in emulsion polym-
erization, where a polymer can be confined inside an
oily drop, but where compression might cause escape.
Another is the familiar case of a bidisperse polymer
brush, where a small number of longer chains can
escape from the main section of the brush and lie outside
it.18 A third is in the case of colloids, which are often
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coated with polymers in order to stabilize the system.
In this case only the average distance between particles
is kept constant, since the density of particles is fixed.
There is the possibility in this case of a phase separation
occurring due to the escape transition, in particular due
to the negative slope in the force versus height curves
seen in parts of Figure 5. A precise calculation of this
is beyond the scope of this paper, but it does suggest
an interesting effect—namely, that grafted polymers can
cause an effective attraction between colloidal particles.
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